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Abstract: The metaheuristics are the algorithms that are designed to solve many optimization problems without 
needing knowledge about the corresponding problems in detail. Similar to other metaheuristics, the Migrating Birds 
Optimization (MBO) algorithm which is introduced recently is a nature inspired neighbourhood search method. It 
simulates migrating birds’ V flight formation which is an effective flight shape for them to save the energy. In this 
paper, 20 different data sets were used for classification. Firstly, the MBO algorithm was employed to train neural 
networks which were designed for classification. Then, the same networks were trained by using other well-known 
powerful metaheuristic algorithms. These are the Artificial Bee Colony (ABC) algorithm, the Particle Swarm 
Optimization (PSO) algorithm, the Differential Evolution (DE) algorithm and the Genetic Algorithm (GA). Finally, 
the Levenberq-Marquardt (LM) algorithm, a classical gradient based training method, was added to implementations 
so that clear comparisons could be done among algorithm performances. Results show that the MBO algorithm has 
better performance than the others’ performances. It gets the highest accuracies in tests and reaches to the lowest 
mean squared errors in trainings for most of the experiments. 
 
Keywords: Migrating birds optimization; swarm intelligence; neural network training; neighbourhood search; 
classification 
 

 
Özet: Meta-sezgisel algoritmalar ilgili problem hakkında detaylı bilgiye ihtiyaç duymaksızın pek çok optimizasyon 
problemini çözebilecek şekilde tasarlanmış algoritmalardır. Yeni bir algoritma olan Göçmen Kuşlar Optimizasyon 
(GKO) algoritması diğer meta-sezgisellere benzer şekilde doğadan esinlenilerek oluşturulmuş sistematik bir 
komşuluk araştırma yöntemidir. Algoritma, harcanan enerjiyi minimize etmek için göçmen kuşların kullandıkları 
efektif bir uçuş şekli olan V uçuş biçimini simüle eder. Bu makalede 20 farklı veri seti kullanılarak ilgili 
sınıflandırma problemlerine çözümler aranmıştır. İlk olarak, ilgili sınıflandırma problemleri için tasarlanan Yapay 
Sinir Ağlarının (YSA) eğitimlerinde GKO algoritması kullanılmıştır. Daha sonra, aynı YSA’lar diğer güçlü ve 
yaygın meta-sezgisel algoritmalar kullanılarak eğitilmişlerdir. Bu algoritmalar yapay arı koloni algoritması, parçacık 
sürü optimizasyon algoritması, fark gelişim algoritması ve genetik algoritmadır. Son olarak, algoritmalar arasında 
net mukayeseler yapılabilmesi için eğim tabanlı klasik bir eğitim yöntemi olan Levenberq-Marquardt algoritması 
çalışmaya ilave edilmiştir. Sonuçlar, GKO algoritmasının YSA eğitimindeki performansının diğerlerininkine 
nazaran daha iyi olduğunu göstermiştir. GKO algoritması deneylerin çoğunda en yüksek doğruluk ve en düşük 
ortalama karesel hata değerlerine ulaşmıştır. 
 
Anahtar Kelimeler: Göçmen kuşlar optimizasyon algoritması; sürü zekâsı; yapay sinir ağı eğitimi; komşuluk 
araştırması; sınıflandırma 
 
 
1. Introduction 

 
The metaheuristic methods which are based on swarm intelligence are getting more and more 
popular in the areas of optimization, neural network training, scheduling, clustering, 
classification etc. These algorithms can be thought as higher level heuristics in comparison with 
problem-specific heuristic methods [1-2]. They are generally applied to the problems for which 
there is no satisfactory problem-specific algorithm to solve.  
 
Most of the metaheuristic algorithms are neighbourhood search methods. They constitute an 
important and large class among improvement algorithms [3]. They search neighbourhoods of 
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the existing solutions to get much better solutions. So, the choice of neighbourhood structure is 
thought to be a critical issue for design of the corresponding neighbourhood search method [4]. 
 
A great many metaheuristic algorithms have been introduced by researchers so far. Some of the 
most popular metaheuristics are the GA [5], the Simulated Annealing (SA) algorithm [6], the 
Tabu Search (TS) algorithm [7], the Ant Colony Optimization (ACO) algorithm [8] and the PSO 
algorithm [9]. Some of the recent well-known metaheuristic algorithms are the DE algorithm 
[10], the Harmony Search (HS) algorithm [11], the Monkey Search (MS) algorithm [12], the 
ABC algorithm [13], the Firefly Algorithm (FA) [14], the Intelligent Water Drops (IWD) 
algorithm [15], the Cuckoo Search (CS) algorithm [16-17], the Bat Algorithm (BA) [18-19] and 
the MBO algorithm [3].  
 
Metaheuristics are generally inspired by the nature. Mobile agents interact locally, and they 
somehow generate self-organized attitude under the right conditions to perform global 
convergence. Agents are aided by randomization to increase diversity of solutions on global 
scale when they explore the search space locally. Thus, there is a good balance between global 
exploration and local powerful exploitation [20]. In addition, swarming agents are suitable to 
work in parallel and this leads to a reduction in computation time. 
 
