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Abstract: Among all, Cronbach’s Alpha and McDonald’s Omega are commonly 

used for reliability estimations. The alpha uses inter-item correlations while omega 

is based on a factor analysis result. This study uses simulated ordinal data sets to 

test whether the alpha and omega produce different estimates. Their performances 

were compared according to the sample size, number of items, and deviance from 

tau equivalence. Based on the result, the alpha and omega had similar results, 

except for the small sample size, the smaller number of items, and the low factor 

loading values. When there were 5 or more items in the scale and factor analysis 

which the omega was calculated from showed fit to the data set, using omega over 

alpha could be preferred. Also, as the number of items exceeds 5, the alpha and 

omega differences disappear. Since calculating the alpha is easier compared to the 

omega (omega requires fitting a factor model first) using alpha over omega can 

also be suggested. However, when the number of items and the correlations among 

the items were small, omega performed worse than alpha. Therefore, alpha should 

be used for the reliability estimations. 

1. INTRODUCTION 

One of the most critical steps for a scientific study is data collection. This is also critical for 

reliability. Thus, the data collection process is better planned in order to get information as 

reliably as possible. Reliability is a property of the data collected, not the scale instrument itself 

(Streiner, 2003). Therefore, the data collected from the same instrument could be reliable for 

one example and not for another. One way of getting reliability is doing the test-retest 

procedure. According to the test-retest method, the same test is administered to the same group 

of examinees twice at a time interval. The correlation between the two-test administration is 

called test-retest reliability. Another method, which is commonly used (Streiner, 2003; Vaske, 

et al., 2017), is Cronbach’s alpha (α). The alpha is also known as internal consistency reliability 

since it uses inter-item correlations to calculate reliability. The higher the correlations more 

reliable the data. The alpha value is also a property of the data. When the data changes, the 

alpha will also change. For reliable data collection, the change in the alpha is expected to be 

small compared to previous ones. However, as Henson et al. (2001) pointed the alpha values 

for the same instrument (a.k.a., Internal failure scale) ranged between .51 and .82 (as cited in 

Streiner, 2003). 
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Cronbach’s alpha comes with a few assumptions (Kalkbrenner, 2023). First of all, the items 

under the scale should be unidimensional (Edwards et al., 2021) which means all of the items 

are related only to one latent construct. Second, the items should be normally distributed and 

continuous (Edwards et al., 2021). Also, the error terms of the items should not be correlated. 

That is, there should not be any other common variance among the items except the latent factor. 

Last but not least, the items in the scale should equally contribute to the latent factor, the 

essentially tau equivalence assumptions. In case the assumption is not satisfied the alpha values 

underestimate the true reliability (Edwards et al., 2021; Kalkbrenner, 2023). 

There are more than 30 reliability calculation methods (Edwards et al., 2021). Besides 

Cronbach’s alpha, McDonald’s omega (ω) is one of them. The alpha and omega values showed 

the most accurate estimate of reliability (Edwards et al., 2021). The omega reliability does not 

have such assumptions as the alpha. Therefore, when Cronbach’s alpha does not hold its 

assumptions, it is recommended not to use alpha but to use omega instead (Goodboy & Martin, 

2020). Specifically, when the tau equivalence assumption does not hold, use of ω is suggested 

(Viladrich et al., 2017). It is because, McDonald’s omega is robust to the violations of the 

assumptions (Goodboy & Martin, 2020; Kalkbrenner, 2023). In fact, the alpha and omega give 

equally good results if the assumptions are met (Edwards et al., 2021; Goodboy & Martin, 2020; 

Viladrich et al., 2017). 

The omega estimations are based on confirmatory factor analysis (CFA). A CFA model fits the 

data first and then the omega is calculated based on the factor loadings and the error variances 

as given in the formula: 

𝜔 =
(∑ 𝜆𝑖)

2

(∑ 𝜆𝑖)2 + ∑ 𝜃𝑖
 

where the 𝜆𝑖 represents the factor loadings for item i, and 𝜃𝑖 represents the error variance of the 

item.  

