

Electronic Letters on Science & Engineering 11(1) (2015)
 Available online at www.e-lse.org

* Corresponding author; e-mail : hasanmakas@gmail.com

ISSN 1305-8614  2015 www.e-lse.org All rights reserved.

6

 Classification using neural networks trained by swarm intelligence

Hasan Makas 1,* Nejat Yumusak2

1Ereğli Iron & Steel Works Co., Department of Electronic Automation,
67330, Karadeniz Ereğli, Zonguldak, Turkey

2Sakarya University, Faculty of Computer and Information Sciences,
Department of Computer Engineering, 54187, Serdivan, Sakarya, Turkey

Abstract: The metaheuristics are the algorithms that are designed to solve many optimization problems without
needing knowledge about the corresponding problems in detail. Similar to other metaheuristics, the Migrating Birds
Optimization (MBO) algorithm which is introduced recently is a nature inspired neighbourhood search method. It
simulates migrating birds’ V flight formation which is an effective flight shape for them to save the energy. In this
paper, 20 different data sets were used for classification. Firstly, the MBO algorithm was employed to train neural
networks which were designed for classification. Then, the same networks were trained by using other well-known
powerful metaheuristic algorithms. These are the Artificial Bee Colony (ABC) algorithm, the Particle Swarm
Optimization (PSO) algorithm, the Differential Evolution (DE) algorithm and the Genetic Algorithm (GA). Finally,
the Levenberq-Marquardt (LM) algorithm, a classical gradient based training method, was added to implementations
so that clear comparisons could be done among algorithm performances. Results show that the MBO algorithm has
better performance than the others’ performances. It gets the highest accuracies in tests and reaches to the lowest
mean squared errors in trainings for most of the experiments.

Keywords: Migrating birds optimization; swarm intelligence; neural network training; neighbourhood search;
classification

Özet: Meta-sezgisel algoritmalar ilgili problem hakkında detaylı bilgiye ihtiyaç duymaksızın pek çok optimizasyon
problemini çözebilecek şekilde tasarlanmış algoritmalardır. Yeni bir algoritma olan Göçmen Kuşlar Optimizasyon
(GKO) algoritması diğer meta-sezgisellere benzer şekilde doğadan esinlenilerek oluşturulmuş sistematik bir
komşuluk araştırma yöntemidir. Algoritma, harcanan enerjiyi minimize etmek için göçmen kuşların kullandıkları
efektif bir uçuş şekli olan V uçuş biçimini simüle eder. Bu makalede 20 farklı veri seti kullanılarak ilgili
sınıflandırma problemlerine çözümler aranmıştır. İlk olarak, ilgili sınıflandırma problemleri için tasarlanan Yapay
Sinir Ağlarının (YSA) eğitimlerinde GKO algoritması kullanılmıştır. Daha sonra, aynı YSA’lar diğer güçlü ve
yaygın meta-sezgisel algoritmalar kullanılarak eğitilmişlerdir. Bu algoritmalar yapay arı koloni algoritması, parçacık
sürü optimizasyon algoritması, fark gelişim algoritması ve genetik algoritmadır. Son olarak, algoritmalar arasında
net mukayeseler yapılabilmesi için eğim tabanlı klasik bir eğitim yöntemi olan Levenberq-Marquardt algoritması
çalışmaya ilave edilmiştir. Sonuçlar, GKO algoritmasının YSA eğitimindeki performansının diğerlerininkine
nazaran daha iyi olduğunu göstermiştir. GKO algoritması deneylerin çoğunda en yüksek doğruluk ve en düşük
ortalama karesel hata değerlerine ulaşmıştır.

Anahtar Kelimeler: Göçmen kuşlar optimizasyon algoritması; sürü zekâsı; yapay sinir ağı eğitimi; komşuluk
araştırması; sınıflandırma

1. Introduction

The metaheuristic methods which are based on swarm intelligence are getting more and more
popular in the areas of optimization, neural network training, scheduling, clustering,
classification etc. These algorithms can be thought as higher level heuristics in comparison with
problem-specific heuristic methods [1-2]. They are generally applied to the problems for which
there is no satisfactory problem-specific algorithm to solve.

Most of the metaheuristic algorithms are neighbourhood search methods. They constitute an
important and large class among improvement algorithms [3]. They search neighbourhoods of

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 7

the existing solutions to get much better solutions. So, the choice of neighbourhood structure is
thought to be a critical issue for design of the corresponding neighbourhood search method [4].

A great many metaheuristic algorithms have been introduced by researchers so far. Some of the
most popular metaheuristics are the GA [5], the Simulated Annealing (SA) algorithm [6], the
Tabu Search (TS) algorithm [7], the Ant Colony Optimization (ACO) algorithm [8] and the PSO
algorithm [9]. Some of the recent well-known metaheuristic algorithms are the DE algorithm
[10], the Harmony Search (HS) algorithm [11], the Monkey Search (MS) algorithm [12], the
ABC algorithm [13], the Firefly Algorithm (FA) [14], the Intelligent Water Drops (IWD)
algorithm [15], the Cuckoo Search (CS) algorithm [16-17], the Bat Algorithm (BA) [18-19] and
the MBO algorithm [3].

Metaheuristics are generally inspired by the nature. Mobile agents interact locally, and they
somehow generate self-organized attitude under the right conditions to perform global
convergence. Agents are aided by randomization to increase diversity of solutions on global
scale when they explore the search space locally. Thus, there is a good balance between global
exploration and local powerful exploitation [20]. In addition, swarming agents are suitable to
work in parallel and this leads to a reduction in computation time.