A variety of Artificial Neural Network (ANN) training techniques are available in literature such 
as the Error Back-Propagation (EBP) algorithm [21-22], the LM algorithm [23-24], the Scaled 
Conjugate Gradient (SCG) algorithm [25] etc.  In these methods, ANNs are trained in order to 
minimize the mean squared error (MSE) at network output by using gradient of the error 
function. They need differentiable search spaces (error functions). So, they may not give 
reasonable results for non-differentiable search spaces by falling into local minimum traps of the 
error functions. On the other hand, since population based metaheuristic search algorithms are 
independent from the search space characteristics, they can give good performances on trainings 
of ANNs. They approach the training process as an optimization problem, and they perform 
training without needing much knowledge about the real system.  
 
In this paper, we especially concentrated on ANN training performance of the MBO algorithm 
by using 20 different data sets. We performed a comparison among the GA, DE, PSO, ABC and 
the MBO algorithms. We also added the LM algorithm training results for the same data sets to 
emphasize superiority of swarm intelligence in ANN training. For comparison among the 
algorithms, we focussed on the MSE values in training stage as optimization performance 
criterion and on the accuracy values in test stage as training performance criterion. The paper is 
organized as follows. Section 2 introduces theoretical backgrounds of the GA, DE, PSO, ABC 
and the MBO algorithms briefly and gives the tricks about ANN training by using 
metaheuristics. Section 3 describes the performance evaluation method in test stage, gives brief 
information about data sets used in this paper and introduces the experimental setups. Section 4 
shows experimental results and gives their discussions. Section 5 concludes the whole study. 
 
2. Methods and background 
2.1. The PSO algorithm 
 
The PSO algorithm is a swarm-intelligence based metaheuristic algorithm inspired by the 
behaviour of birds’ flocking. Algorithm deals with the swarm of particles as population. Each 
member of the swarm represents a possible solution for the corresponding optimization problem, 
and its position is calculated by adding its velocity in next time step to its current position as [26] 
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where xi and vi are the position and the velocity of particle i respectively. Velocity vector 
conducts the optimization process, and velocity of particle i in dimension j for next time step is 
described by 
 

   )( )( rand+)( )( rand+=1)+( 21 txtpctxtpcvwtv ijgjijijijij    (2) 

 
where c1 and c2 are acceleration coefficients, w is inertia weight, rand is uniform random number 
ranging from 0 to 1, xij is current position of particle i in dimension j, pij is the best position 
achieved by particle i in dimension j and pgj is the best position achieved by population so far in 
dimension j. Second and third terms in Eq. (2) are called cognition and social terms respectively.  
 
Particle velocities should be in a predefined range of [-Vmax, Vmax] to keep the global search 
capability under control. So, calculated velocities are shifted to these predefined limits when they 
exceed the limits. Inertia weight w in Eq. (2) is an important variable to control the convergence 
characteristic of the PSO algorithm. If inertia weight is greater than 1, velocities converge to the 
limit velocities and swarm diverges from global minimum. Higher values of w in the range of [0, 
1] increase global search capability and decrease local search capability of the PSO algorithm or 
vice versa. In the study of Shi and Eberhart, it was reported that performance of the PSO 
algorithm increases significantly if w decreases from 0.9 to 0.4 linearly through the iterations 
[27]. So, we used this linear decreasing method in our benchmark tests. 
 
Diversity of initial population directly affects performance of the PSO algorithm. So, 
initialization of the population is an important process to get better optimization results. Initial 
positions can be assigned to the particles by using  
 

 min
j

max
j

min
jij xxxx  rand         (3) 

 
where xij is the position of solution i in dimension j, xj

min and xj
max are minimum and maximum 

limit values for dimension j, and rand is the uniform random number ranging from 0 to 1. Initial 
positions are assigned to initial personal best positions, and zero or small random values can be 
assigned to initial velocities. 
 
2.2. The ABC algorithm 
 
The ABC algorithm is a swarm-intelligence based metaheuristic algorithm inspired by bees’ 
foraging behaviours. The position of each food source represents an available solution for the 
corresponding optimization problem, and its nectar amount matches to the fitness of this solution 
[28]. 
 
There are three phases in calculations of each iteration. These are employed bee phase, onlooker 
bee phase and scout bee phase. firstly, the algorithm generates randomly distributed initial 
solutions to the food sources via Eq. (3) at the beginning. Then, algorithm phases start running. 
Finally, the algorithm stops when termination criteria are met. The first phase of calculations is 
the employed bee phase in which employed bees try to enhance their own solutions via  
 

 kjijijij xxxx  ˆ          (4) 
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where xij is the position of solution i in dimension j, k is randomly selected index value different 
from i, xkj is the position of solution k in dimension j, ϕ is a random number ranging from -1 to 1, 

ijx̂  is generated new neighbourhood position in dimension j for solution i. If ijx̂  exceeds 

predefined problem space limits xj
min and xj

max, then it is shifted to those limit values.  
Selections between existing food sources and generated new neighbours are performed by using 
a greedy selection mechanism based on fitness values. Fitness value of a solution is calculated by 
 

 
 








0   ,      abs1

0   ,        11

ii

ii
i ff

ff
Fitness        (5) 

 
where fi and Fitnessi are cost and fitness values of source i respectively. After performing greedy 
selections, selection probabilities by onlooker bees for updated new sources are calculated via  
 





SN

j
jii FitnessFitnessp

1

        (6) 

 
where pi is selection probability of source i by onlooker bees and SN is the total number of 
sources. 
 
