Siileyman Demirel Universitesi Fen Edebiyat Fakiiltesi Fen Dergisi https://dergipark.org.tr/sdufeffd
Stileyman Demirel University Faculty of Arts and Sciences Journal of Science e-ISSN: 1306-7575
Research Article, 2023, 18(1): 18-27, DOI: 10.29233/sdufeffd.1266502

On the Jost Solutions of A Class of the Quadratic Pencil of the Sturm-Liouville
Equation

Anar Adiloglu Nabiev'”, Dondii Nurten Ciicen?

1Computer Engineering Department, Faculty of Engineering, Suleyman Demirel University, 32260,
Isparta, TURKEY
https://orcid.org/0000-0001-5602-5272
2Department of Mathematics, Art and Science Faculty, Suleyman Demirel University, 32260, Isparta,
TURKEY
https://orcid.org/0000-0002-6032-9073
*corresponding author: anaradiloglu@sdu.edu.tr

(Received: 16.03.2023, Accepted: 25.04.2023, Published: 25.05.2023)

Abstract: In this study we construct new integral representations of Jost-type solutions of the
quadratic pencil of the Sturm-Liouville equation with the piece-wise constant coefficient on
the entire real line. Our aim is to express the special solutions of the Sturm-Liouville
quadratic pencil in the form of some integral operators which kernels is related with the
potential function of the Sturm-Liouville equation. This problem is technically diffucult due
to the discontinous coefficient which causes the kernel function to also have a jump
discontinuity.
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1. Introduction

We will focus at the Sturm-Liouville equation

—y" + qwy + 2p(w)y = 2p(W)y, u € (—x, +x) 1)
which has the discontinuous coefficient

1 u>

paw={3 "IN @=ra>0), @)

where gq(u) and p(u) are real functions, 7 is a complex parameter, p(u) is absolutely
continuous on every closed interval of the real axis and

[ wetau <, [ @+ jub (lg@1+ p'eol)du < +o )

Equation (1) arises when solving the Klein-Gordon equation with a static potential and
zero charge in quantum scattering theory [7]. In addition, scattering problems arising in
the theory of transmission lines, theories of electromagnetism, and the theory of
elasticity are also reduced to equation (1). The transformation operators approach,
which Marchenko [8,1] used to solve the inverse problems for the Sturm-Liouville
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operator on a finite interval and on the half line, is an important method in inverse
problems theory.

When p(u) = 1, there are enough studies in the literature for the direct and inverse
problems of equation (1) [7, 6, 3, 11]. Inverse scattering problems related to the
discontinuous Sturm-Liouville have been considered by many authors, for details we
refer to [2, 9, 4, 5]. The direct and inverse scattering problems for equation (1) with
p(u) = 0 in various settings have been investigated [4, 5, 13] where some integral
representations, similar transformations operators for the Jost solutions (Js) of the
Schroedinger equation, are obtained and applied for studying the discussed problems. In
this study we construct new integral representations of Jost-type solutions of equation
(1) on the entire axis under conditions (2) and (3). Our aim is to express the special
solutions of the Sturm-Liouville quadratic pencil in the form of some integral operators
which kernel is related with the potential of the equation (1). This problem is technically
diffucult due to the discontinous coefficient which causes the kernel function to also
have a jJump discontinuity.

2. Integral representation of the Jost solutions

Let g (u, 7) are the solutions of (1) with the condition at infinity
ull)r}_goo g+, Dexp(uit(w)) =1,
1
where exp(u) = e" and u(w) = u[p(w)]z . g+(u,7) and g_(u,t) are called the right
and the left Jost solutions (rlJs) of (1) respectively. First, let's transform the given

differential equation with the above conditions at infinity into an equivalent tintegral
equation. We easily have

g+, 1) = Fy(u,7) + f N(u,t,7) (q(t) + 21p(t)) g+ (t, T)dt 4)
where,
F,(u,t)=F (u,p_%(u),T) +F (u, —p_%(u), —‘L')
F (u,7)=F (u, —ap_%(u),r) +F (u, ap_%(u), —T)
with
F(u,h(u),7) = %(1 + h(u))e™®
and
u(@®)+u(w)
1 2 L
N(u,t,7) = 3 <p 2(t) — p 2(u) f costsds
° u(®)—p(w)

1/ 1 L
+§<p 2(t) — p 2(u)> f costsds
0
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Think about the solution g, (u, 7). It is known that [6, 3] for u > 0 and all Imt > 0 the
solution g (u, ) has the representation

4o

g+, 1) = exp(itu + iwy(uw)) + f At (u, t) exp(itt) dt, (5)

u

where w, (1) = fu+°°p(t)dt and the function A* (u, t) satisfies

f A (1w, B)] < Colexp(a™(w)) — 1) (6)

for some constant C, > 0 and o* (u) = (fu+°°(s —w)|q(®)| + 2|p(t)|)dt. Furthermore,
the kernel function A* (u, t) satisfies the condition

+o0

1
At =5 [ 1o +p* @t - ip@) |exp(ioo, (). )

u

For convenience afterwards we set A*(u,t) = Ft(w,z) withw —z=u,w+z=t.