A variety of Artificial Neural Network (ANN) training techniques are available in literature such
as the Error Back-Propagation (EBP) algorithm [21-22], the LM algorithm [23-24], the Scaled
Conjugate Gradient (SCG) algorithm [25] etc. In these methods, ANNs are trained in order to
minimize the mean squared error (MSE) at network output by using gradient of the error
function. They need differentiable search spaces (error functions). So, they may not give
reasonable results for non-differentiable search spaces by falling into local minimum traps of the
error functions. On the other hand, since population based metaheuristic search algorithms are
independent from the search space characteristics, they can give good performances on trainings
of ANNs. They approach the training process as an optimization problem, and they perform
training without needing much knowledge about the real system.

In this paper, we especially concentrated on ANN training performance of the MBO algorithm
by using 20 different data sets. We performed a comparison among the GA, DE, PSO, ABC and
the MBO algorithms. We also added the LM algorithm training results for the same data sets to
emphasize superiority of swarm intelligence in ANN training. For comparison among the
algorithms, we focussed on the MSE values in training stage as optimization performance
criterion and on the accuracy values in test stage as training performance criterion. The paper is
organized as follows. Section 2 introduces theoretical backgrounds of the GA, DE, PSO, ABC
and the MBO algorithms briefly and gives the tricks about ANN training by using
metaheuristics. Section 3 describes the performance evaluation method in test stage, gives brief
information about data sets used in this paper and introduces the experimental setups. Section 4
shows experimental results and gives their discussions. Section 5 concludes the whole study.

2. Methods and background
2.1. The PSO algorithm

The PSO algorithm is a swarm-intelligence based metaheuristic algorithm inspired by the
behaviour of birds’ flocking. Algorithm deals with the swarm of particles as population. Each
member of the swarm represents a possible solution for the corresponding optimization problem,
and its position is calculated by adding its velocity in next time step to its current position as [26]

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 8

)1()()1( tvtxtx iii (1)

where xi and vi are the position and the velocity of particle i respectively. Velocity vector
conducts the optimization process, and velocity of particle i in dimension j for next time step is
described by

   )()(rand+)()(rand+=1)+(21 txtpctxtpcvwtv ijgjijijijij  (2)

where c1 and c2 are acceleration coefficients, w is inertia weight, rand is uniform random number
ranging from 0 to 1, xij is current position of particle i in dimension j, pij is the best position
achieved by particle i in dimension j and pgj is the best position achieved by population so far in
dimension j. Second and third terms in Eq. (2) are called cognition and social terms respectively.

Particle velocities should be in a predefined range of [-Vmax, Vmax] to keep the global search
capability under control. So, calculated velocities are shifted to these predefined limits when they
exceed the limits. Inertia weight w in Eq. (2) is an important variable to control the convergence
characteristic of the PSO algorithm. If inertia weight is greater than 1, velocities converge to the
limit velocities and swarm diverges from global minimum. Higher values of w in the range of [0,
1] increase global search capability and decrease local search capability of the PSO algorithm or
vice versa. In the study of Shi and Eberhart, it was reported that performance of the PSO
algorithm increases significantly if w decreases from 0.9 to 0.4 linearly through the iterations
[27]. So, we used this linear decreasing method in our benchmark tests.

Diversity of initial population directly affects performance of the PSO algorithm. So,
initialization of the population is an important process to get better optimization results. Initial
positions can be assigned to the particles by using

 min
j

max
j

min
jij xxxx  rand (3)

where xij is the position of solution i in dimension j, xj

min and xj
max are minimum and maximum

limit values for dimension j, and rand is the uniform random number ranging from 0 to 1. Initial
positions are assigned to initial personal best positions, and zero or small random values can be
assigned to initial velocities.

2.2. The ABC algorithm

The ABC algorithm is a swarm-intelligence based metaheuristic algorithm inspired by bees’
foraging behaviours. The position of each food source represents an available solution for the
corresponding optimization problem, and its nectar amount matches to the fitness of this solution
[28].

There are three phases in calculations of each iteration. These are employed bee phase, onlooker
bee phase and scout bee phase. firstly, the algorithm generates randomly distributed initial
solutions to the food sources via Eq. (3) at the beginning. Then, algorithm phases start running.
Finally, the algorithm stops when termination criteria are met. The first phase of calculations is
the employed bee phase in which employed bees try to enhance their own solutions via

 kjijijij xxxx  ˆ (4)

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 9

where xij is the position of solution i in dimension j, k is randomly selected index value different
from i, xkj is the position of solution k in dimension j, ϕ is a random number ranging from -1 to 1,

ijx̂ is generated new neighbourhood position in dimension j for solution i. If ijx̂ exceeds

predefined problem space limits xj
min and xj

max, then it is shifted to those limit values.
Selections between existing food sources and generated new neighbours are performed by using
a greedy selection mechanism based on fitness values. Fitness value of a solution is calculated by

 
 








0 , abs1

0 , 11

ii

ii
i ff

ff
Fitness (5)

where fi and Fitnessi are cost and fitness values of source i respectively. After performing greedy
selections, selection probabilities by onlooker bees for updated new sources are calculated via





SN

j
jii FitnessFitnessp

1

 (6)

where pi is selection probability of source i by onlooker bees and SN is the total number of
sources.