In the second phase, onlooker bee phase, onlooker bees make their selections according to the 
corresponding pi probabilities by using roulette wheel method. In other words, the higher the 
selection probability is, the more chance the corresponding food source can be selected and 
enhanced by onlooker bees. Each onlooker generates a neighbourhood to its selection via Eq. (4). 
Then, it makes a greedy selection between the selected source and new generated source in order 
to enhance its own selection. 
 
In the third phase, scout bee phase, new food sources are generated by scouts for the sources 
whose nectar are abandoned. In implementations of the algorithm, a fail counter is assigned to 
each source. After completing a neighbourhood creation by corresponding bee, this counter is 
increased by one for an unsuccessful trial or set to zero for a successful trial [29]. Whenever the 
fail counter of a food source exceeds a predefined limit value, employed bee of this source is 
transformed into a scout bee to find a new food source by making global search via Eq. (3). The 
scout bee is re-transformed into an employed bee after it generates a new source by this method. 
 
2.3. The GA 
 
The GA simulates genetic evolution process. Firstly, initial population of the GA is created 
randomly by using Eq. (3) at the beginning, and fitness values of the solutions are calculated. 
Then, genetic operators are applied to population until the best solution meets the termination 
criteria. 
 
Parents are determined in the first step. In our implementations, the number of parent pairs is 
equal to half of the population size, and roulette wheel method is used to determine parent pairs 
before crossover. Since we used real coded GA in implementations, we used a combination of 
extrapolation and crossover methods for crossover operation as follows [30]. Let chromosomes 
are 
 

]     [
var21 Npppparent              (7) 
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where p represents variables and Nvar is the number of variables. The parents are 
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where α is a randomly produced integer number ranging from 1 to Nvar , subscripts m and d 
represent mom and dad parents respectively. The new variables which will appear in offsprings 
are 
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where β is a randomly produced number ranging from 0 to 1. Then, the offsprings with new 
variables are generated by replacing pmα and pdα with pnew1 and pnew2 respectively and swapping 
the right side of selected variables in parents. 
 

]         [

]         [

var

var
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mNnewdd
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


            (10) 

 
Third genetic operator is the mutation. For the mutation operation, we selected a predefined 
percentage of variables from offsprings randomly; then, we employed Eq. (3) to change the 
selected variables. High mutation rates increase the randomness in search operation and cause 
divergence from optimum. On the other hand, too low mutation rates decrease the diversity in 
population and give rise to insufficient problem space search. We used 5% mutation rate in our 
implementations. 
 
2.4. The DE algorithm 
 
The DE algorithm has very similar operators with GA. These are mutation, recombination and 
selection. The main difference of the DE algorithm is that the GA focuses on crossover; 
however, the DE algorithm focuses on mutation. DE’s basic calculation is performed by using 
differences of randomly sampled solution pairs selected from a population [31]. Firstly, the 
algorithm initializes the population by using Eq. (3). It performs search task by using mutation 
operation. Mutant solutions are generated for the solutions by using 
 

 GrGrGrGi xxFxv ,,,1, 321
         (11) 

 
where vi,G + 1 is generated mutant solution in next generation for solution i; Grn

x ,  is a solution in 

current generation; r1, r2 and r3 are randomly selected different integer indexes which point 
different solutions and none of them is equal to running index i, and F is real amplification 
constant. 
Then, mutant and parent solutions are mixed in recombination operation to generate trial 
solutions. Trial solutions are defined as 
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where uji,G + 1 is generated trial solution i in dimension j for next generation; vji,G + 1 is generated 
mutant solution i in dimension j for next generation; xji,G is current solution i in dimension j; 
randb(j) is a random number generated for dimension j ranging from 0 to 1; CR is the crossover 
constant and rnbr(i) is randomly chosen dimension index. Finally, among the trial and current 
solutions, a greedy selection is performed in the selection operation.  Algorithm runs until 
termination criteria are met. 
 
2.5. The MBO algorithm 
 
The MBO algorithm is a recently introduced another nature inspired metaheuristic 
neighbourhood search method. It simulates V flight formation of migrating birds. With its 
induced drag reduction, V shaped flight is an effective formation for birds to save the energy [3]. 
For instance, each one of the birds can reduce the induced drag up to 65% in a V shaped flight 
formation having 25 members. Thus, an increase of 70% for maximum flight distance can be 
achieved [32]. The benefit mechanism of this formation can be explained briefly as follows. A 
pair of vortices, which is seen in Fig. 1, is created owing to the wing movements. If it is 
examined in flight direction, the vortices from the left and right wing tips rotate in clockwise and 
counter clockwise directions respectively [3,32]. Vortices create downwash and upwash forces 
for the birds just flying behind. Downwash force is undesirable because it increases the induced 
drag on bird’s wings. On the other hand, upwash force is beneficial because it decreases the 
induced drag on a wing in flight. So, all the birds in V formation except for the leader bird locate 
mostly in upwash regions of vortices. Thus, they get benefit of this upwash forces and reduce 
their energy consumption. To sum up, the leader bird in that formation spends the most energy 
and the other birds get benefit coming from the birds in front [3]. 
 

