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ABSTRACT

In this article, we find an analytical characteristic of the type of a line and derive the formulae
for calculating the coordinates of the midpoints and quasi-midpoints of elliptic, hyperbolic, and
parabolic segments in an extended hyperbolic space H3 in the frame of the first type. The space H3

we consider in the Cayley – Klein projective model as a projective three-dimensional space with an
oval quadric γ fixed in it.
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1. Introduction

In the Cayley – Klein projective model, an extended hyperbolic spaceH3 consists of two connected components,
a hyperbolic space Ĥ3 of positive curvature and a Lobachevskii space Λ3, which is also called a hyperbolic
space of negative curvature. The space Ĥ3

(
Λ3

)
can be realized on the exterior (interior) domain with respect

to an oval quadric [2, p. 392], [3, p.150] γ in the projective space P 3. This quadric is called the absolute of spaces
H3, Ĥ3, and Λ3. The projective automorphisms of the quadric γ form the fundamental group of each of these
spaces [3, 11, 12, 13], we denote this group by G.

A plane of the space H3, depending on its location with respect to the absolute quadric γ, can be elliptic,
extended hyperbolic or co-Euclidean. An elliptic (extended hyperbolic) plane intersects the absolute γ along a
zero (oval) curve. A co-Euclidean plane has two imaginary conjugate lines from γ [2, 6, 11, 12, 13].

A line of the space H3, depending on its location with respect to the absolute, can be elliptic, hyperbolic
or parabolic. An elliptic (hyperbolic) line has two imaginary conjugate (real) points from the absolute γ. A
parabolic line touches the absolute. Objects and ratios on lines of all types are described in [7].

Investigating analogs of known fractal objects of Euclidean geometry in the space H3 (see, for instance, [10]),
we faced the problem of derivation formulae for division a segment in a given ratio. Both these formulae
themselves and their derivation in hyperbolic geometry are more cumbersome than in Euclidean geometry. To
simplify the task, we first find formulae for calculating the coordinates of the midpoint and the quasi-midpoint
of a segment of each type. We solve this task for non-parabolic segments of the extended hyperbolic plane H2

in the canonical frame of the first type in [5], and for segments in the co-Euclidean plane in [6]. In this paper, we
derive the required formulae for segments of all types in the space H3 in a canonical frame of the first type. In
Section 2, we present the main definitions used in this study. In Section 3, we obtain an analytical characteristic
of the line type in the space H3 in Plücker coordinates. Sections 4 and 5 are devoted to the derivation of
the desired formulae for non-parabolic and parabolic segments, respectively. In Section 6, we generalize the
obtained formulae and formulate the main results of the study in Theorem 6.1.

We note that deriving the desired formulae in the spaceH3, we have obtained similar formulae for a segment
in an elliptic space, in particular, in an elliptic plane (see Remark 4.3 and Section 6). Not being sure that these
formulae are new, we do not state the result in a theorem.
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In future publications, we plan to present the first applications of Theorem 6.1. In particular, we will study
the homothety of the space H3 with coefficients 2 and 0.5 and construct analogues of some fractal objects from
Euclidean geometry.

2. Main definitions

In the presented study, the following definitions will be used.

Definition 2.1. Let p be a parabolic line of the space H3 with a point K from the absolute quadric γ. Any finite
points A, B of the line p define a segment [AB] on this line. On the line p there is a single point, say S, that
harmonically separated with the point K the pair of points A, B. For the point S the cross-ratio (ABSK) of the
quadruple of points on the line p satisfies the condition (ABSK) = −1. The point S we call the midpoint of the
segment [AB] (see, for instance, [6, p. 18], [7, p. 92]).

The construction of the midpoint of a parabolic segment in an extended hyperbolic plane is based on the
following lemma.

Lemma 2.1. [9, Lemma 1] On the plane H2, the midpoint of a segment of a parabolic line l lies on a hyperbolic line
parallel to the distinct from l parabolic lines passing through the ends of this segment.

Using the costruction algorithm proposed in [8], [9] and choosing some extended hyperbolic plane of the
space H3 containing the given parabolic segment, it is possible to construct the midpoint of this segment. In
Figure 1a, we shown the construction of the midpoint of the parabolic segment [AB] in the extended hyperbolic
plane H2 with the absolute conic γ0.
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Figure 1. The construction of the midpoint S of the parabolic segment [AB] (a); of the elliptic (hyperbolic) segment [AB] ([CD]) (b).

Definition 2.2. Assume that a non-parabolic line p of the space H3 possesses points K1 and K2 from the
absolute quadric γ. Points A and B on p we call orthogonal, if they are harmonically separated by the points K1,
K2, that is, if the equality (ABK1K2) = −1 holds (see, for instance, [7, p. 95, 97]).