In the second phase, onlooker bee phase, onlooker bees make their selections according to the
corresponding pi probabilities by using roulette wheel method. In other words, the higher the
selection probability is, the more chance the corresponding food source can be selected and
enhanced by onlooker bees. Each onlooker generates a neighbourhood to its selection via Eq. (4).
Then, it makes a greedy selection between the selected source and new generated source in order
to enhance its own selection.

In the third phase, scout bee phase, new food sources are generated by scouts for the sources
whose nectar are abandoned. In implementations of the algorithm, a fail counter is assigned to
each source. After completing a neighbourhood creation by corresponding bee, this counter is
increased by one for an unsuccessful trial or set to zero for a successful trial [29]. Whenever the
fail counter of a food source exceeds a predefined limit value, employed bee of this source is
transformed into a scout bee to find a new food source by making global search via Eq. (3). The
scout bee is re-transformed into an employed bee after it generates a new source by this method.

2.3. The GA

The GA simulates genetic evolution process. Firstly, initial population of the GA is created
randomly by using Eq. (3) at the beginning, and fitness values of the solutions are calculated.
Then, genetic operators are applied to population until the best solution meets the termination
criteria.

Parents are determined in the first step. In our implementations, the number of parent pairs is
equal to half of the population size, and roulette wheel method is used to determine parent pairs
before crossover. Since we used real coded GA in implementations, we used a combination of
extrapolation and crossover methods for crossover operation as follows [30]. Let chromosomes
are

] [
var21 Npppparent  (7)

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 10

where p represents variables and Nvar is the number of variables. The parents are

] [

] [

var

var

212

211

dNddd

mNmmm

ppppparent

ppppparent












 (8)

where α is a randomly produced integer number ranging from 1 to Nvar , subscripts m and d
represent mom and dad parents respectively. The new variables which will appear in offsprings
are

][

][

2

1








dmdnew

dmmnew

pppp

pppp




 (9)

where β is a randomly produced number ranging from 0 to 1. Then, the offsprings with new
variables are generated by replacing pmα and pdα with pnew1 and pnew2 respectively and swapping
the right side of selected variables in parents.

] [

] [

var

var

2 212

1 211

mNnewdd

dNnewmm

ppppoffspring

ppppoffspring








 (10)

Third genetic operator is the mutation. For the mutation operation, we selected a predefined
percentage of variables from offsprings randomly; then, we employed Eq. (3) to change the
selected variables. High mutation rates increase the randomness in search operation and cause
divergence from optimum. On the other hand, too low mutation rates decrease the diversity in
population and give rise to insufficient problem space search. We used 5% mutation rate in our
implementations.

2.4. The DE algorithm

The DE algorithm has very similar operators with GA. These are mutation, recombination and
selection. The main difference of the DE algorithm is that the GA focuses on crossover;
however, the DE algorithm focuses on mutation. DE’s basic calculation is performed by using
differences of randomly sampled solution pairs selected from a population [31]. Firstly, the
algorithm initializes the population by using Eq. (3). It performs search task by using mutation
operation. Mutant solutions are generated for the solutions by using

 GrGrGrGi xxFxv ,,,1, 321
 (11)

where vi,G + 1 is generated mutant solution in next generation for solution i; Grn

x , is a solution in

current generation; r1, r2 and r3 are randomly selected different integer indexes which point
different solutions and none of them is equal to running index i, and F is real amplification
constant.
Then, mutant and parent solutions are mixed in recombination operation to generate trial
solutions. Trial solutions are defined as



 

 
 else,

)()(if,

,

1,
1,

Gji

Gji
Gji x

irnbrjCRjrandbv
u (12)

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 11

where uji,G + 1 is generated trial solution i in dimension j for next generation; vji,G + 1 is generated
mutant solution i in dimension j for next generation; xji,G is current solution i in dimension j;
randb(j) is a random number generated for dimension j ranging from 0 to 1; CR is the crossover
constant and rnbr(i) is randomly chosen dimension index. Finally, among the trial and current
solutions, a greedy selection is performed in the selection operation. Algorithm runs until
termination criteria are met.

2.5. The MBO algorithm

The MBO algorithm is a recently introduced another nature inspired metaheuristic
neighbourhood search method. It simulates V flight formation of migrating birds. With its
induced drag reduction, V shaped flight is an effective formation for birds to save the energy [3].
For instance, each one of the birds can reduce the induced drag up to 65% in a V shaped flight
formation having 25 members. Thus, an increase of 70% for maximum flight distance can be
achieved [32]. The benefit mechanism of this formation can be explained briefly as follows. A
pair of vortices, which is seen in Fig. 1, is created owing to the wing movements. If it is
examined in flight direction, the vortices from the left and right wing tips rotate in clockwise and
counter clockwise directions respectively [3,32]. Vortices create downwash and upwash forces
for the birds just flying behind. Downwash force is undesirable because it increases the induced
drag on bird’s wings. On the other hand, upwash force is beneficial because it decreases the
induced drag on a wing in flight. So, all the birds in V formation except for the leader bird locate
mostly in upwash regions of vortices. Thus, they get benefit of this upwash forces and reduce
their energy consumption. To sum up, the leader bird in that formation spends the most energy
and the other birds get benefit coming from the birds in front [3].