 
Fig. 1. Regions of upwash and downwash created by trailing vortices [3] 

 
The flow diagram of the MBO algorithm, which simulates this benefit mechanism by sharing the 
solutions, is given in Fig. 2. The parameters of the MBO algorithm are the number of solutions 
or flock size, which is represented by n; the number of neighbour solutions to be tried for 
improvement, which is represented by k; the number of neighbour solutions for sharing with the 
next solution, which is represented by x; the number of tours to change the leader, which is 
represented by m; and the maximum iteration or tour number, which is represented by K. 
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Fig. 2. Flow diagram of the MBO algorithm 
 
The algorithm runs as follows. In the first step, the population is initialized. We used the method 
defined in Eq. (3) to initialize positions of the birds which represent possible solutions. After 
initialization, one of the solutions is chosen as the leader and all of the solutions are placed on a 
hypothetical V formation arbitrarily.  
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In the second step, the leader bird is tried to be improved. Hence, k neighbours are generated and 
their fitness values are calculated. We used the neighbour creation method given in Eq. (4). If the 
best neighbour solution shows an improvement on leader, its position is assigned to the leader 
bird and 2x unused best solutions are shared with 2 next birds in second row.  
 
In the third step, other birds are tried to be improved. For each bird in lines, (k-x) neighbours are 
generated by using Eq. (4) and their fitness values are calculated. These neighbours are 
combined with x unused neighbours coming from the bird in the front. So, total number of 
neighbour solutions to be considered for each bird is k like in the leader bird. If the best 
neighbour solution shows an improvement on the corresponding bird, the position of that 
neighbour solution is assigned to the corresponding bird. Then, x unused best solutions are 
shared with the next bird. This neighbourhood sharing mechanism simulates the benefit of 
upwash force caused by trailing tip vortex in V flight formation. One iteration ends after 
completing improvement trials for all birds. Briefly, algorithm starts from the first solution 
which corresponds to the leader bird, and progresses on two lines towards the tails in each 
iteration in order to improve each solution by using its neighbour solutions [3]. 
 
In the fourth step, the leader bird is thought to be tired after performing a predefined number of 
iterations (m). If predefined iteration is reached, the leader solution is shifted to the end of one 
side on hypothetical V formation and the second solution at that side is assigned to the leader 
position. Steps from step 2 to step 4 continue until predefined termination criteria is satisfied by 
generated solutions. Then, the algorithm stops and gives solution with the best fitness value as 
overall solution. 
 
Parameter k and x directly affect the algorithm performance and should be chosen appropriately. 
Parameter k is inversely proportional with the flight speed of real birds. If it is chosen at small 
values, it is assumed that the birds are flying at higher speeds. For the MBO algorithm, higher 
speeds enable algorithm to reduce total execution time. This is an advantageous choice for the 
problems having small number of parameters. But for high dimensional problems, k may need to 
be increased to get a satisfactory solution. Parameter x represents the upwash benefit of trailing 
tip vortex in bird flock. Since benefit mechanism of the MBO algorithm is defined as the number 
of good neighbour solutions obtained from the predecessor solution, high values of x cause 
solutions to be similar to each other. Thus, a premature convergence may happen. Thus, we 
choose x = 1 as recommended [3]. 
 
2.6. Training feed-forward ANNs by using metaheuristics 
 
An ANN consists of a set of interconnected processing elements which are known as neurons 
[33]. Schematic representation of a neuron is given in Fig. 3a. The neurons in the ANN form a 
topology like depicted in Fig. 3b which shows the ANN having n inputs, m hidden layer neurons 
and k outputs. Each neuron in this topology gets the signals coming from the neurons located in 
previous layer. These signals are multiplied by weight values before they reach to the 
corresponding neuron. The neuron sums these weighted signals and its bias value. Then, it 
applies the summation result to the transfer function and transmits the transfer function output to 
the neurons in next layer.  
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(a)   
(b) 

Fig. 3 (a) Neuron of an ANN (b) An ANN with n-m-k topology 
 
The relation between input signals and ith output signal of the ANN is given by 
 









 



n

j
ijijii bxwfy
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        (13) 

 
where yi is ith neuron’s output value, xj is jth input value, wij is the connection weight between ith 
neuron and jth input, bi is neuron’s bias value and fi is the transfer function. Since an ANN is used 
to find a possible solution to a nonlinear problem, nonlinear transfer functions such as 
logarithmic sigmoid given in Eq. (14) are used. The input signals are normalized in accordance 
with the selected transfer function before they are applied to the ANN.  
 