Orthogonal points divide the elliptic (hyperbolic) line containing them into two congruent segments
(quasisegments) (see [7, p. 95, 101]).

Definition 2.3. Let p be an elliptic line with imaginary conjugate pointsK1 andK2 from the absolute quadric γ.
Distinct real points A, B of the line p define two segments on this line. There is a single pair of orthogonal real
points, say S and S∗, which harmonically separated the points A and B on the line p. The points S and S∗

belong to different segments between the points A and B. The point S or S∗ lying on the segment [AB], we call
the midpoint of this segment, the other point we call the quasi-midpoint (see, for instance, [6, p. 23], [7, p. 95]).

The elliptic line p from definition 2.3 can belong to both the space H3 and the elliptic space. In the case of
elliptic space, the quadric γ is a zero quadric or, in other terms, an elliptic quadric (see [2, p. 392] or [3, p. 150],
respectively).

Definition 2.4. Let the point A∗ (B∗) be orthogonal to the point A (B) on the elliptic line p. The points A∗

and B∗ belong to the same segment between the points A, B. This segment we called long, another segment
between these points we called short. The length of a short (long) elliptic segment is less (more) than half the
length of an elliptic line, that is, less (more) than πρ/2, where the number ρ is the curvature radius of the space
H3 (see [6, p.97, 118]).
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Definition 2.5. Let p be a hyperbolic line of the space H3 with the real points K1 and K2 from the absolute
quadric γ. Assume that real points A and B belong to one branch of the line p between the points K1 and
K2, that is, (ABK1K2) > 0. There is a single pair of orthogonal real points, say S and S∗, which harmonically
separated the points A and B on the line p. One of the points S, S∗ belongs to the segment [AB], we call it the
midpoint of this segment. The other point lies on a branch of the line p, that does not contain the points A, B,
we call it the quasi-midpoint of the segment [AB] (see, for instance, [6, p. 127], [7, p. 98]).

In Figure 1b, we shown the construction of the midpoint S of an elliptic segment [AB] (hyperbolic segment
[CD]) using parabolic lines containing the ends of this segment (see [8]).

Definition 2.6. A canonical frame of the first type in the space H3 is a projective frame R∗ = {A1, A2, A3, A4, E},
whose the fourth vertex A4 lies in the interior domain with respect to the absolute quadric γ, and each vertex
is a pole with respect γ of the plane containing three other vertices. The unit point E of the canonical frame R∗

is chosen so that each of the planes A1A2E, A2A3E, and A1A3E is co-Euclidean.

In any canonical frame R∗ of the first type the absolute quadric γ is given by the equation

x21 + x22 + x23 − x24 = 0. (2.1)

The quadratic form ϕ = x21 + x22 + x23 − x24 is the metric form of the spaces H3, Ĥ3, and Λ3. The number
ϕ(ai) = a21 + a22 + a23 − a24 we call the characteristic of the real coordinates (ai), i = 1, 2, 3, 4, of a point A in the
frame R∗. For the real coordinares (ai) of any proper point A of the space Ĥ3 (Λ3) the inequality holds

a21 + a22 + a23 − a24 > 0
(
a21 + a22 + a23 − a24 < 0

)
.

The conjugacy of points coordinates with respect to the bilinear form ψ, which is polar to the form ϕ, is
an analytical characteristic of orthogonality of the points in canonical frames of the first type. For orthogonal
points A(ai) and B(bi) we have ψ(ai, bi) = 0, that is,

a1b1 + a2b2 + a3b3 − a4b4 = 0. (2.2)

3. Characteristic of the line type in Plücker coordinates

Let A and B be distinct real points on a line p in the space H3. Assume that these points are given by
coordinates (ai), (bi), i = 1, 2, 3, 4, respectively, in a canonical frame R∗ of the first type. Let us agree that for all
i the mumbers ai, bi are real. These conditions will help us to uniquely determine the type of the line p by the
sign of the characteristic of its Plücker coordinates.

We denote the Plücker coordinates (see, for instance, [4, 14]) of the line p in R∗ by (p12 : p13 : p14 : p23 : p24 :
p34), where real numbers pjk, j, k = 1, 2, 3, 4, j < k, are determined by the equalities

pjk =

∣∣∣∣ aj ak
bj bk

∣∣∣∣
and satisfy the quadratic Plúcker relation

p12p34 − p13p24 + p14p23 = 0. (3.1)

The bilinear form, polar to the quadratic form from the left side of Eq. (3.1), defines the condition of the
complanarity of the lines p and q with the Plücker coordinates (pjk) and (qjk), respectively. This condition has
form

p12q34 − p13q24 + p14q23 + p34q12 − p24q13 + p23q14 = 0. (3.2)