Fig. 1. Regions of upwash and downwash created by trailing vortices [3]

The flow diagram of the MBO algorithm, which simulates this benefit mechanism by sharing the
solutions, is given in Fig. 2. The parameters of the MBO algorithm are the number of solutions
or flock size, which is represented by n; the number of neighbour solutions to be tried for
improvement, which is represented by k; the number of neighbour solutions for sharing with the
next solution, which is represented by x; the number of tours to change the leader, which is
represented by m; and the maximum iteration or tour number, which is represented by K.

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 12

Fig. 2. Flow diagram of the MBO algorithm

The algorithm runs as follows. In the first step, the population is initialized. We used the method
defined in Eq. (3) to initialize positions of the birds which represent possible solutions. After
initialization, one of the solutions is chosen as the leader and all of the solutions are placed on a
hypothetical V formation arbitrarily.

Y

N Have all the birds
been processed?

 Generate k-x neighbours to the bird in turn at left side via Eq. (4),
 Calculate their fitness values by using Eq. (5),
 Combine them with x neighbours shared by the bird in the front and
 Sort them decreasingly according to fitness values
 If fitness of the first neighbour is greater than that of the bird in turn,

assign its position to the corresponding bird and delete it from the list,
 Share first x neighbours with the next bird at left side

Do the same calculations for the bird in turn at right side

 Initialize n bird positions randomly by using Eq. (3),
 Place them on a hypothetical V formation and
 Calculate their fitness values by using Eq. (5)
 LEFT  true

 Generate k neighbours to the leader by using Eq. (4),
 Calculate their fitness values by using Eq. (5) and
 Sort them decreasingly according to fitness values
 If fitness of the first neighbour is greater than that of the leader, assign

its position to the leader and delete it from the list,
 Share first x neighbours having odd index with second bird in left and
 Share first x neighbours having even index with second bird in right

Initialization

Improving the
leader

Improving the
other birds

Changing the
leader if it is
necessary

N Have m tours
been completed?

Y

N

Y

Are termination
criteria OK?

Last bird positions

Checking the
termination
criteria

Y

N LEFT

 Shift leader position to the end of left side and
 Shift all bird positions at left side one step,

which assigns second birds’ position at that
side to the leader

 Shift leader position to the end of
right side and

 Shift all bird positions at right side
one step, which assigns second birds’
position at that side to the leader

LEFT  not (LEFT)

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 13

In the second step, the leader bird is tried to be improved. Hence, k neighbours are generated and
their fitness values are calculated. We used the neighbour creation method given in Eq. (4). If the
best neighbour solution shows an improvement on leader, its position is assigned to the leader
bird and 2x unused best solutions are shared with 2 next birds in second row.

In the third step, other birds are tried to be improved. For each bird in lines, (k-x) neighbours are
generated by using Eq. (4) and their fitness values are calculated. These neighbours are
combined with x unused neighbours coming from the bird in the front. So, total number of
neighbour solutions to be considered for each bird is k like in the leader bird. If the best
neighbour solution shows an improvement on the corresponding bird, the position of that
neighbour solution is assigned to the corresponding bird. Then, x unused best solutions are
shared with the next bird. This neighbourhood sharing mechanism simulates the benefit of
upwash force caused by trailing tip vortex in V flight formation. One iteration ends after
completing improvement trials for all birds. Briefly, algorithm starts from the first solution
which corresponds to the leader bird, and progresses on two lines towards the tails in each
iteration in order to improve each solution by using its neighbour solutions [3].

In the fourth step, the leader bird is thought to be tired after performing a predefined number of
iterations (m). If predefined iteration is reached, the leader solution is shifted to the end of one
side on hypothetical V formation and the second solution at that side is assigned to the leader
position. Steps from step 2 to step 4 continue until predefined termination criteria is satisfied by
generated solutions. Then, the algorithm stops and gives solution with the best fitness value as
overall solution.

Parameter k and x directly affect the algorithm performance and should be chosen appropriately.
Parameter k is inversely proportional with the flight speed of real birds. If it is chosen at small
values, it is assumed that the birds are flying at higher speeds. For the MBO algorithm, higher
speeds enable algorithm to reduce total execution time. This is an advantageous choice for the
problems having small number of parameters. But for high dimensional problems, k may need to
be increased to get a satisfactory solution. Parameter x represents the upwash benefit of trailing
tip vortex in bird flock. Since benefit mechanism of the MBO algorithm is defined as the number
of good neighbour solutions obtained from the predecessor solution, high values of x cause
solutions to be similar to each other. Thus, a premature convergence may happen. Thus, we
choose x = 1 as recommended [3].

2.6. Training feed-forward ANNs by using metaheuristics

An ANN consists of a set of interconnected processing elements which are known as neurons
[33]. Schematic representation of a neuron is given in Fig. 3a. The neurons in the ANN form a
topology like depicted in Fig. 3b which shows the ANN having n inputs, m hidden layer neurons
and k outputs. Each neuron in this topology gets the signals coming from the neurons located in
previous layer. These signals are multiplied by weight values before they reach to the
corresponding neuron. The neuron sums these weighted signals and its bias value. Then, it
applies the summation result to the transfer function and transmits the transfer function output to
the neurons in next layer.

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 14

(a)
(b)

Fig. 3 (a) Neuron of an ANN (b) An ANN with n-m-k topology

The relation between input signals and ith output signal of the ANN is given by









 



n

j
ijijii bxwfy

1

 (13)

where yi is ith neuron’s output value, xj is jth input value, wij is the connection weight between ith
neuron and jth input, bi is neuron’s bias value and fi is the transfer function. Since an ANN is used
to find a possible solution to a nonlinear problem, nonlinear transfer functions such as
logarithmic sigmoid given in Eq. (14) are used. The input signals are normalized in accordance
with the selected transfer function before they are applied to the ANN.