Even though omega does not have such assumptions as the alpha, since omega is calculated 

after a CFA, anything affecting model-data fit for the CFA model also affects the omega value. 

For example, the sample size is a critical issue for a factor analysis. As the sample size gets 

lower, the model-data fits become problematic for factor analyses or even the model may not 

converge to a solution (Gagne & Hancock, 2006). Also, under small sample sizes and unequal 

factor loadings omega estimation becomes biased (Edwards et al., 2021). Also, the number of 

items in the structure affects the omega reliability. Increasing the number of items stabilizes the 

omega estimates even for small sample sizes (Edwards et al., 2021; Ercan et al., 2017). In short, 

even though ω is a good alternative to α, the alpha produced more accurate estimates under a 

small sample size and number of items (Edwards et al., 2021). 

The alpha and omega estimates also differ when the factor loadings have different values (e.g., 

non-tau equivalence) under a factor analysis (Edwards et al., 2021). When there is a discrepancy 

among the factor loading and as the size of the discrepancy increases, the alpha and omega 

produce different results. However, the difference between alpha and omega has “no practical 

consequences” when the average factor loadings are .7 or higher and the difference among the 

loading values is .2 in absolute values (Raykow & Marcoulides; 2015; Viladrich et al., 2017). 

1.1. Aim of the Study 

Edwards et al. (2021) compared six different reliability estimations in their work and based on 

the results, alpha and omega produced the most accurate estimate of the true reliability. Even 

though the alpha and omega were shown to be better, it was also shown that each estimation 

has its flaws. For example, “omega was affected greater by the number of items when reliability 

was low” (p. 1111). However, the work of Edwards et al. (2021) was based on continuous 
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scaled data. In applications, ordinal scaled data are often used. Seeing the performance of alpha 

and omega with ordinal scaled data is informative and, therefore, this paper aims to estimate 

alpha and omega reliabilities based on a five-point Likert-type ordinal scale as similar 

conditions with Edwards et al. (2021). 

To compare the alpha and omega estimates data were simulated under different conditions: 

sample size, balanced and un-balanced factor loadings, and number of items. 

2. METHOD 

2.1. Data Generation Procedure 

Data were simulated via MonteCarloSEM package (Orçan, 2021) in R-Cran (R Core Team, 

2014). The MonteCarloSEM package simulates and analyzes data based on a given CFA model. 

It can produce normal/skewed or continuous/ordinal scale data sets for given threshold values. 

Various simulation conditions were considered in this study. First of all, the sample size varied 

from 50 to 1000 to represent the sample size from small to large (e.g., 50, 100, 300, 500, 800, 

1000). Second, the number of items under the scale differed. The minimum number under the 

scale was 3 and increased to 5, 8, 10, and 20. Therefore, five different number of items were 

considered for this study. The minimum number of items was chosen to be 3 because it is a 

prerequisite for a single-factor CFA model. Also, the maximum was 20 since the correlation 

between the number of items and reliability was shown to be reduced after 19 items (Vaske et 

al., 2017). Finally, average factor loading values were also changed for this study. Under this 

condition, five different scenarios were tested. 

• Tau: All factor loadings were equal across the factor and the average loadings were set to 

be .3, .4, .5, .6, .7, .8, and .9. 

• Mixed-1: The loadings values were differed by .2 at maximum and average loadings were set 

to be .3, .4, .5, .6, .7, .8, and .9. Therefore, for the average of .3, the factor loadings were .2, .3 

and .4 under three items and .2, .25, .3, .35, and .4 repeated each for four times under 20 items.  

• Mixed-2: The loadings values were differed by .4 at maximum and the average loadings were 

set to be .4, .5, .6, and .7. For the average of .4, under three items, the loadings were .2, .4 

and .6 and under twenty items the loadings were .2, .3, .4, .5, and .6 each repeated for four 

times. 