The coordinate plane A1A2A3 of the canonical frame R∗ of the first type in the space H3 is elliptic. Therefore,
every line lying in this plane is also elliptic. When the line p lies in the plane A1A2A3, it is complanar with each
of coordinate lines A1A2, A1A3, and A2A3. Using equality (3.2) and the Plücker coordinates of the lines

A1A2 (1 : 0 : 0 : 0 : 0 : 0), A1A3 (0 : 1 : 0 : 0 : 0 : 0), A2A3 (0 : 0 : 0 : 1 : 0 : 0),

we find the analytical conditions of belonging of the line p to the plane A1A2A3

p14 = p24 = p34 = 0. (3.3)
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So, under conditions (3.3) the line p lies in the plane A1A2A3 and is elliptic.
Now assume that the line p does not lie in the plane A1A2A3. In this case, at least one of the numbers p14,

p24, p34 is non-zero. Without loss of generality, we agree that p34 ̸= 0. This condition means that the lines p and
A1A2 are not complanar.

Let us find the common points K1, K2 of the line p and the absolute quadric γ using the condition

{K1,K2} = ABA1 ∩ABA2 ∩ γ.

The planes ABA1 and ABA2 are given in the frame R∗ by the following equations

ABA1 : x2p34 − x3p24 + x4p23 = 0, ABA2 : x1p34 − x3p14 + x4p13 = 0. (3.4)

From Eqs. (3.4) we obtain

x1 =
x3p14 − x4p13

p34
, x2 =

x3p24 − x4p23
p34

. (3.5)

The consequence of the system of Eqs. (2.1), (3.5) is the equation

x23
(
p214 + p224 + p234

)
− 2x3x4 (p13p14 + p23p24) + x24

(
p213 + p223 − p234

)
= 0. (3.6)

Since p34 ̸= 0, from Eqs. (3.5), (3.6) we obtain the coordinates of the points K1 and K2 in the frame R∗

K1,2

(
−p12p24 − p13p34 ± p14

√
µ : p12p14 − p23p34 ± p24

√
µ : p13p14 + p23p24 ± p34

√
µ : p214 + p224 + p234

)
, (3.7)

where
µ = −p212 − p213 − p223 + p214 + p224 + p234. (3.8)

The number µ from (3.8) is the value of the quadratic form Φ = −x212 − x213 − x223 + x214 + x224 + x234 on the
Plücker coordinates pjk of the line p in the frame R∗: µ = Φ(pjk).

The sign of the number Φ(pjk) uniquely determines the nature of the points K1, K2. These points are distinct
imaginary conjugate (real) if and only if Φ(pjk) < 0 (Φ(pjk) > 0), and they coincide when Φ(pjk) = 0. Thus the
sign of the number Φ(pjk) uniquely determines the type of the line p. For the elliptic, hyperbolic or parabolic
line p we have, respectively,

Φ(pjk) < 0, Φ(pjk) > 0 or Φ(pjk) = 0. (3.9)

Note that conditions (3.9) are also valid when the line p lies in the plane A1A2A3 and is elliptic, that is, when
conditions (3.3) hold.

Each transformation of the fundamental group G of the space H3 keeps the type of a line, hense the sign
of the number Φ(pjk) is an invariant of the group G. By direct calculations, we get the expression the number
Φ(pjk) in terms of the metric forms of the space H3

Φ(pjk) = ψ2(ai, bi)− ϕ(ai)ϕ(bi). (3.10)

We call the number Φ(pjk) the characteristic of the real Plücker coordinates pjk of the line p of the space
H3 in the canonical frame of the first type. Since the projective coordinates of points, and hence the Plücker
coordinates pjk, are given up to a non-zero factor, the number itself Φ(pjk) has no geometric meaning. We are
only interested in the sign of this number.

4. Coordinates of the midpoint and the quasi-midpoint of a non-parabolic segment

4.1. Derivation of main formulae

Assume that distinct real points A and B of a non-parabolic line p in the space H3 are given in a canonical
frame R∗ of the first type by the coordinates (ai) and (bi), i = 1, 2, 3, 4, respectively. Let us find the coordinates
(sv) and (s∗v), v = 1, 2, 3, 4, of the midpoint S and the quasi-midpoint S∗ of the segment [AB] using Definitions
2.2, 2.3, and 2.5.