)1(1)( xexf           (14) 
 
An ANN training algorithm aims to minimize the MSE at output during training process. The 
lower the MSE is, the higher the output accuracy for training data set is. The MSE of an ANN at 
tth iteration is calculated by 
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P

j
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ii yd
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tMSE

1 1
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1

)(         (15) 

 
where di and yi are desired and actual outputs respectively, P is the total number of input patterns 
existing in training data set and K is the number of nodes at output. 
An ANN like in Fig. 3b can be thought as an optimization problem having many parameters. 
These parameters consist of connection weights and bias values. In this context, considering an 
ANN having only one hidden layer, total number of parameters to be optimized is calculated by 
 

kmkmmnN par          (16) 

 
where Npar is the total number of parameters, n is the number of inputs, m is the total number of 
hidden layer neurons and k is the total number of output layer nodes. Similarly, considering an 
ANN having two hidden layers, total number of parameters to be optimized is calculated by 
 

kmmkmmmmnN par  212211
      (17) 

 
where m1 and m2 are number of neurons in first and second hidden layers respectively. 
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In ANN training, metaheuristic algorithms start optimization process for Npar parameters. Aim of 
this optimization is to minimize the MSE at the output of the ANN. Metaheuristics calculate new 
connection weights and bias values in each iteration, and the ANN is run with these new 
parameters. Then, MSE is calculated for the last run and a decision is made about whether the 
parameters are updated or not. If the MSE decreases by using new parameters, the parameters are 
updated with last calculated parameters. Otherwise, existing parameters are maintained. A 
general flow diagram of the ANN training via metaheuristics is shown in Fig. 4. 
 

 

Fig. 4. Flow diagram of ANN training strategy by using metaheuristics 
 
3. Experimental study 
3.1. Performance evaluation and comparison criteria 
 
Training process searches error space and tries to find the global minimum point of that space. 
So, main performance criterion is the MSE reached at the end of training, and it is calculated via 
Eq. (15). Since we think the training process as an optimization problem, it is also a measure of 
optimization performance.  
In this study, classification accuracies for test data sets are calculated via Eqs. (18)-(19) [34] and 
these calculated accuracies are used as another performance measure. 
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where N is the set of test items, n is a member of N, nc is actual class value of the item n and 
function classify(n) returns the class value calculated by neural network for item n. 
 
3.2. Data sets and experimental setup 
 
20 data sets, which were downloaded from UCI Machine Learning Repository [35] and KEEL 
Data Set Repository [36] web sites, were used in this study. Some brief information about these 
data sets is available in Table 1. We used attributes of the data sets as inputs and outputs of the 
ANNs in implementations.  
 
Table 1. Dataset properties, ANN topologies and corresponding problem dimensions 

     Data Set 
Attribute 

(Input + Output) 
Instance 

ANN 
Topology 

Problem 
Dimension 

Acute Inflammations [35]  6 + 2  120  6 ‐ 10 ‐ 2  92 

Blood Transfusion [35]  4 + 1  748  4 ‐ 10 ‐ 1  61 

Breast Cancer [35]  9 + 1  683  9 ‐ 25 ‐ 1  276 

Fertility [35]  9 + 1  100  9 ‐ 21 ‐ 1  232 

Indian Liver Patient [35]  10 + 1  579  10 ‐ 25 ‐ 1  301 

Lenses [35]  4 + 1  24  4 ‐ 25 ‐ 3  203 

Liver Disorders [35]  6 + 1  345  6 ‐ 25 ‐ 1  201 

Pima Indians Diabetes [35]  8 + 1  768  8 ‐ 25 ‐ 1  251 

Planning Relax [35]  12 + 1  182  12 ‐ 36 ‐ 1  505 

SPECT Heart [35]  22 + 1  267  22 ‐ 30 ‐ 1  721 

Thyroid Disease [35]  5 + 1  215  5 ‐ 15 ‐ 20 ‐ 3  473 

Vertebral Column [35]  6 + 1  310  6 ‐ 21 ‐ 1  169 

Appendicitis [36]  7 + 1  106  7 ‐ 25 ‐ 1  226 

Titanic [36]  3 + 1  2201  3 ‐ 15 ‐ 1  76 

Phoneme [36]  5 + 1  5404  5 – 20 – 1  141 

Iris [36]  4 + 1  150  4 ‐ 25 – 3  203 

Mammographic Mass [35]  5 + 1  830  5 – 25 – 1  176 

Banknote Authentication [35]  4 + 1  1372  4 – 10 – 1  61 

Balance Scale [35]  4 + 1   625  4 – 25 – 3  203 

Haberman's Survival [35]  3 + 1  360  3 – 20 – 1  101 

 
Firstly, we partitioned the data sets into two equal parts as training and test sets randomly. Then, 
we applied the GA, DE, PSO, ABC and the MBO algorithms for ANN trainings. As mentioned 
in previous sections, MSE values of the networks were calculated in each iteration during 
trainings, and the metaheuristics tried to minimize those MSE values by changing parameters of 
the networks systematically. The population sizes were set to 150 members and the numbers of 
iterations were set to 500 cycles in metaheuristic trainings. 
 