Now we investigate the case u < 0 for the solution g, (u, 7). Letus set ay = %(1 + i)
In this case the equation (4) takes the form of

9+(u, 1) = a, exp(iatu) + a_ exp(—iatu)
0

sinat(u — s)
e

q(s)g+(s,7)ds

Yoo (8)
. + . _
4 f [a‘ sint(au + s) ot sint(au — s)
T T

0

* [q(0) + 2tp()]g.+ (s, )ds

We easily reveal that equation (8) has the solution
g+, ) = Ry(wexp(iatu) + R_(w)exp(—iatu)

+ 00

+ f B*(u,s) exp(its)ds,Imt = 0,u <0 ©)

au

where
0

Re() = azexp (i, (0) £ - [ p(8)ap)

u
and B*(u,s) = GT(w,z) (au=w — z,s = w + z) is defined after replacing g, (u, 7)
in equation (8) with formulas (5), (9) and transforming some integrals of the Fourier
type:
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0 0 .
6t =5 [ a® R @B+ 5 [a®R- B8 —5p(5) R, (2)

e (DR (@D 5[ awevas

0

z
— &f q(B)elw+® gp — la__p(z)eiw+(2)

+at def qly —s)Z* (y,s)dy —a” defCI(V—S)Z+ (v,s)dy

0

Z +00
1
;defq G*(%S)dy+la+f p(y —)Z* (y,s)dy
0 w z
o
- f (z—8)At (2, 6)d6+—j ———)Z* (w,86)ds
0
1 ‘ y
o L +
3 p(a a)G (v,z)dy, z>0,w<0
w
+00 +o
+ a* iw4 () a iw4(B) la_ iw4(2)
6w =5 [ a@e e @ ap+ 5[ a@re e ® dp - p@ret:
w
+00
ia, ‘

~ SEpw)el ™) + ot f ds f (v — $)Z* (1, 5)dy

Z + oo Z +oo
var [ds [ a-97 @iy +a [ ds [ a0 =92t @.9ay
Oz WZ 0
—a” jdqu(y—s)A’f(y—s y + s)dy
w
1 Z + oo
gdeIq G*(%S)dy+ wuf p(y —2)Z* (v, 2)dy
w w Z
— la, j pw—68)ZT (w,8)dé
0
w + oo
—ia_ f p(z—6)Z" (2,6)d6 + ia_ f p(y —w)Z* (y,w)dy
0 Z w (20)
1 w S
_ _ +
+ 3| P (a a) G* (w,s)ds
2 w
1[ (y Z)G+( Ydy,0 <w < 11
— | P{; 7 v,2)dy,0 <w <z. (11)

w

Here we assume At (u,t) = 0 fort <uand B*(u,t) = 0 for t < au.
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Similarly, when we consider the solution g_(u, t) , we get for u < 0

au

g-(u, 1) = exp(—iatu + iw_(u)) + f A~ (u,t) exp(—itt)dt ,Imt =0, (12)

— 00

where w_(u) = éfpr(t)dt and the kernel function A= (u,s) =Z"(w,z),u =w +
z,s = a(w — z) satisfies the integral equation
w

w Z

1
Z=(w,z) =5 fq(s)ds+2m2

p(w)eiw-) 4 fd)/fq()/H)Z‘ (v, s)ds
R

1 z
+ af p(w + 8) A~ (w, 5)d5
0

w
1
T j p(y+2)A"(y,2)dyyw< —-z<0 (13)
which implies -

au

f A~ (u, O)dt] < C; (exp(o™(w)) — 1) (14)

for some constant C; >0 and o (u) = (f_uoo(u —5)|q(®)] +§|p(t)|)dt. Here
A~ (u,t) = 0 for t > au. Moreover, the kernel function A~ (u, t) satisfies the condition

A (u,qu) = %( j [q(t) + %pz(t)] dt + %p(u)) exp(iw_(w)). (15)

As in the case of the (rJs) we have foru > 0

g-(u,t) =T, (Wexp(itu) + T_(u)exp(—itu)
U

+ f B~ (u,t) exp(—itt)dt,Imt = 0,u >0 (16)

where
Ty(u) = l(1 + a)ei“’—(o)iif(flp(s)ds
- 2
and B~(u,s) = G~ (w,z),u =w +z,5 =w — z With
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w