)1(1)(xexf  (14)

An ANN training algorithm aims to minimize the MSE at output during training process. The
lower the MSE is, the higher the output accuracy for training data set is. The MSE of an ANN at
tth iteration is calculated by


 


P

j

K

i
ii yd

P
tMSE

1 1

2)(
1

)((15)

where di and yi are desired and actual outputs respectively, P is the total number of input patterns
existing in training data set and K is the number of nodes at output.
An ANN like in Fig. 3b can be thought as an optimization problem having many parameters.
These parameters consist of connection weights and bias values. In this context, considering an
ANN having only one hidden layer, total number of parameters to be optimized is calculated by

kmkmmnN par  (16)

where Npar is the total number of parameters, n is the number of inputs, m is the total number of
hidden layer neurons and k is the total number of output layer nodes. Similarly, considering an
ANN having two hidden layers, total number of parameters to be optimized is calculated by

kmmkmmmmnN par  212211
 (17)

where m1 and m2 are number of neurons in first and second hidden layers respectively.

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 15

In ANN training, metaheuristic algorithms start optimization process for Npar parameters. Aim of
this optimization is to minimize the MSE at the output of the ANN. Metaheuristics calculate new
connection weights and bias values in each iteration, and the ANN is run with these new
parameters. Then, MSE is calculated for the last run and a decision is made about whether the
parameters are updated or not. If the MSE decreases by using new parameters, the parameters are
updated with last calculated parameters. Otherwise, existing parameters are maintained. A
general flow diagram of the ANN training via metaheuristics is shown in Fig. 4.

Fig. 4. Flow diagram of ANN training strategy by using metaheuristics

3. Experimental study
3.1. Performance evaluation and comparison criteria

Training process searches error space and tries to find the global minimum point of that space.
So, main performance criterion is the MSE reached at the end of training, and it is calculated via
Eq. (15). Since we think the training process as an optimization problem, it is also a measure of
optimization performance.
In this study, classification accuracies for test data sets are calculated via Eqs. (18)-(19) [34] and
these calculated accuracies are used as another performance measure.

  Nnn
N

Accuracy i

N

i
i  



 , assess
1

1

 (18)

 


 


 otherwise0

)(classify If1
 assess

ncn
n (19)

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 16

where N is the set of test items, n is a member of N, nc is actual class value of the item n and
function classify(n) returns the class value calculated by neural network for item n.

3.2. Data sets and experimental setup

20 data sets, which were downloaded from UCI Machine Learning Repository [35] and KEEL
Data Set Repository [36] web sites, were used in this study. Some brief information about these
data sets is available in Table 1. We used attributes of the data sets as inputs and outputs of the
ANNs in implementations.

Table 1. Dataset properties, ANN topologies and corresponding problem dimensions

 Data Set
Attribute

(Input + Output)
Instance

ANN
Topology

Problem
Dimension

Acute Inflammations [35] 6 + 2 120 6 ‐ 10 ‐ 2 92

Blood Transfusion [35] 4 + 1 748 4 ‐ 10 ‐ 1 61

Breast Cancer [35] 9 + 1 683 9 ‐ 25 ‐ 1 276

Fertility [35] 9 + 1 100 9 ‐ 21 ‐ 1 232

Indian Liver Patient [35] 10 + 1 579 10 ‐ 25 ‐ 1 301

Lenses [35] 4 + 1 24 4 ‐ 25 ‐ 3 203

Liver Disorders [35] 6 + 1 345 6 ‐ 25 ‐ 1 201

Pima Indians Diabetes [35] 8 + 1 768 8 ‐ 25 ‐ 1 251

Planning Relax [35] 12 + 1 182 12 ‐ 36 ‐ 1 505

SPECT Heart [35] 22 + 1 267 22 ‐ 30 ‐ 1 721

Thyroid Disease [35] 5 + 1 215 5 ‐ 15 ‐ 20 ‐ 3 473

Vertebral Column [35] 6 + 1 310 6 ‐ 21 ‐ 1 169

Appendicitis [36] 7 + 1 106 7 ‐ 25 ‐ 1 226

Titanic [36] 3 + 1 2201 3 ‐ 15 ‐ 1 76

Phoneme [36] 5 + 1 5404 5 – 20 – 1 141

Iris [36] 4 + 1 150 4 ‐ 25 – 3 203

Mammographic Mass [35] 5 + 1 830 5 – 25 – 1 176

Banknote Authentication [35] 4 + 1 1372 4 – 10 – 1 61

Balance Scale [35] 4 + 1 625 4 – 25 – 3 203

Haberman's Survival [35] 3 + 1 360 3 – 20 – 1 101

Firstly, we partitioned the data sets into two equal parts as training and test sets randomly. Then,
we applied the GA, DE, PSO, ABC and the MBO algorithms for ANN trainings. As mentioned
in previous sections, MSE values of the networks were calculated in each iteration during
trainings, and the metaheuristics tried to minimize those MSE values by changing parameters of
the networks systematically. The population sizes were set to 150 members and the numbers of
iterations were set to 500 cycles in metaheuristic trainings.