• Mixed-3: The loadings values were differed by .5 at maximum and the average loadings were 

set to be .5, .6, and .7. For the average of .5, under three items, the loadings were .25, .5, 

and .75 and under twenty items the loadings were .25, .35, .5, .65, and .75 each repeated for 

four times. 

• Mixed-4: The loadings values were differed by .6 at maximum and the average loadings were 

set to be .5 and .6. For the average of .5, under three items, the loadings were .2, .5, and .8 and 

under twenty items the loadings were .2, .3, .5, .7, and .8 each repeated for four times. 

For all the scenarios, the loadings were increased by .1 each time to increase the average factor 

loadings, respectively. For example, under the mixed-4 condition, to get average loadings to 

be .6 for three items the loadings were set as .3, .6, and .9. 

2.2. Data Analysis 

Each condition was repeated 1000 times by using the sim.categoric() function in the 

MonteCarloSEM package. Ordinal data were created by using -1.645, -.643, .643, and 1.645 as 

the threshold values to create a 5-point Likert scale. The Cronbach’s alpha values were 

calculated by using CronbachAlpha() function in the DescTools package (Signorell, 2023). To 

estimate omega values one-factor CFA models were fitted to the simulated data sets by the cfa() 

function in the lavaan package (Rosseel, 2012), using the maximum likelihood estimation 

method. Besides the omega, model-data convergence rates and fit indices such as the p-value 
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of the chi-square test, the comparative fit indices (CFI), the root mean square error of 

approximation (RMSEA), and the standardized root mean square residual (SRMR) were saved 

for the further evaluations. Hu and Bentler’s (1999) criteria were used to evaluate the fit. 

Moreover, the relative biases where the absolute difference between the true and estimated 

values were divided by the true value were calculated: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑎𝑠 =  
𝐴𝑏𝑠(𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒)

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒
 

3. RESULTS 

Based on the results of the simulation, the sample size was not an important factor for the 

Cronbach alpha estimation, as expected. The average estimates were almost identical across 

different sample sizes. As the sample size was increased from 50 to 1000, the alpha estimates 

changed only by .02 for the low factor loading values (.3, .4, and .5). When the factor loading 

values were increased, the gap disappeared and the estimates became identical. Similarly, when 

the number of items was 3, the average alpha estimates differed by .02, and as the number of 

items got larger, the gab became .01. Figure 1 showed the change of average alpha estimates 

by sample size for different values of the factor loadings and the number of items. As expected, 

the estimates increased by the increase in the factor loadings and the number of items. However, 

the estimated values had horizontal lines across different sample sizes. 

Figure 1. Alpha estimated by sample size for factor loadings (a) and number of items (b). 

(a) 

 

 (b) 

 

Different from the sample size, the number of items affected the alpha estimates according to 

the simulation results. Figure 2 shows the change of average alpha estimates by the number of 

items for different values of factor loadings and sample sizes. As the total number of items was 

increased, the estimates also increased. This was the result expected, since the effect of the 

number of items on the alpha is well-known in the literature (Streiner, 2003; Vaske et al., 2017). 

In addition, the effects of the number of items on the alpha estimates were larger, when the 

factor loadings were smaller (See Figure 2/a). For example, when the factor loading was .3 and 

the number of items was increased from 3 to 20, the estimate jumped to .63 from .20. However, 

when the factor loading was .6, the change in the estimates was smaller, from .58 to .90. The 

gap even got smaller when the factor loading was .9, from .89 to .98. 

Based on the results of the simulation, under the model where the factor loadings were equal 

(Tau model), the α and ω values differed only for small sample sizes (50 and 100), small factor 

loadings (.3 and .4), and less number of items (3 and 5). The difference between the values 

ranged between .06 and .18. For all other conditions under the tau models difference was 

smaller than .04 and as the sample size, number of items, and factor loadings were increased, 

the gaps disappeared. Figure 3 shows the alpha (α) and omega (ω) estimates as well as the 
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relative biases and the true values under the tau models for sample sizes of 50, 300, and 1000 

(only three sample sizes were given due to space limitations).  