0 0
- . + . 1
6D =5 [ a@e P+ S [a@e-Oap 3 [ a@rTi(p)ap
1 o - —
w5 [ao T @as+5p () ) - Zpenr o)
0

+ %p(z)TJ,(Z) + aa” f ds f qly +s)Z~(y,s)dy
0

—Z

a

=S

ds f q(y +s)Z~ (V,S)d)/+fd5fq()/+5)6 (y,s)dy

— 00

+aat

QINO\QlN

+ia_ jp —+y (_—Z,)/)d)’
z .
+ia, ]p(y+§)Z‘ (y,g)dy+i jp(y+z)G‘(y,z)dy
“o0 Sz (17)

zZ

— ijp(w+s)G‘(w,s)ds w>0,z>0

0
-z

)= | aePap- | awe i

lzip( a~1z)eiw-(-a72) —inp(a ly)eiw-(a7tw)
T -
+a«a jds qly +s)Z~(y,s)dy
> =
— a‘af ds f q(y +s)Z=(y,s)dy
%, 3
+ aa*f ds f q(y +s)Z~(y,s)dy
0 5 —00
a -5
+aat fds J qly +s)Z~(y,s)dy + st jq(y+s)6‘(y,s)dy
-w —00 -w —-s
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p(y—g)Z‘(%W)d)W ia_fp(—gﬂﬁ)Z‘ (—5,6) dé
0

|
§ ———=r|s

—ia_
a
+ia, fp(y+§)2‘(y,§)dy
5 N ”
—ia+f p(g+6)Z‘ (5,6)d6+i fp(y+z)G‘(y,z)dy
0 Zz (18)

— if p(w—-8)G"(w,6)ds ,—z<w<0

0

and B~ (u,t) = 0 for t > u. Estimating (10), (11) and (17), (18) and for some C > 0,
we easily achieve

+

[0e]

+ | |BE(u, t)|dt < C{exp(c*(au)) — 1} (19)

—

a

<

At(u,t) ,fu=>0

Bf(u,t) ,tu<o0
we may derive the following theorems.

As a result of setting K*(u,t) = { and combining all of our results,

Theorem 1. If (3) is satisfied and Imt >0 then the (Js) g,(u,7) has the

representation
+00

g+, 7) = Ry (w)e™ ™ + R_(u)e™+® + f K*(u,t) e*tdt, (20)
u(u)

where,
+00

1 L 1
R+(u)=§(1+(p(u)) Z)exp f i(p(0) 2pdt |,

u
+ 00

R =5 (1= (o) =) e 1 [ (o) Fp@sgntat |

u(u) = u[p(u)]_% and K+ (u, t) satisfies

f |K*(u, t)|dt < C{exp(at(u)) — 1} (C > 0). (21)
pu)

Furthermore,
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1 e 1 3
K (w,p(w) = Ry (W) {— | (0@ +p5pe) ds

2
+ 2 1 2 (22)
4 ) (58 e
v |\ pi(x)
K, O
1+oo 1 3
= R.1{; f (v '5(s>q<s)+p‘5<s)p2(s))sgnsds

@3)

AT (e ) o)
2 p2(s) ,02(96)

where sgn s is the sign function.

Theorem 2. If (3) is satisfied and Imt > 0 then the (Js) g_(u,t) of equation (1) has
the representation
pu(uw)

g-(u, ) = T, (W)e™ W 4+ T_(u)e!™ ) + j K~ (u,t) e 'ttt (24)

— 00

where,
u

1 _1 1
Ty(u) = > (1 —a(p(w)) 2) exp( f —ip(t) zp(t) Sgntdt>.

— 00
u

) =5 (1+a(pw)” )exp< | tp(t)‘ip(t)dt)

ulu) = u[p(u)] z and K~ (u, t) satisfies the inequality
u(uw)

j K- (u 6)|dt < Clexp(o=(u)) — 1} (€ > 0). (25)

Furthermore,_the following expressions are fulfilled:

u

K~ (wp) =T-() {1 J( ‘i(S)q(s)+p‘§(s)p2(S)) ds

i [ pz(x) ,
—= +(1- p (s)ds ¢,
? f (pz(s)> ( pz(s)> \ }

(26)
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K‘(u, t)|t=—u(u)+0

t=—pu(u)-0
1 H 1 3
=T, (u) > f (p'f(s)q(s) +p'5(S)p2(S)) sgnsds
s (27)
u l 2
+%f 1+ 1_M p'(s)ds ¢,
o pz(x)

where sgns is the sign function.
4. Conclusion

In this paper, new integral representations for the quadratic pencil of Sturm-Liouville
equation with discontinuous coefficients are obtained and, with their help, a connection
is established between the potential functions of the equation and the kernel in the
representation of the solution. This result is important in studying the properties of
spectral data and in solving the inverse scattering problem.
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