Finally, as a conventional method, trainings were also performed by using LM algorithm to
make proper comparisons. In LM training; firstly, we used 500 iterations in LM algorithm like in
metaheuristics. Thinking that the total number of calculations in metaheuristics is equal to

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 17

population size times number of iterations, that is, 150 × 500 = 75000 for our case; secondly, we
performed trainings by using LM algorithm one more time with 75000 iterations to make fair
comparisons. Each training case was repeated 20 times by using the corresponding training data
set and by using the network topology given in Table 1. Network accuracy of each training case
was calculated. Average accuracies and average MSE values of the ANNs are given in Table 2 in
next section.

4. Results

Numerical results of the experiments are given in Table 2. The highest accuracies reached and
the final MSEs for the corresponding network trainings are shown in bold fonts for each data set.
From the numerical results, it is clearly seen that the accuracy values obtained by metaheuristic
trainings are competitive with gradient calculation based conventional training method LM.
Their accuracies are a little bit higher than those of the LM algorithm. In addition, MSE values
of them are extremely good in comparison with the LM algorithm.

Table 2. MSE and accuracy values of the trainings (150 members for metaheuristics, 500
iterations for metaheuristics and LM1, 75000 iterations for LM2)

Data Sets GA DE PSO ABC MBO LM1 LM2

Acute
Inflammations

MSE 1.06E‐
13

1.06E‐
21

1.05E‐
22

6.98E‐
15

1.38E‐
26

2.56E‐
05

3.47E‐
07

Accuracy 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Blood
Transfusion

MSE 0.1386 0.1409 0.1361 0.1414 0.1367 0.1584 0.2297

Accuracy 79.41 79.14 79.41 79.68 79.41 79.41 74.87

Breast Cancer MSE 0.0061 0.0066 0.0058 0.0078 6.09E‐
06

0.0327 0.0571

Accuracy 96.19 96.48 97.07 96.48 97.07 96.19 93.84

Fertility MSE 0.0101 0.0100 0.0400 0.0101 0.0100 0.0847 0.1035

Accuracy 90.00 90.00 90.00 90.00 92.00 92.00 90.00

Indian Liver
Patient

MSE 0.1596 0.2005 0.1201 0.1524 0.0984 0.2772 0.3143

Accuracy 70.93 71.63 72.66 70.93 71.97 71.97 68.17

Lenses MSE 7.47E‐
12

5.82E‐
47

7.03E‐
32

4.71E‐
16

5.28E‐
46

0.3568 0.3687

Accuracy 81.82 81.82 81.82 81.82 81.82 81.82 81.82

Liver
Disorders

MSE 0.1563 0.2075 0.1049 0.1628 0.0982 0.2900 0.3590

Accuracy 71.51 71.51 70.93 68.60 71.51 69.77 62.21

Pima Indians
Diabetes

MSE 0.1710 0.1442 0.1160 0.1434 0.1062 0.2325 0.2818

Accuracy 76.30 77.08 76.56 74.22 76.56 73.96 69.79

Planning
Relax

MSE 0.1758 0.2044 0.1322 0.1403 0.0790 0.3066 0.3405

Accuracy 72.53 72.53 72.53 74.73 72.53 69.23 62.64

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 18

SPECT Heart MSE 0.0590 0.0434 0.1068 0.0659 0.0396 0.1227 0.1646

Accuracy 84.21 84.21 84.21 84.96 85.71 84.21 79.70

Thyroid
Disease

MSE 0.0242 3.70E‐
07

2.49E‐
09

0.0284 0.0034 0.0381 0.0403

Accuracy 96.26 97.20 97.20 96.26 97.20 97.20 97.20

Vertebral
Column

MSE 0.0626 0.0849 0.0463 0.0569 0.0341 0.1780 0.2501

Accuracy 83.23 83.23 82.58 83.23 83.23 81.29 73.55

Appendicitis MSE 0.0103 0.0368 0.0185 0.0191 1.90E‐
04

0.1307 0.1344

Accuracy 84.62 86.54 90.38 90.38 90.38 86.54 86.54

Titanic MSE 0.1570 0.1584 0.1567 0.1569 0.1567 0.1530 0.1531

Accuracy 79.64 79.64 79.64 79.64 79.64 79.64 79.64

Phoneme MSE 0.1295 0.1509 0.1131 0.1333 0.1117 0.1193 0.1598

Accuracy 81.64 80.76 83.64 81.35 84.04 83.64 83.68

Iris MSE 0.0044 7.71E‐
05

2.58E‐
05

0.0060 1.05E‐
06

0.0466 0.0497

Accuracy 97.33 97.33 97.33 96.00 97.33 97.33 97.33

Mammographic
Mass

MSE 0.1383 0.1485 0.1159 0.1285 0.1100 0.4987 0.3231

Accuracy 80.72 80.00 80.00 78.31 80.72 49.64 66.99

Banknote
Authentication

MSE 3.16E‐
04

2.50E‐
04

3.17E‐
06

0.0013 1.18E‐
06

2.41E‐
04

4.64E‐
05

Accuracy 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Balance Scale MSE 0.1380 0.0782 0.0812 0.1180 0.0690 0.1511 0.1874