Finally, as a conventional method, trainings were also performed by using LM algorithm to 
make proper comparisons. In LM training; firstly, we used 500 iterations in LM algorithm like in 
metaheuristics. Thinking that the total number of calculations in metaheuristics is equal to 
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population size times number of iterations, that is, 150 × 500 = 75000 for our case; secondly, we 
performed trainings by using LM algorithm one more time with 75000 iterations to make fair 
comparisons. Each training case was repeated 20 times by using the corresponding training data 
set and by using the network topology given in Table 1. Network accuracy of each training case 
was calculated. Average accuracies and average MSE values of the ANNs are given in Table 2 in 
next section. 
 
4. Results 
 
Numerical results of the experiments are given in Table 2. The highest accuracies reached and 
the final MSEs for the corresponding network trainings are shown in bold fonts for each data set. 
From the numerical results, it is clearly seen that the accuracy values obtained by metaheuristic 
trainings are competitive with gradient calculation based conventional training method LM. 
Their accuracies are a little bit higher than those of the LM algorithm. In addition, MSE values 
of them are extremely good in comparison with the LM algorithm.  
 
 
Table 2. MSE and accuracy values of the trainings (150 members for metaheuristics, 500 
iterations for metaheuristics and LM1, 75000 iterations for LM2)  

Data Sets    GA  DE  PSO  ABC  MBO  LM1  LM2 

Acute 
Inflammations 

MSE  1.06E‐
13 

1.06E‐
21 

1.05E‐
22 

6.98E‐
15 

1.38E‐
26 

2.56E‐
05 

3.47E‐
07 

Accuracy  100.00  100.00  100.00  100.00 100.00  100.00  100.00

Blood 
Transfusion 

MSE  0.1386  0.1409  0.1361  0.1414 0.1367  0.1584  0.2297

Accuracy  79.41  79.14  79.41  79.68  79.41  79.41  74.87 

Breast Cancer  MSE  0.0061  0.0066  0.0058  0.0078 6.09E‐
06 

0.0327  0.0571

Accuracy  96.19  96.48  97.07  96.48  97.07  96.19  93.84 

Fertility  MSE  0.0101  0.0100  0.0400  0.0101 0.0100  0.0847  0.1035

Accuracy  90.00  90.00  90.00  90.00  92.00  92.00  90.00 

Indian Liver 
Patient 

MSE  0.1596  0.2005  0.1201  0.1524 0.0984  0.2772  0.3143

Accuracy  70.93  71.63  72.66  70.93  71.97  71.97  68.17 

Lenses  MSE  7.47E‐
12 

5.82E‐
47 

7.03E‐
32 

4.71E‐
16 

5.28E‐
46 

0.3568  0.3687

Accuracy  81.82  81.82  81.82  81.82  81.82  81.82  81.82 

Liver 
Disorders 

MSE  0.1563  0.2075  0.1049  0.1628 0.0982  0.2900  0.3590

Accuracy  71.51  71.51  70.93  68.60  71.51  69.77  62.21 

Pima Indians 
Diabetes 

MSE  0.1710  0.1442  0.1160  0.1434 0.1062  0.2325  0.2818

Accuracy  76.30  77.08  76.56  74.22  76.56  73.96  69.79 

Planning 
Relax 

MSE  0.1758  0.2044  0.1322  0.1403 0.0790  0.3066  0.3405

Accuracy  72.53  72.53  72.53  74.73  72.53  69.23  62.64 



 
      Hasan Makas    / Elec Lett Sci Eng 11(1) (2015) 6-23  

  18 

SPECT Heart  MSE  0.0590  0.0434  0.1068  0.0659 0.0396  0.1227  0.1646

Accuracy  84.21  84.21  84.21  84.96  85.71  84.21  79.70 

Thyroid 
Disease 

MSE  0.0242  3.70E‐
07 

2.49E‐
09 

0.0284 0.0034  0.0381  0.0403

Accuracy  96.26  97.20  97.20  96.26  97.20  97.20  97.20 

Vertebral 
Column 

MSE  0.0626  0.0849  0.0463  0.0569 0.0341  0.1780  0.2501

Accuracy  83.23  83.23  82.58  83.23  83.23  81.29  73.55 

Appendicitis  MSE  0.0103  0.0368  0.0185  0.0191 1.90E‐
04 

0.1307  0.1344

Accuracy  84.62  86.54  90.38  90.38  90.38  86.54  86.54 

Titanic  MSE  0.1570  0.1584  0.1567  0.1569 0.1567  0.1530  0.1531

Accuracy  79.64  79.64  79.64  79.64  79.64  79.64  79.64 

Phoneme  MSE  0.1295  0.1509  0.1131  0.1333 0.1117  0.1193  0.1598

Accuracy  81.64  80.76  83.64  81.35  84.04  83.64  83.68 

Iris  MSE  0.0044  7.71E‐
05 

2.58E‐
05 

0.0060 1.05E‐
06 

0.0466  0.0497

Accuracy  97.33  97.33  97.33  96.00  97.33  97.33  97.33 

Mammographic 
Mass 

MSE  0.1383  0.1485  0.1159  0.1285 0.1100  0.4987  0.3231

Accuracy  80.72  80.00  80.00  78.31  80.72  49.64  66.99 

Banknote 
Authentication 

MSE  3.16E‐
04 

2.50E‐
04 

3.17E‐
06 

0.0013 1.18E‐
06 

2.41E‐
04 

4.64E‐
05 

Accuracy  100.00  100.00  100.00  100.00 100.00  100.00  100.00

Balance Scale  MSE  0.1380  0.0782  0.0812  0.1180 0.0690  0.1511  0.1874

Accuracy  86.86  87.50  88.46  87.82  89.74  87.82  88.14 

Haberman's 
Survival 

MSE  0.1434  0.1501  0.1290  0.1378 0.1228  0.2764  0.2928

Accuracy  74.03  74.68  74.03  74.68  74.68  70.78  70.78 

 
Especially, the MBO algorithm drawn the best performance figure among the algorithms in this 
study by giving the best MSE results. Owing to its unique benefit mechanism, MBO algorithm 
can achieve a good convergence to the global minimum. Normally, metaheuristics given in this 
paper except for the MBO algorithm generate new neighbourhoods to their existing population 
members in each iteration. Then, they make greedy selections between generated and existing 
solutions in order to improve their fitness values. The improvement chances of the solutions 
