BASİT BİR KORELASYON TAHMİNLEYİCİSİ VE BUNUN FRAKTAL GÖRÜNTÜ SIKIŞTIRMADA KULLANIMI

Cengiz GÜNGÖR*

Aydın ÖZTÜRK*

ÖZET

Doğayla ilgili görüntülerin sıkıştırılmasında diğer yöntemlere göre çok daha etkin olan fraktal görüntü sıkıştırma yöntemi, görüntü içinde kendine benzeyen parçaların bulunması esasına dayanır. Sıkıştırma oranının yüksek tutulduğu durumlarda, fraktal görüntü sıkıştırma yöntemi ile elde edilen görüntülerin kalitesi genellikle diğer yöntemlerden daha iyi olmaktadır. Ancak, benzer parçaların oldukça fazla karşılaştırma hesabi yapılmasını aranması gerektirmektedir. Hesaplama maliyetini düşürmek amacıyla, görüntü üzerinde ele alınan parçaların ve bunlarla eşleştirilmesi öngörülen parçaların sınıflandırılarak, benzerliklerin bu sınıflar içinde aranması en fazla tercih edilen yöntemdir. Bu çalışmada, önerilen sınıflandırma yöntemi ile benzer parçaların basit bir şekilde bulunabileceği gösterilmiştir.

Anahtar Kelimeler: Korelasyon katsayısı, Fraktal görüntü sıkıştırma, Benzerlik ölçüleri

1 GİRİŞ

X ve Y gibi iki değişken arasındaki ilişkinin derecesinin belirlenmesinde aşağıda tanımlanan metrik

 $\rho = \frac{\operatorname{Cov}(X,Y)}{\left\{\operatorname{Var}(X)\operatorname{Var}(Y)\right\}^{\frac{1}{2}}}$ (1)

yaygın olarak kullanılmaktadır. Söz konusu değişkenler arasındaki kovaryansın, bunların standart sapmalarına göre standardize edilmesine dayanan ve korelasyon katsayısı olarak bilinen bu ölçü, istatistik literatüründe önemli bir yer tutmuştur.

X ve Y şans değişkenlerinin geldikleri dağılışın ve bunlardan çekilen örneklerin özelliklerini dikkate alarak, bu değişkenler arasındaki korelasyonu tahmin etmek amacıyla bir çok istatistik geliştirilmiştir. Eldeki problemin özelliğine bağlı olarak, bu istatistiklerinden biri diğerlerine göre daha uygun olabilmekte, birçok durumda ise mevcut şartlar hangi istatistiğin kullanılmasının gerektiğini dikte ettirmektedir.

^(*) Ege Üniversitesi, Uluslararası Bilgisayar Enstitüsü, Bornova/İzmir (haberleşme adresi)

Şans örneğine dayanarak değişkenler arasındaki doğrusal ilişkiyi tahmin etmek amacıyla kullanılan Pearson'un korelasyon istatistiği

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\left\{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2\right\}^{\frac{1}{2}}}$$
(2)

şeklindedir. Yukarıdaki eşitlikten de anlaşılacağı gibi, eldeki örnek ve işlenmesi gereken veri hacmi çok büyük olmadığı durumlarda ilgili korelasyon katsayıları kolayca hesaplanabilir. Ancak bazı durumlarda, veri hacmi çok büyük olmakta, özellikle gerçek zamanlı uygulamalarda hesaplama maliyeti çok yüksek olmakta, bu yüzden sonuçların öngörülen zaman aralığında elde edilmesi mümkün olamamaktadır.

(2) deki korelasyon katsayısına ilişkin hesaplama sorunu ile daha önce üzerinde çalıştığımız fraktal görüntü sıkıştırma işlemlerinde ortaya çıkmış ve bu sorunu gidermek amacıyla hesaplama maliyeti daha düşük olan bir korelasyon ölçüsü arayışına girilmiştir. Bilindiği gibi, fraktal görüntü sıkıştırma işlemlerinde, verilen bir görüntü birbiriyle çakışmayan küçük parçalara bölünmekte, bu parçaların benzerleri, bir takım dönüşümlerden sonra yine aynı görüntü üzerinde aranmaktadır (Jacquin, 1990; Fisher, 1995). Genellikle $m \times m$ (m=2, 4, 8, 32, 64) boyutlarındaki kare blokların kullanıldığı bu işlemler sonunda görüntüyü oluşturan birbirleriyle çakışmayan "referans bloklarla" (*range bloklar*), bunların benzerlerini aramak için oluşturulan havuzdaki "test bloklar" (*domain bloklar*), piksel değerleri bazında çok büyük hacimli verileri oluştururlar. Örneğin, 512x512 bir görüntüde, işlenmesi gereken blok sayısı yaklaşık 3.200 iken, her blok için yapılması gereken işlem sayısı da yaklaşık 160.000 kadardır. Benzerlik arama işlemlerinde (2)'deki korelasyon katsayısı esas alındığında hesaplama maliyetinin kabul edilebilir sınırların dışına çıkacağı açıkça görülmektedir.