Figure 2. Alpha estimated by number of items for factor loadings (a) and sample sizes (b). 

(a) 

 

  (b) 

 

For example, when there were 3 items, the loadings were all set to be .3, and the sample size of 

50, the alpha and omega estimates were .18 and .35, respectively where the true value was .23. 

However, when holding all other values constant but the sample size was increased to 100, the 

values become .19 and .33. On the other hand, when the number of items becomes 5 instead of 

3, the values become .27 and .39, indicating a .12 difference. Similarly, when factor loadings 

were increased to .4, the values became .31 and .45. Besides, the omega estimates were always 

larger than the alpha, except for sample sizes of 50, 20 items, and factor loadings of .3. Under 

this condition, the alpha and omega values were .62 and .61, respectively. 

Figure 3 also showed relative biases for α and w. Based on Bandalos’s (2002) recommendation, 

which pointed that relative bias should be smaller than .10, the relative biases pointed to 

problematic values under small sample size (50 and 100), small factor loadings (.3 and .4), or 

a smaller number of items (3 and 5). That is, as the sample size, number of items, and/or average 

factor loadings were increased, the relative biases decreased and got under the .10 critical value. 

Interestingly, under these conditions, alpha and omega estimates pointed to almost identical 

relative biases. For example, the relative biases showed similar values even when the sample 

size was as small as 50, the number of items 8, and factor loadings .4. Increasing values of any 

of these simulation conditions diminished the relative biases and the gap between the alpha and 

omega estimates. 

Almost identical results with the Tau model were obtained for the mixed factor loadings model 

where the factor loading differs only by .2 (Mixed-1 model). Therefore, when tau equivalence 

was not granted and the difference between the loadings was up to .2, using omega reliability 

instead of the alpha did not change the results, except for small sample size (50 and 100), small 

factor loadings (.3 and .4) and less number of items (3 and 5) as it was the case for the tau 

models. That is to say, even for a small sample size the alpha and omega were almost identical 

(the difference was at the third decimal) as long as the factor loading differs by .2, the average 

factor loadings were above .5, and the number of items was more than 5. Figure 4 shows the 

alpha (α) and omega (ω) estimates for Mixed-1 models for the sample sizes of 50, 300, and 

1000. Based on Mixed-1 model results, when the sample size was increased, the gap between 

the alpha and omega estimated disappeared even for small factor loadings and/or fewer items. 

For example, when the sample size was 300, the number of items was 3, and the average factor 

loading was .5, the difference between alpha and omega was only .02. Keeping everything 

constant but increasing the number of items to 5, the difference disappeared (.006). 
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Figure 3. Alpha and omega estimates and relative biases for tau models under different sample sizes. 
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Figure 4. Alpha and omega estimates and relative biases for mixed-1 models under different sample 

sizes. 
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Figure 5. Alpha and omega estimates and relative biases for mixed-2 models under different sample 

sizes. 
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Figure 6. Alpha and omega estimates and relative biases for mixed-3 and mixed-4 models under 

different sample sizes. 

 

 

 

 



Orcan

 

 718 

Similar results were produced among the other mixed factor loadings (a.k.a., non-tau) models 

where the factor loading differs by .4 (Mixed-2 model), the factor loading differs by .5 (Mixed-

3 model) and the factor loading differs by .6 (Mixed-4 model). The results of the models are 

reported in Figure 5 and Figure 6. When the number of items was 3 and average factor loadings 

were smaller than .6, all these conditions produced considerable gaps between the alpha and 

omega estimates, even for a sample size of 1000. That is, when there were 3 items at a scale 

and the average of factor loadings was smaller than .6, the tau equivalence became important 

under the Mixed-2, 3, and 4 models. Even though the gap got smaller with the sample size for 

some conditions, the change was smaller than .02. 