completely depend on the neighbourhoods which are generated by using systematic search 
techniques of the corresponding algorithms. If the neighbourhood having the best fitness can 
show an improvement on the corresponding solution, the algorithm can be said to be successful 
in improvement. On the other hand, the MBO algorithm generates new neighbourhoods to its 
existing population members like in the others. But, it gets the solutions shared by the 
predecessors for the corresponding members. Therefore, improvement chances of the solutions 
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partially depend on the neighbourhoods which are generated by using systematic search 
technique of the MBO algorithm. In short, even if it could not achieve to improve the fitness 
values of the solutions via the generated neighbourhoods, it has additional chances to improve 
them via the shared solutions.  That is, it has an additional chance for each improvement trial. 
Having both neighbourhood creation and neighbourhood sharing in one application is the 
novelty of MBO algorithm and this unique benefit mechanism makes it competitive.  
Fig. 5 shows MSE progresses of the algorithms during trainings. It is seen that the MBO 
algorithm converges to the global minimum faster than the others in most of the experiments, 
and it avoids from going into saturation by using its benefit mechanism. Its saturation values are 
extremely lower than that of the others in general. It reached to the lowest MSE values except for 
four data sets in implementations. However, the network accuracies for these data sets are also 
good enough. 
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Fig. 5 (Continue) MSE Progresses of the algorithms during trainings 
 

As to the other algorithms, their performances are changing experiment to experiment. Since 
performance of the PSO algorithm highly depends on initial population quality, it may fall into 
local minimums of the error space and may not give better solutions for high dimensional 
problems. Its exploitation (local search) capability is good, but its exploration (global search) 
capability needs to be improved. The GA is seen to be poor to converge to the global minimum. 
Its exploration is good, but its exploitation needs to be improved. The ABC algorithm generally 
succeeds to escape from local minimums of the search space. However, it may not achieve to 
converge to the global minimum as desired. Its exploration capability is good, but its exploitation 
capability needs to be improved. The DE algorithm generally performs good optimization and 
training, but its performance is not better than that of the MBO algorithm. The experiments were 
performed twice for the LM algorithm. The same number of iterations with the metaheuristics 
was used in the first experiment. The same number of total calculations with the metaheuristics 
was performed in the second experiment as mentioned in Section 3.2. It is seen that the increased 
number of iterations in the second experiment does not make the results better.  
 
Looking at the bold written values in Table 2, the MBO algorithm performed the highest 
accuracies for 80% of the data sets; it performed the lowest MSE values for 80% of the data sets, 
and it performed both lowest MSE and highest accuracy values for 65% of the data sets. Fig. 6 
shows these success rate distributions of the algorithms on data sets.  
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Fig. 6 Success rates of the algorithms on 20 data sets 

 
To sum up, the results can be concluded that the metaheuristic algorithms mentioned in this 
paper are superior to the conventional LM training algorithm in point of ANN training. It is also 
seen that the MBO algorithm with its competitive optimization performance outperforms the 
others in points of the accuracy and MSE. 
 
5. Conclusions 
 
Because the MBO algorithm is recently introduced metaheuristic algorithm, its performance on 
engineering and computational applications may not been tested satisfactorily. In this study, the 
GA, DE, MBO, PSO and the ABC algorithms were used to train ANN implementations. The 
main objective is to test the ANN training performances of these metaheuristics and to compare 
success of the MBO algorithm with that of the others.  
 
In experimental results, ANN training performances of the algorithms were compared by using 
20 different data sets. According to the good results obtained in experiments, it can be said that 
swarm intelligence can be used in ANN training process successfully. Considering the MSE 
values in trainings and the accuracy values in tests, the MBO algorithm has the best success rates 
in ANN trainings among the algorithms examined in this paper. It gets this good and promising 
performance by using its unique benefit mechanism. Simulating the upwash benefits in real 
migrating birds, the MBO algorithm has more chance to improve its members and performs a 
good optimization. 
 
References 
 
[1] Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. 

Information Sciences. 237: 82–117. 