Accuracy 86.86 87.50 88.46 87.82 89.74 87.82 88.14

Haberman's
Survival

MSE 0.1434 0.1501 0.1290 0.1378 0.1228 0.2764 0.2928

Accuracy 74.03 74.68 74.03 74.68 74.68 70.78 70.78

Especially, the MBO algorithm drawn the best performance figure among the algorithms in this
study by giving the best MSE results. Owing to its unique benefit mechanism, MBO algorithm
can achieve a good convergence to the global minimum. Normally, metaheuristics given in this
paper except for the MBO algorithm generate new neighbourhoods to their existing population
members in each iteration. Then, they make greedy selections between generated and existing
solutions in order to improve their fitness values. The improvement chances of the solutions
completely depend on the neighbourhoods which are generated by using systematic search
techniques of the corresponding algorithms. If the neighbourhood having the best fitness can
show an improvement on the corresponding solution, the algorithm can be said to be successful
in improvement. On the other hand, the MBO algorithm generates new neighbourhoods to its
existing population members like in the others. But, it gets the solutions shared by the
predecessors for the corresponding members. Therefore, improvement chances of the solutions

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 19

partially depend on the neighbourhoods which are generated by using systematic search
technique of the MBO algorithm. In short, even if it could not achieve to improve the fitness
values of the solutions via the generated neighbourhoods, it has additional chances to improve
them via the shared solutions. That is, it has an additional chance for each improvement trial.
Having both neighbourhood creation and neighbourhood sharing in one application is the
novelty of MBO algorithm and this unique benefit mechanism makes it competitive.
Fig. 5 shows MSE progresses of the algorithms during trainings. It is seen that the MBO
algorithm converges to the global minimum faster than the others in most of the experiments,
and it avoids from going into saturation by using its benefit mechanism. Its saturation values are
extremely lower than that of the others in general. It reached to the lowest MSE values except for
four data sets in implementations. However, the network accuracies for these data sets are also
good enough.

0 100 200 300 400 500
10

-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

Iteration

M
S

E

Acute Inflammations

PSO
ABC

GA

DE

LM
MBO

0 100 200 300 400 500
0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

Iteration

M
S

E

Blood Transfusion

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Iteration

M
S

E

Breast Cancer

PSO
ABC

GA

DE

LM
MBO

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration

M
S

E

Fertility

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500

0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration

M
S

E

Indian Liver Patient

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500

10
-40

10
-30

10
-20

10
-10

10
0

Iteration

M
S

E

Lenses

PSO
ABC

GA

DE

LM
MBO

0 100 200 300 400 500

0.1

0.15

0.2

0.25

0.3

0.35

Iteration

M
S

E

Liver Disorders

PSO

ABC

GA

DE

LM

MBO

0 100 200 300 400 500

0.1

0.15

0.2

0.25

0.3

Iteration

M
S

E

Pima Indians Diabetes

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500

0.1

0.15

0.2

0.25

0.3

Iteration

M
S

E

Planning Relax

PSO

ABC

GA

DE

LM

MBO

0 100 200 300 400 500
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iteration

M
S

E

SPECT Heart

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Iteration

M
S

E

Thyroid Disease

PSO
ABC

GA

DE

LM
MBO

0 100 200 300 400 500

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iteration

M
S

E

Vertebral Column

PSO

ABC

GA
DE

LM

MBO

Fig. 5 MSE Progresses of the
algorithms during trainings

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 20

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration

M
S

E
Appendicitis

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500

0.15

0.16

0.17

0.18

0.19

0.2

Iteration

M
S

E

Titanic

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500
0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Iteration

M
S

E

Phoneme

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Iteration

M
S

E

Iris

PSO
ABC

GA

DE

LM
MBO

0 100 200 300 400 500

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

M
S

E

Mammographic Mass

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Iteration

M
S

E

Banknote Authentication

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration

M
S

E

Balance Scale

PSO

ABC

GA
DE

LM

MBO

0 100 200 300 400 500

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Iteration

M
S

E

Haberman's Survival

PSO

ABC

GA
DE

LM

MBO

Fig. 5 (Continue) MSE Progresses of the algorithms during trainings

As to the other algorithms, their performances are changing experiment to experiment. Since
performance of the PSO algorithm highly depends on initial population quality, it may fall into
local minimums of the error space and may not give better solutions for high dimensional
problems. Its exploitation (local search) capability is good, but its exploration (global search)
capability needs to be improved. The GA is seen to be poor to converge to the global minimum.
Its exploration is good, but its exploitation needs to be improved. The ABC algorithm generally
succeeds to escape from local minimums of the search space. However, it may not achieve to
converge to the global minimum as desired. Its exploration capability is good, but its exploitation
capability needs to be improved. The DE algorithm generally performs good optimization and
training, but its performance is not better than that of the MBO algorithm. The experiments were
performed twice for the LM algorithm. The same number of iterations with the metaheuristics
was used in the first experiment. The same number of total calculations with the metaheuristics
was performed in the second experiment as mentioned in Section 3.2. It is seen that the increased
number of iterations in the second experiment does not make the results better.

Looking at the bold written values in Table 2, the MBO algorithm performed the highest
accuracies for 80% of the data sets; it performed the lowest MSE values for 80% of the data sets,
and it performed both lowest MSE and highest accuracy values for 65% of the data sets. Fig. 6
shows these success rate distributions of the algorithms on data sets.

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 21

Fig. 6 Success rates of the algorithms on 20 data sets

To sum up, the results can be concluded that the metaheuristic algorithms mentioned in this
paper are superior to the conventional LM training algorithm in point of ANN training. It is also
seen that the MBO algorithm with its competitive optimization performance outperforms the
others in points of the accuracy and MSE.