sıkıştırma işlemlerinde birbirine Fraktal görüntü benzeyen blokların bulunmasında izlenen en temel yaklaşım test blokların sınıflandırılması esasına dayanır. Eğer test bloklar belirli bir kritere göre sınıflandırılabilirse o zaman verilen bir referans bloğunun benzeri sadece bu sınıf içinde aranabilir. Bu taktirde problem, eldeki referans bloğunun piksel değerleri ile seçilen sınıf içindeki tüm test bloklarının her birindeki piksel katsayılarının değerleri arasındaki korelasyon hesaplanip bunların maksimumunun bulunmasına indirgenmis olur. Bu bağlamda, 2×2 boyutlarına indirgenmiş kanonik formlar olarak bilinen ve blokların piksel dizilişlerine dayanan cesitli sınıflandırma semaları gelistirilmistir (Boss ve Jacobs, 1991; Jacobs, Boss ve Fisher, 1992; Fisher 1995). Başka bir uygulamada, genetik algoritmalar ile optimize edilen fuzzy sınıflandırıcı kullanılmıştır (Loe, Gu ve Phua, 1997). Kominek (1995), çok boyutlu veri uzayını indekslemek için r-tree üzerine kurulu bir sınıflandırma şeması geliştirmiş, Saupe (1995), aynı amaçla kd-tree kullanmıştır.

Bu çalışmada hesaplanması kolay bir istatistik ileri sürülmüş ve bunun bazı özellikleri üzerinde durulmuştur. Söz konusu istatistiğe dayanan bir sınıflandırma yöntemi geliştirilmiş ve bunun fraktal görüntü sıkıştırmasında uygulaması gösterilmiştir.

2 YENİ BİR KORELASYON İSTATİSTİĞİ

 $(X_1, Y_1), (X_2, Y_2) \dots (X_n, Y_n)$, herhangi bir iki-değişkenli (*bivariate*) dağılımdan çekilen bir şans örneği olsun. Bu örnekteki *i*'nci şans değişkeni çifti için (*i*=1, 2, ...,*n*), bir şans değişkeni aşağıdaki gibi tanımlanabilir

$$I_{i} = \begin{cases} 1 & (X_{i} - \overline{X})(Y_{i} - \overline{Y}) \ge 0 \text{ veya } (X_{i} - \overline{X}) = (Y_{i} - \overline{Y}) = 0 \\ 0 & \text{aksi taktirde} \end{cases}$$
(3)

Burada, $\overline{X} = \sum_{i=1}^{n} X_i / n$ ve $\overline{Y} = \sum_{i=1}^{n} Y_i / n$ dir. Bu çalışmada,

$$Q_n = \frac{1}{n} \sum_{i=1}^n I_i \tag{4}$$

şeklindeki istatistik, korelasyonun bir ölçüsü olarak tanımlanmıştır. Buna göre, $\{(X_i, Y_i), (i=1,2 \dots n)\}$ şans örneğinde, bir değişken çiftine ilişkin değerlerin ortalamadan ayrılışlarının işaretleri aynı yada ikisinin de değeri sıfır ise, Q_n 'in hesaplanmasında +1; işaretler farklı ise 0 olarak işlem görmektedir. Böylece, örnekte her iki değişkene ilişkin ortalamadan ayrılışlar hep artan bir seyir izliyorsa $Q_n=1$, biri hep artarken diğeri hep azalıyorsa $Q_n=0$ olacaktır. Diğer taraftan, ortalamadan ayrılışlar birbirinden bağımsız seyrediyorsa bu durumda da Q_n 'in 0,5'e yakın bir değer alması beklenir. Sonuç olarak $0 \le Q_n \le 1$ dir. Bu özelliği bakımından Q_n, r ile örtüşmektedir.

Eğer X ve Y gibi iki değişken arasındaki ilişki tespit edilmek istenirse, en çok kullanılan istatistik r istatistiğidir. Fakat uygulamanın anlatıldığı bölümde de açıklanacağı gibi, iki görüntü bloğunun benzerliği test edilirken bloklar büyüdükçe işlemin karmaşıklığı da artmaktadır. En iyi sonuçların alınabilmesi için tüm referans blokları, mevcut tüm test bloklarla, olası tüm simetriler de hesaba katılarak test edilmelidir. m adet referans ve n adet test bloğu olması durumunda; $8 \times m \times n$ adet test gereklidir. Örneğin; 512×512 ebatlarına sahip bir görüntüde test sayısı 514 milyon civarındadır.

 Q_n istatistiği, fraktal görüntü sıkıştırma tekniğinde, en iyi benzerliğin önceden tahmin edilerek, asıl yapılması gereken test sayısını düşürmek için kullanılabilir. Benzer özellikte formlara sahip test blokları benzer listeler altında toplanarak, ilgisiz test bloklarla uğraşılmadan, istenilen hedefe kolayca ulaşılacaktır.