I. At the first stage, assume that the line p does not belong to the coordinate plane A1A2A3. In this case, at
least one of the Plücker coordinates p14, p24, p34 of the line p is not equal to zero. Let us agree that p34 ̸= 0.
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Then the line p can be considered as a common line of planes ABA1 and ABA2. Sinse S ∈ p and S∗ ∈ p, the
coordinates of the points S and S∗ satisfy Eqs. (3.5). Consequently,

s1 =
s3p14 − s4p13

p34
, s2 =

s3p24 − s4p23
p34

, s∗1 =
s∗3p14 − s∗4p13

p34
, s∗2 =

s∗3p24 − s∗4p23
p34

. (4.1)

According to condition (2.2), for coordinates (sv), (s∗v) of the orthogonal points S, S∗ the equality holds

s1s
∗
1 + s2s

∗
2 + s3s

∗
3 − s4s

∗
4 = 0. (4.2)

From the system of conditions (4.1), (4.2) we obtain

s3s
∗
3

(
p214 + p224 + p234

)
− (s3s

∗
4 + s4s

∗
3) (p13p14 + p23p24) + s4s

∗
4

(
p213 + p223 − p234

)
= 0. (4.3)

The requirement of harmonic separation of pairs of the points A,B and S, S∗ from definitions 2.3, 2.5 is
equivalent to the equality (ABSS∗) = −1. Rewriting this equality in coordinates, we have∣∣∣∣ a3 a4

s3 s4

∣∣∣∣ ∣∣∣∣ b3 b4
s∗3 s∗4

∣∣∣∣∣∣∣∣ a3 a4
s∗3 s∗4

∣∣∣∣ ∣∣∣∣ b3 b4
s3 s4

∣∣∣∣ = −1. (4.4)

Equality (4.4) leads to the condition

2s3s
∗
3a4b4 − (s3s

∗
4 + s4s

∗
3) (a3b4 + a4b3) + 2s4s

∗
4a3b3 = 0. (4.5)

Excluding the expression s3s∗4 + s4s
∗
3 from equalities (4.3), (4.5), we get

s3s
∗
4 + s4s

∗
3 =

2s3s
∗
3a4b4 + 2s4s

∗
4a3b3

∆
, ∆ = a3b4 + a4b3, (4.6)

s3s
∗
3

[
∆
(
p214 + p224 + p234

)
− 2a4b4 (p13p14 + p23p24)

]
+

+s4s
∗
4

[
∆
(
p213 + p223 − p234

)
− 2a3b3 (p13p14 + p23p24)

]
= 0. (4.7)

Dividing both parts of equalities (4.6), (4.7) by s4s∗4, we obtain

s3
s4

+
s∗3
s∗4

=

2
s3
s4

s∗3
s∗4
a4b4 + 2a3b3

∆
,

s3
s4

s∗3
s∗4

= −
∆
(
p213 + p223 − p234

)
− 2a3b3 (p13p14 + p23p24)

∆ (p214 + p224 + p234)− 2a4b4 (p13p14 + p23p24)
. (4.8)

Consider expressions from (4.8) as a system of equations with respect to variables s3/s4 and s∗3/s
∗
4. Solving

this system, we find
s3
s4

= Ω+ ε
√

Ω2 −Θ,
s∗3
s∗4

= Ω− ε
√

Ω2 −Θ, ε = ±1, (4.9)

where

Θ = −
∆
(
p213 + p223 − p234

)
− 2a3b3 (p13p14 + p23p24)

∆ (p214 + p224 + p234)− 2a4b4 (p13p14 + p23p24)
, Ω =

a3b3 +Θ a4b4
∆

, ∆ = a3b4 + a4b3. (4.10)

Using expressions (4.1), (4.9), and (4.10), we write down the coordinates of the points S and S∗ in the
following form(

p14Ω+ εp14
√

Ω2 −Θ− p13 : p24Ω+ εp24
√

Ω2 −Θ− p23 : p34Ω+ εp34
√

Ω2 −Θ : p34

)
, ε = ±1. (4.11)

In each specific task, the choice of the number ε depends on the location of the points S, S∗ with respect to
the given segment [AB]. We discuss this problem in more detail in §4.2.

If the line p does not lie in the plane A1A2A3, but is complanar with the line A1A2, that is, p34 = 0, then at
least one of the conditions p14 ̸= 0, p24 ̸= 0 is true. By making the appropriate indexes substitution, we can find
the coordinates of the points S, S∗ in each of the possible cases.
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In some problems, it is convenient to use pre-calculated values of the quadratic form ϕ. To facilitate solutions
of such problems, we find the corresponding block of coordinates for the points S, S∗. To this end, we first
express the numbers Θ, Ω, and

√
Ω2 −Θ from (4.10) in terms of the characteristics of real coordinates (ai), (bi)

of the points A and B by means direct symbolic calculations. In this way, we get

Θ =
a23ϕ(bi)− b23ϕ(ai)

a24ϕ(bi)− b24ϕ(ai)
, Ω =

a3a4ϕ(bi)− b3b4ϕ(ai)

a24ϕ(bi)− b24ϕ(ai)
,

√
Ω2 −Θ = p34

√
ϕ(ai)ϕ(bi)

a24ϕ(bi)− b24ϕ(ai)
. (4.12)

Using expressions (4.12), we write down the coordinates of the points S, S∗ from (4.11) in the following form(
a1a4ϕ(bi)− b1b4ϕ(ai) + εp14