Therefore, based on the results of the study, using alpha or omega to estimate reliability 

becomes not an important issue when the sample size and the number of items are larger than 

300 and 3, respectively. The average of factor loadings and the difference between the factor 

loadings at a scale become important only when the number of items is 3. 

The omega estimates were based on factor analysis results. Therefore, a CFA model should be 

tested, and the results should show a good model-data fit first. According to the simulation 

results, when the sample size and factor loadings were small, under 3 and 5 items models, the 

CFA models showed a higher percent of convergence problems. In other words, when there 

were more than 5 items, the average factor loadings were larger than .5, and the sample size 

was larger than 100, the model convergence was not a problem. Figure 7 shows the percentage 

of non-convergences under different sample sizes (Only the results of the sample sizes of 50 

and 100 were given since as the sample size increased, they had no convergences). For example, 

when the sample size was 50, the number of items was 3, and the average factor loading was .3 

under Tau and Mixed-1 models, about 28% of the data did not converge to a solution. The non-

convergence rates decreased as the sample size, the number of items, and the average factor 

loadings were increased. Also, when the sample size and factor loadings were small, under 3 

and 5 items models, the supplementary fit indices (CFI, RMSEA, and SRMR) indicated model-

data fit issues too, in case the model converged to a result. 

4. DISCUSSION and CONCLUSION 

Among others, Cronbach’s Alpha (α) and McDonalds’ Omega (ω) were used commonly for the 

reliability estimates. Also, it was shown that the alpha and omega produced the most accurate 

and similar estimates of reliability (Edwards et al., 2021). Therefore, only these two reliability 

estimates were considered in this study. Based on the results of the current study, α and ω had 

similar results, except for the small sample size, a smaller number of items, and low factor 

loading values. Since the omega estimates were based on CFA results and factor analysis 

requires a larger sample size to converge a solution, under small sample sizes, the ratio of 

convergence was low. Therefore, the gap between the estimates of α and ω might be due to the 

convergence problem. Also, as the convergence rate increased with sample size, number of 

items, and factor loading, the gap between the estimates of α and ω got smaller and disappeared 

eventually. 

Related to the convergence problem, even when the model converged to a solution, 

supplementary fit indices (CFI, RMSEA, and SRMR) sometimes indicated problems regarding 

the model-data fit. Similar to the convergence problem, the fit indices showed problems only 

when the sample size was small, the number of items and the factor loading values were low. 

Therefore, in case the data fit creates a concern, the estimated omega values might be 

problematic and “should not be used” to estimate reliability (McDonald, 2011, p. 89). 

Relative biases were also calculated for the estimates (See Figures 3 to 6). When the number of 

items was larger than 5, relative biases were almost identical under all models (Tau, Mixed-1, 

2, 3, and 4), regardless of the average factor loadings or the sample sizes. 
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Figure 7. Percent of non-convergences under different sample sizes. 

 

 

When the number of items was 3, the sample size was small and the average factor loadings 

were .4 and smaller, omega showed greater bias than alpha. However, when the number of 

items was increased to 5, the bias of omega was smaller than that of alpha. Therefore, similar 

to the convergence issue, it can be concluded that when sample size, number of items, and 

average factor loadings were small, the omega estimates became worse than the alpha estimates. 

However, under all other conditions, ω produced less or equal relative biases than α. Therefore, 

when there are 5 or more items in the scale and the CFA model fits to the data set, using ω over 

α could be preferred since it produced less or equal bias compared to the α. It was also worth 

pointing that as the number of items becomes larger than 5 the difference between the estimates 

becomes smaller. Therefore, under these conditions, using alpha or omega to estimate reliability 

does not affect the results. From this point of view, since calculating the alpha is easier 

compared to omega because omega requires fitting a CFA model first, using alpha over omega 

can also be suggested. 