5. Conclusions

Because the MBO algorithm is recently introduced metaheuristic algorithm, its performance on
engineering and computational applications may not been tested satisfactorily. In this study, the
GA, DE, MBO, PSO and the ABC algorithms were used to train ANN implementations. The
main objective is to test the ANN training performances of these metaheuristics and to compare
success of the MBO algorithm with that of the others.

In experimental results, ANN training performances of the algorithms were compared by using
20 different data sets. According to the good results obtained in experiments, it can be said that
swarm intelligence can be used in ANN training process successfully. Considering the MSE
values in trainings and the accuracy values in tests, the MBO algorithm has the best success rates
in ANN trainings among the algorithms examined in this paper. It gets this good and promising
performance by using its unique benefit mechanism. Simulating the upwash benefits in real
migrating birds, the MBO algorithm has more chance to improve its members and performs a
good optimization.

References

[1] Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics.

Information Sciences. 237: 82–117.

[2] Pappa G L, Ochoa G, Hyde M R, Freitas A A, Woodward J, Swan J (2014) Contrasting
meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genetic
Programming and Evolvable Machines. 15: 3-35.

[3] Duman E, Uysal M, Alkaya A F (2012) Migrating Birds Optimization: A new
metaheuristic approach and its performance on quadratic assignment problem. Information
Sciences. 217: 65–77.

[4] Ahuja R K, Ergun O, Orlin J B, Punnen A P (2002) A survey of very large scale
neighborhood search techniques. Discrete Applied Mathematics. 123: 75–102.

[5] Holland JH (1975) Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor.

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 22

[6] Kirkpatrick S¸ Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing.
Science 220(4598): 671–680.

[7] Glover F (1986) Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research 13 (5): 533–549.

[8] Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico
di Milano.

[9] Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In:
Proceedings of the sixth international symposium on micromachine and human science,
Nagoya, Japan, pp. 39–43.

[10] Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11: 341–359.

[11] Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm:
harmony search. Simulation 76: 60–68.

[12] Mucherino A, Seref O (2007) A novel meta-heuristic approach for global optimization. In:
Proceedings of the conference on data mining, system analysis and optimization in
biomedicine, Gainesville, Florida, pp. 162–173.

[13] Karaboğa D (2005) An idea based on honey bee swarm for numerical optimization.
Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering
Department.

[14] Yang XS (2008) Firefly algorithm. In: Nature-Inspired Metaheuristic Algorithms, pp. 79–
90. Luniver Press, Frome, UK.

[15] Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-
based optimization algorithm. International Journal of Bio-inspired Computation (IJBIC)
1: 71–79.

[16] Yang XS and Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of World
Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, pp.
210-214.

[17] Yang XS and Deb S (2010) Engineering optimisation by cuckoo search. Int. J. Math.
Modelling & Num. Optimisation 1: 330-343.

[18] Yang XS (2010) A New Metaheuristic Bat-Inspired Algorithm. In: JR Gonzalez et al.
(Eds.). Inspired Cooperative Strategies for Optimization (NICSO 2010), Vol 284, pp. 65-
74.

[19] Nature Yang XS (2011) Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired
Computation 3(5): 267-274.

[20] Blum C, Roli A (2003) Metaheuristics in combinatorial optimisation: Overview and
conceptural comparision. ACM Comput. Surv. 35: 268-308.

[21] Rumelhart D E, Hinton G E, Williams R J (1986) Learning representations by back-
propagating errors. Nature. 323: 533–536.

 Hasan Makas / Elec Lett Sci Eng 11(1) (2015) 6-23

 23

[22] Werbos P J (1988) Back-propagation: Past and future. In: Proceedings of International
Conference on Neural Networks, San Diego, CA, pp. 343–354.

[23] Levenberg K (1944) A method for the solution of certain problems in least squares.
Quarterly of Applied Mathematics. 5: 164–168.

[24] Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters.
SIAM Journal on Applied Mathematics. 11(2): 431–441.

[25] Moller M F (1993) A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.
Neural Networks. 6: 525-533.

[26] Engelbrecht A P (2006) Fundamentals of computational swarm intelligence. Wiley.

[27] Shi Y, Eberhart RC (1999) Empirical Study of Particle Swarm Optimization. In:
Proceedings of CEC’99 congress of evolutionary computation, pp. 1945-1950.

[28] Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm.
Applied Mathematics and Computation 214: 108–132.

[29] Akay B (2009) Performance analysis of artificial bee colony algorithm on numerical
optimization problems. Ph.D. Thesis, Erciyes University, Turkey.

[30] Haupt R L, Haupt S E (2004) Practical Genetic Algorithms. Second ed., Wiley, New York,
USA.

[31] Karaboğa D, Ökdem S (2004) A Simple and Global Optimization Algorithm for
Engineering Problems: Differential Evolution Algorithm. Turkish Journal of Electrical
Engineering. 12: 53 - 60.

[32] Lissaman P B S, Schollenberger C A (1970) Formation Flight of Bird. Science. 168: 1003-
1005.

[33] Yao X (1999) Evolving artificial neural networks. In Proceeedings of the IEEE, 87 (9):
1423–1447.

[34] Temurtas F (2009) A comparative study on thyroid disease diagnosis using neural
networks. Expert Systems with Applications 36: 944–949.

[35] UCI, Machine Learning Repository web site, Available:
http://archive.ics.uci.edu/ml/index.html. Accessed 10 Jun 2013.

[36] KEEL, Data Set Repository web site, Available:
http://sci2s.ugr.es/keel/category.php?cat=clas#sub2. Accessed 04 Mar 201