√
ϕ(ai)ϕ(bi) : a2a4ϕ(bi)− b2b4ϕ(ai) + εp24

√
ϕ(ai)ϕ(bi) :

a3a4ϕ(bi)− b3b4ϕ(ai) + εp34
√
ϕ(ai)ϕ(bi) : a24ϕ(bi)− b24ϕ(ai)

)
, ε = ±1. (4.13)

Considering that pjj = 0, the coordinates (sv) from (4.13) can be written as follows

sv = ava4ϕ(bi)− bvb4ϕ(ai) + εpv4
√
ϕ(ai)ϕ(bi), v = 1, 2, 3, 4, ε = ±1. (4.14)

Remark 4.1. Let us pay attention to the fact that moving from formulae (4.11) to formulae (4.14), we divided
each coordinate of the points S, S∗ by p34. As a result, formulae (4.14) allow us to calculate the coordinates of
these points and in the case when p34 = 0. Thus formulae (4.14) are true for any location of the line p outside
the plane A1A2A3.
Remark 4.2. Assume that the points A and B lie in the hyperbolic coordinate plane A1A2A4, that is, a3 = b3 = 0.
Then the points S and S∗ lie in the plane A1A2A4 too. In this case, coordinates (4.14) can be rewritten in the
form(
a1a4ϕ(bi)− b1b4ϕ(ai) + εp14

√
ϕ(ai)ϕ(bi) : a2a4ϕ(bi)− b2b4ϕ(ai) + εp24

√
ϕ(ai)ϕ(bi) : 0 : a24ϕ(bi)− b24ϕ(ai)

)
,

where
ϕ(aj) = a21 + a22 − a24, ϕ(bj) = b21 + b22 − b24.

Replacing the index 4 in these expressions with the index 3, we get formulae (9) from [5]. Consequently,
formulae (4.14) are a generalization of formulae (9) from [5].

II. Now assume that the line p belongs to the coordinate plane A1A2A3, that is, equalities (3.3) hold. In this
case, we can consider the line p as the intersection of planes A1A2A3, ABA4 and give it in the frame R∗ by the
system of equations

x4 = 0, x1p23 − x2p13 + x3p12 = 0. (4.15)

Since the line p is non-parabolic, we have Φ(pjk) ̸= 0. This means that under conditions (3.3) at least one of
the numbers p12, p13, p23 is different from zero. Let p12 ̸= 0. Then for coordinates of the points A, B, S, and S∗

from Eqs. (4.15) we obtain the following conditions

s3 =
s2p13 − s1p23

p12
, s∗3 =

s∗2p13 − s∗1p23
p12

, a4 = b4 = s4 = s∗4 = 0. (4.16)

In the case under consideration, condition (2.2) for the orthogonal points S and S∗ has form

s1s
∗
1 + s2s

∗
2 + s3s

∗
3 = 0. (4.17)

Excluding coordinates s3, s∗3 from expressions in (4.16), (4.17), we get to the equality

s1s
∗
1

(
p212 + p223

)
− p13p23 (s1s

∗
2 + s2s

∗
1) + s2s

∗
2

(
p212 + p213

)
= 0. (4.18)

The harmonic separation of pairs of the points A,B and S, S∗ implies the equality (ABSS∗) = −1 . Rewriting
this equality in coordinates, we get to the condition

2s1s
∗
1a2b2 − (s1s

∗
2 + s2s

∗
1) (a1b2 + a2b1) + 2s2s

∗
2a1b1 = 0. (4.19)

Excluding the expression s1s∗2 + s2s
∗
1 from equalities (4.18), (4.19), we obtain

s1s
∗
2 + s2s

∗
1 =

2s1s
∗
1a2b2 + 2s2s

∗
2a1b1

∆
, ∆ = a1b2 + a2b1, (4.20)
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s1s
∗
1

[
∆
(
p212 + p223

)
− 2a2b2p13p23

]
+ s2s

∗
2

[
∆
(
p212 + p213

)
− 2a1b1p13p23

]
= 0. (4.21)

Dividing both parts of equalities (4.20), (4.21) by s2s∗2, we obtain

s1
s2

+
s∗1
s∗2

=

2
s1
s2

s∗1
s∗2
a2b2 + 2a1b1

∆
,

s1
s2

s∗1
s∗2

= −
∆
(
p212 + p213

)
− 2a1b1p13p23

∆(p212 + p223)− 2a2b2p13p23
. (4.22)

From expressions (4.22) we find

s1
s2

= Ω+ ε
√

Ω2 −Θ,
s∗1
s∗2

= Ω− ε
√

Ω2 −Θ, ε = ±1, (4.23)

where

Θ = −
∆
(
p212 + p213

)
− 2a1b1p13p23

∆(p212 + p223)− 2a2b2p13p23
, Ω =

a1b1 +Θ a2b2
∆

, ∆ = a1b2 + a2b1. (4.24)