Under mixed-2, mixed-3, and mixed-4 models, since average factor loadings were all larger 

than .4 due to the design factors, the omega only outperformed the alpha estimates when the 

number of items was 5 or smaller. Especially when the sample size and number of items were 

small, the alpha produced relative biases larger than the critical value (10%). If there were more 

than 5 items, the alpha and omega estimates were almost indistinguishable. To conclude, when 

there were more than 5 items, alpha and omega produced similar results, regardless of sample 

size, average factor loadings, or the tau equivalence assumptions. Therefore, based on the 

results, using alpha to estimate reliability is not wrong. However, when the CFA model, which 

the omega is calculated from, fits the data well, using omega to estimate reliability is also 

reasonable. 
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In conclusion:  

• Even with tau models, alpha produced biased results under the small number of item number, 

sample size, and average factor loadings. However, under the same conditions, omega 

produced more bias. Similarly, Edwars et al. (2021) reported that omega was affected more 

by the sample size and average factor loadings. Even though it was not reported in the study, 

all the biases produced by alpha were positive, indicating alpha underestimates the true value 

while omega produced negative biases for the small sample sizes, fewer items, and low 

factor loadings.  

• Based on the results of the study, it is true that the further away from the tau, the more biased 

the alpha is compared to the omega. Similar results were also reported by Edwards et al. 

(2021). However, as values of the design factors increase, regardless of the sample size, 

alpha and omega yield similar results. Thus, as long as the values of the design factors are 

not small, there is no harm in using the alpha for reliability. 

• The results again confirmed that alpha under-estimate the reliability. However, it only 

happens as the model deviates from the tau equivalence and has a smaller number of items 

and average factor loadings. Under other conditions, the differences between alpha and 

omega estimates are less than 3%. 

• To estimate omega, a CFA model is required to run first. If the CFA model does not fit to 

the data, the omega obtained from it may also be biased. However, this is not the case for 

the alpha estimates. Alpha gives a result even when the CFA produces problematic results 

for the omega estimates (e.g., smaller sample sizes, average factor loadings, and number of 

items). In fact, the bias of the alpha is even lower compared to omega under these conditions. 

Similarly, Edwards et al. (2021) have shown that alpha was superior to omega under these 

conditions. 

• In the case of small sample size, number of items, and low factor loadings, omega estimates 

showed a much larger bias compared to the bias of alpha. As the values of the design factors 

were increased the bias of omega and alpha became closer. The larger omega bias was most 

probably due to the convergence problems of the CFA model. Since the models do not 

converge, the results were not stable and showed deviated estimates.  

• When the number of items is 3 and the correlations among the items are low, even if the 

sample size is 1000 and the tau equivalence holds, the alpha estimates show biased results 

(over 10%). However, it should be remembered that there might be convergence and fit 

problems for the omega under similar conditions. Therefore, if there are low correlations 

among the items, increasing the number of items is important to get a more accurate 

reliability prediction. 

• Even though, it seems that both α and ω produce biased results when the sample size is small, 

keeping the sample size constant and increasing the average factor loadings and the number 

of items, the bias disappears. Despite that Edwards et al. (2021) reported the effect of sample 

size on the omega estimates, this study showed that it is not directly related to the omega 

itself. It is most probably related to the requirements of CFA models. Since a CFA model 

needs a larger sample size for stable estimations, in case the sample size was low, the omega 

might not be estimated correctly. Therefore, it cannot be said that the sample size had a direct 

effect on the biases. After all, Yurdagül (2008) showed that α produces unbiased estimates 

even when the sample size is as low as 30. In a similar situation, the high bias of ω can be 

associated with the model data fits. 

The results were limited to the simulation conditions. Under this study, one-factor CFA models 

were considered. Similar comparisons of reliability estimations can also be made for multi-

dimensional (a.k.a., two or more factor CFA models) structures. 
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