[2] Pappa G L, Ochoa G, Hyde M R, Freitas A A, Woodward J, Swan J (2014) Contrasting 
meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genetic 
Programming and Evolvable Machines. 15: 3-35. 

[3] Duman E, Uysal M, Alkaya A F (2012) Migrating Birds Optimization: A new 
metaheuristic approach and its performance on quadratic assignment problem. Information 
Sciences. 217:  65–77. 

[4] Ahuja R K, Ergun O, Orlin J B, Punnen A P (2002) A survey of very large scale 
neighborhood search techniques. Discrete Applied Mathematics. 123: 75–102. 

[5] Holland JH (1975) Adaptation in Natural and Artificial Systems. University of Michigan 
Press, Ann Arbor. 



 
      Hasan Makas    / Elec Lett Sci Eng 11(1) (2015) 6-23  

  22 

[6] Kirkpatrick S¸ Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. 
Science 220(4598): 671–680. 

[7] Glover F (1986) Future paths for integer programming and links to artificial intelligence. 
Computers & Operations Research 13 (5): 533–549. 

[8] Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico 
di Milano. 

[9] Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: 
Proceedings of the sixth international symposium on micromachine and human science, 
Nagoya, Japan, pp. 39–43. 

[10] Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global 
optimization over continuous spaces. Journal of Global Optimization 11: 341–359. 

[11] Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: 
harmony search. Simulation 76: 60–68. 

[12] Mucherino A, Seref O (2007) A novel meta-heuristic approach for global optimization. In: 
Proceedings of the conference on data mining, system analysis and optimization in 
biomedicine, Gainesville, Florida, pp. 162–173. 

[13] Karaboğa D (2005) An idea based on honey bee swarm for numerical optimization. 
Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering 
Department. 

[14] Yang XS (2008) Firefly algorithm. In: Nature-Inspired Metaheuristic Algorithms, pp. 79–
90. Luniver Press, Frome, UK. 

[15] Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-
based optimization algorithm. International Journal of Bio-inspired Computation (IJBIC) 
1: 71–79. 

[16] Yang XS and Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of World 
Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, pp. 
210-214. 

[17] Yang XS and Deb S (2010) Engineering optimisation by cuckoo search. Int. J. Math. 
Modelling & Num. Optimisation 1: 330-343. 

[18] Yang XS (2010) A New Metaheuristic Bat-Inspired Algorithm. In: JR Gonzalez et al. 
(Eds.). Inspired Cooperative Strategies for Optimization (NICSO 2010), Vol 284, pp. 65-
74. 

[19] Nature Yang XS (2011) Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired 
Computation 3(5): 267-274. 

[20] Blum C, Roli A (2003) Metaheuristics in combinatorial optimisation: Overview and 
conceptural comparision. ACM Comput. Surv. 35: 268-308. 

[21] Rumelhart D E, Hinton G E, Williams R J (1986) Learning representations by back-
propagating errors. Nature. 323: 533–536. 



 
      Hasan Makas    / Elec Lett Sci Eng 11(1) (2015) 6-23  

  23 

[22] Werbos P J (1988) Back-propagation: Past and future. In: Proceedings of International 
Conference on Neural Networks, San Diego, CA, pp. 343–354.  

[23] Levenberg K (1944) A method for the solution of certain problems in least squares. 
Quarterly of Applied Mathematics. 5: 164–168. 

[24] Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. 
SIAM Journal on Applied Mathematics. 11(2): 431–441. 

[25] Moller M F (1993) A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. 
Neural Networks. 6: 525-533. 

[26] Engelbrecht A P (2006) Fundamentals of computational swarm intelligence. Wiley. 

[27] Shi Y, Eberhart RC (1999) Empirical Study of Particle Swarm Optimization. In: 
Proceedings of CEC’99 congress of evolutionary computation, pp. 1945-1950. 

[28] Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm. 
Applied Mathematics and Computation 214: 108–132. 

[29] Akay B (2009) Performance analysis of artificial bee colony algorithm on numerical 
optimization problems. Ph.D. Thesis, Erciyes University, Turkey. 

[30] Haupt R L, Haupt S E (2004) Practical Genetic Algorithms. Second ed., Wiley, New York, 
USA. 

[31] Karaboğa D, Ökdem S (2004) A Simple and Global Optimization Algorithm for 
Engineering Problems: Differential Evolution Algorithm. Turkish Journal of Electrical 
Engineering. 12: 53 - 60. 

[32] Lissaman P B S, Schollenberger C A (1970) Formation Flight of Bird. Science. 168: 1003-
1005. 

[33] Yao X (1999) Evolving artificial neural networks. In Proceeedings of the IEEE, 87 (9): 
1423–1447. 

[34] Temurtas F (2009) A comparative study on thyroid disease diagnosis using neural 
networks. Expert Systems with Applications 36: 944–949. 

[35] UCI, Machine Learning Repository web site, Available: 
http://archive.ics.uci.edu/ml/index.html. Accessed 10 Jun 2013. 

[36] KEEL, Data Set Repository web site, Available: 
http://sci2s.ugr.es/keel/category.php?cat=clas#sub2. Accessed 04 Mar 201 