Using expressions (4.16), (4.23), and (4.24), we give the coordinates of the points S and S∗ in the following
form (

p12Ω+ εp12
√

Ω2 −Θ : p12 : p13 − p23

(
Ω+ ε

√
Ω2 −Θ

)
: 0

)
. (4.25)

By rewriting expressions from (4.24) in terms of the characteristics of the real coordinates of points, we get

Θ =
a21ϕ(bi)− b21ϕ(ai)

a22ϕ(bi)− b22ϕ(ai)
, Ω =

a1a2ϕ(bi)− b1b2ϕ(ai)

a22ϕ(bi)− b22ϕ(ai)
,

√
Ω2 −Θ = p12

√
ϕ(ai)ϕ(bi)

a22ϕ(bi)− b22ϕ(ai)
.

Hence, according to expressions (4.25), the midpoint S and the quasi-midpoint S∗ of the segment [AB] in the
plane A1A2A3 can be set in the frame R∗ by coordinates(

a1a2ϕ(bi)− b1b2ϕ(ai) + εp12
√
ϕ(ai)ϕ(bi) : a22ϕ(bi)− b22ϕ(ai) :

: a2a3ϕ(bi)− b2b3ϕ(ai)− εp23
√
ϕ(ai)ϕ(bi) : 0

)
, ε = ±1. (4.26)

The number ε in coordinates (4.26) can be determined only in a specific task (see Example 4.2 in §4.2).

Remark 4.3. Formulae (4.26) can be considered as formulae of elliptic geometry. Since p32 = −p23, in an elliptic
plane with the metric form

ϕ = x21 + x22 + x23,

the midpoint S and the quasi-midpoint S∗ of a segment between the points A(ai),B(bi), i = 1, 2, 3, can be given
by the coordinates (sv), where

sv = ava2ϕ(bi)− bvb2ϕ(ai) + εpv2
√
ϕ(ai)ϕ(bi), v = 1, 2, 3, ε = ±1. (4.27)

4.2. On choosing the number ε

In obtained formulae (4.14) and (4.26) for calculating coordinates of the midpoint and the quasi-midpoint
of a non-parabolic segment, the number ε remains undefined. Naturally, the question arises as to whether the
formulae can be refined in the general case. We give a negative answer to this question in the following simple
examples.

Example 4.1. Let us consider a hyperbolic segment [AB] in the space Ĥ3. Assume that the points A and B are
given by the coordinates (0 : 0 : 1 : 0) and (0 : 0 : b : 1), respectively, in the canonical frame R∗ of the first type.
Since the pointB lies in Ĥ3, the conditions b2 − 1 > 0, b ∈ R hold. The Plücker coordinates of the lineAB satisfy
the conditions

p12 = 0, p13 = 0, p14 = 0, p23 = 0, p24 = 0, p34 = 1.

Since Φ(pjk) > 0, the line AB is hyperbolic. By formulae (4.14) we find the coordinates of the points S, S∗(
0 : 0 : b+ ε

√
b2 + 1 : 1

)
, ε = ±1.
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The midpoint S of the segment [AB] lies in the space Ĥ3. Consequently, the characteristic of the real
coordinates of this point satisfies the condition(

b+ ε
√
b2 + 1

)2

− 1 > 0. (4.28)

The truth of inequality (4.28) depends on the sign of the number b. If b > 0, then the inequality (4.28) is true
under the condition ε = 1. If b < 0, then this inequality is true under ε = −1.

Example 4.2. Let now [AB] be an elliptic segment in the space Ĥ3. Assume that the points A and B are given
in the frame R∗ by the coordinates (1 : 0 : 0 : 0) and (b : 1 : 0 : 0), respectively. The Plücker coordinates of the
line AB are as follows

p12 = 1, p13 = 0, p14 = 0, p23 = 0, p24 = 0, p34 = 0.

Since Φ(pjk) < 0, the line AB is elliptic. By formulae (4.26) we obtain the coordinates of the points S, S∗(
b+ ε

√
b2 + 1 : 1 : 0 : 0

)
, ε = ±1.

Denote the point orthogonal to the point A (B) on the line AB by A∗ (B∗). The points A∗ and B∗ belong to
the long segment (see Definition 2.4) between the points A, B, and A∗ = A2(0 : 1 : 0 : 0).

To clarify the goal, suppose that we want to find the coordinates of the midpoint S of the short segment
[AB]. In this case, the point S, together with each of the points A∗, B∗, separates the pair A, B. Consequently,
the inequalities (ABA∗S) < 0 and (ABB∗S) < 0 hold. Rewriting, for example, the first of these inequalities in
coordinates, we get

−ε
√
b2 + 1

b
< 0. (4.29)

The truth of inequality (4.29) again depends on the sign of the number b. If b > 0, then the inequality (4.29) is
true under the condition ε = 1. If b < 0, then this inequality is true under ε = −1.

The considered examples show us that with the same value of ε we can get coordinates of both the midpoint
and the quasi-midpoint of the segment. To refine the formulae (4.14), (4.26), we need to have additional
information about coordinates of ends of the given segment. Consequently, in the general case, it is impossible
to refine these formulae.

Note that the problem of choosing the sign of an expression arises in almost all tasks of the analytic geometry
of the extended hyperbolic plane (see, for instance, [7]). For each specific task, we find the most appropriate
way of the solution. When we solve a theoretical problem, for example, prove theorems and derive formulae,
we are guided by the following assertions.

1. The midpoint of a hyperbolic segment lies in the same component of the space H3 as the ends of this
segment. Consequently, the characteristic of the real coordinates of the segment midpoint has the same
sign as the characteristics of the real coordinates of its ends. When choosing the number ε, can be used
any of the inequalities

ϕ(aj)ϕ(sj) > 0, ϕ(bj)ϕ(sj) > 0.

2. The midpoint of a hyperbolic segment paired with any absolute point of the line containing this segment,
separates the ends of the segment. When choosing the number ε, can be used any of the inequalities

(ABSK1) < 0, (ABSK2) < 0.

3. The midpoint of each segment paired with any of its points does not separate the ends of this segment.

4. Let the point A∗ (B∗) be orthogonal to the point A (B) on the hyperbolic line AB. Then the midpoint of
the segment [AB] paired with any of the points A∗,B∗ separates the ends of this segment. When choosing
ε, we may use any of the inequalities

(ABSA∗) < 0, (ABSB∗) < 0.

5. Let the point A∗ (B∗) be orthogonal to the point A (B) on the elliptic line AB. Then the midpoint of the
short (long) segment [AB] (see Definition 2.4) paired with any of the points A∗, B∗ separates (does not
separate) the ends of this segment. In the case of the short (long) segment [AB], when choosing ε, we may
use any of the inequalities

(ABSA∗) < 0, (ABSB∗) < 0, ((ABSA∗) > 0, (ABSB∗) > 0) .
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In software modeling of the studied objects, we preliminarily give the location domain of the sought points.
The choice of the segment midpoint from the pair S, S∗, that is, the choice of ε, depends on whether the desired
point belongs to the given domain. As an example, let us consider the results of the Chaos game on trihedrals
of the hyperbolic plane Ĥ of positive curvature. The analogues of the Sierpinski triangle presented here were
obtained using the software package piv (see [10], [15]).

In Figure 2a, we show the result of the Chaos game in the plane Ĥ on a trihedral of the type epp(I) (see [7,
§5.5.4]) with vertices at points A1(1 : 0 : 0), A2(0 : 1 : 0), B(1 : 1 : 1). The domain of this trihedral is given by the
conditions

x > 1, y > 1.

In the Euclidean plane, this trihedral is represented by a triangle with an edge on an ideal line. In the figure,
we see only its fragment.

In Figure 2b, we show the absolute conic γ0 of the plane Ĥ and the result of the Chaos game on a trihedral of
the type eee(I) (see [7, §5.4.1]) with vertices at points A(2 : 0 : 1), B(4 : 3 : 1), C(4 : −3 : 1). Its domain is given
by the conditions

3x+ 2y − 6 > 0, 3x− 2y − 6 > 0, x < 4.

In each case, considering all possible segments, we choose the midpoint or the quasi-midpoint from the
given domain.

g0 g0

g0

a                                                            b                                                           c                                                    d

Figure 2. Analogues of the Sierpinski triangle in the plane H2 on trihedrals of types epp(I) (a), eee(I) (b), epp(I) (c), and eep(I) (d).

In Figures 2c and 2d, we show the result of the Chaos game on trihedrals of types epp(I) and eep(I) (see
[7, §5.5.1]), respectively. Here we constructed the midpoint and the quasi-midpoint of each of the considered
segments. The points of jump to the same vertex are marked with the same color.

Notice that we depict objects on the Euclidean plane using the transition from projective to Euclidean
coordinates by the formulae

x =
x1
x3
, y =

x2
x3
.

5. Coordinates of the midpoint of a parabolic segment

Let [AB] be a segment on a parabolic line p with the point K from the absolute quadric γ. Assume that points
A andB are given in a canonical frameR∗ of the first type by coordinates (ai) and (bi), i = 1, 2, 3, 4, respectively.
For the Plücker coordinates pjk of the parabolic line p the condition Φ(pjk) = 0 holds, and coordinates (ki) of
the point K can be find from (3.7) under µ = 0. Here we use only the third and fourth coordinates of the point
K, we write them down

k3 = p13p14 + p23p24, k4 = p214 + p224 + p234. (5.1)

Since the line p has the point K from γ, it does not lie in the elliptic plane A1A2A3. Consequently, at least one
of the numbers p14, p24, p34 is not equal to zero. Let, for example, p34 ̸= 0. In this case, lines p and A1A2 are not
complanar, and the line p can be set in R∗ by the system of Eqs. (3.5).

Let us find the coordinates (sv), v = 1, 2, 3, 4, of the midpoint S of the segment [AB].
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By difinition 2.1, we have (ABKS) = −1. Rewriting this condition in coordinates, we get∣∣∣∣ a3 a4
k3 k4

∣∣∣∣ ∣∣∣∣ b3 b4
s3 s4

∣∣∣∣∣∣∣∣ a3 a4
s3 s4

∣∣∣∣ ∣∣∣∣ b3 b4
k3 k4

∣∣∣∣ = −1. (5.2)

Equality (5.2) implies
s3
s4

= −2a3b3k4 −∆k3
2a4b4k3 −∆k4

, ∆ = a3b4 + a4b3. (5.3)

From Eqs. (3.5) and expressions (5.1), (5.3), we find the projective coordinates (sv) of the midpoint S of the
parabolic segment [AB]

sv = ava4
(
b21 + b22 + b33

)
− bvb4

(
a21 + a22 + a33

)
− pv4(a1b1 + a2b2 + a3b3). (5.4)

For all v, where v = 1, 2, 3, 4, the equality holds

ava4b
2
4 − bvb4a

2
4 − pv4a4b4 = 0.

Using this equality and the notation ϕ(ai), ϕ(bi), and ψ(ai, bi), we rewrite coordinates (sv) of the point S from
(5.4) in the following form

sv = ava4ϕ(bi)− bvb4ϕ(ai)− pv4ψ(ai, bi), v = 1, 2, 3, 4. (5.5)

Remark 5.1. Owing to expression (3.10) and the condition Φ(pjk) = 0, the equality
√
ϕ(ai)ϕ(bi) = ψ(ai, bi) holds.

Therefore, in the case on consideration, formulae (5.5) are equivalent to formulae (4.14) with ε = −1.

6. Generalization of results

Based on Remark 5.1, formulae (4.14) with ε = −1 define the coordinates of the midpoint of a parabolic
segment with ends at the points A(ai), B(bi) in a canonical frame of the first type. Consequently, formulae
(4.14) generalize formulae (5.5).

Let us now turn to the case of a non-parabolic segment.
Replacing the plane A1A2A3 in the arguments in §4.1, by any other coordinate plane, we obtain alternative

forms of setting the midpoint and the quasi-midpoint of a non-parabolic segment. We can generalize alternative
representations of formulae (4.14) as follows.

Since not all projective coordinates of a point are equal to zero, and the points A and B are distinct, among
the numbers 1, 2, 3, and 4 there is a number, say w, that satisfies the condition

p21w + p22w + p23w + p24w ̸= 0.

Geometrically, this condition means that the line p does not belong to a coordinate plane that does not contain
the vertex Aw of the frame R∗. Replacing the index 4 in formulae (4.14) with the index w, we obtain a
generalization of formulae (4.14) and (4.26).

So, concluding the study, we formulate its main result in the following theorem.

Theorem 6.1. Let A and B be distinct points in the extended hyperbolic space H3 with the metric form

ϕ = x21 + x22 + x23 − x24.

Assume that points A, B are given in a canonical frame R∗ of the first type by coordinates (ai), (bi), i = 1, 2, 3, 4, so that
the Plücker coordinates of the line AB satisfy the condition

p21w + p22w + p23w + p24w ̸= 0. (6.1)

Denote
sv = avawϕ(bi)− bvbwϕ(ai) + εpvw

√
ϕ(ai)ϕ(bi), v = 1, 2, 3, 4, ε = ±1. (6.2)

Then the following assertions are true.
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1. If the segment [AB] is non-parabolic, then expressions (sv) can be taken as the projective coordinates of the midpoint
and the quasi-midpoint of the segment [AB].

2. If the segment [AB] is parabolic, then expressions (sv) with ε = −1 can be taken as the projective coordinates of the
midpoint of this segment.

Note that the reasoning in §4.1, conducted for a segment of an elliptic space with metric form

ϕ = x21 + x22 + x23 + x24, (6.3)

leads to a generalization of formulae (4.27) to the three-dimensional case. Consequently, under condition (6.1)
expressions (sv) from (6.2) with values ϕ(ai), ϕ(bi) of the quadratic form ϕ (6.3) can be taken as the projective
coordinates of the midpoint and the quasi-midpoint of the segment with ends at the points A(ai) and B(bi) in
the elliptic 3-space.
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