2.1 Q_n İstatistiğinin Özellikleri

(3) ve (4) deki tanımlardan da anlaşıldığı gibi, Q_n istatistiği yer ve ölçek (*location* ve *scale*) değişimlerinden bağımsızdır. Bir başka ifadeyle, değişkenler için

yapılacak doğrusal dönüşümler Q_n istatistiğini etkilemez. Diğer taraftan, Q_n kesikli bir dağılım gösterir. Büyüklüğü *n* olan bir örnekte nQ_n ifadesi sadece {*n*, (*n*-1), … 2, 1, 0} değerlerinden birini alacağından, söz konusu istatistiğin tanımlandığı kümenin eleman sayısı da n+1 olacaktır. Q_n 'in dağılımı örnek büyüklüğüne (*n*) ve örneğin çekildiği iki değişkenli ana dağılışa bağlıdır. Eğer şans örneği iki değişkenli normal dağılımdan geliyorsa o zaman Q_n , dağılışın parametresi olan ρ 'nun bir tahminleyicisi olarak kullanılabilir. Ayrıca, ana dağılıma ilişkin marjinal dağılımların her ikisi de simetrik iseler

$$\lim_{n \to \infty} \{P(X_i \le \overline{X})\} = \lim_{n \to \infty} \{P(Y_i \le \overline{Y})\} \to 1/2$$
(5)

olduğundan Q_n 'in asimptotik dağılımı ana dağılımdan bağımsızdır. Bununla beraber, Q_n 'in dağılımı, değişkenler arasındaki korelasyona bağımlıdır.

(3)'deki ifadede aritmetik ortalamalar yerine medyan kullanıldığı taktirde, $\rho=0$ olduğuna ilişkin sıfır hipotezi altında Q_n , ortalaması 0 varyansı $\sigma^2(n)$ olan normal dağılım gösterir.

 Q_n 'in küçük örneklerdeki dağılımını incelemek için Monté Carlo denemeleri yapılmıştır. Bu amaçla, Üniform, Normal ve Üstlü dağılımlardan, ortalaması μ , varyansı 1 olan ve aralarında korelasyon bulunmayan (U_i , V_i), i=1,2 ...n şeklindeki değişken çiftleri türetilmiştir. Aralarında korelasyon katsayısı ρ olacak biçimde iki değişkenli dağılım gösteren değişken çiftleri aşağıdaki gibi elde edilmiştir:

$$X_{i} = U_{i}$$

$$Y_{i} = \rho U_{i} + (1 - \rho^{2})^{1/2} V_{i}.$$
(6)

Burada $\operatorname{Var}(X_i) = \operatorname{Var}(Y_i) = 1$, $\operatorname{Cov}(X_i, Y_i) = \rho$ dur.

 Q_n ile r arasındaki ilişkiyi incelemek üzere Uniform(0, 3.464), Normal(0,1) ve bir parametreli Üstlü(1) dağılışlardan (6)'daki gibi n=16 büyüklüğünde örnekler türetilmiştir. $\rho = -1,0$ (0,1) 1,0 değerlerinin her biri için 100.000 örnek türetilmiş ve bunlarla ilgili Q_n ve r istatistiklerinin ortalamaları hesaplanmıştır. Q_n ile r arasındaki ilişki Şekil 1'de gösterilmiştir.

 Q_n 'in örnek dağılımı hakkında fikir edinmek amacıyla çeşitli örnek büyüklükleri seçilerek her bir dağılış için bu istatistiğin ortalama, varyans, çarpıklık (*skewness*) ve basıklık (*kurtosis*) katsayıları hesaplanmıştır. n=15, 25, 50, 100, 500, 1000 büyüklüğündeki örnekler için denemeler $10^6/n$ defa tekrarlanmış ve elde edilen istatistiklerin ortalamaları hesaplanmış ve sonuçlar Tablo 1, 2 ve 3 de verilmiştir. Bu tablolarda ayrıca Q_n ile r arasındaki korelasyon katsayıları verilmiştir. İki korelasyon ölçüsü arasındaki korelasyon katsayılarının, dağılımların üçünde de n ve ρ ile ters orantılı olarak değiştiği görülmektedir.

Tablo 1, 2 ve 3 deki ampirik sonuçlardan da görüldüğü gibi, $\rho=0$ hipotezi altında Normal ve Üniform gibi simetrik dağılımlar için Q_n 'in dağılımı, ortalaması 0,5 olan normal dağılıma yaklaşmaktadır. Benzer özelliğin çok çarpık yapıdaki üstlü dağılımda da gözlenmesi ilginç bir sonuç olarak değerlendirilmiştir. Ampirik sonuçlar, örnek büyüklüğü n ve korelasyon katsayısının ρ 'nun Q_n 'in dağılımı üzerindeki etkileri konusunda genel olarak bir fikir vermektedir. Hemen hemen bütün durumlarda basıklık katsayısı 3'e yakın çıkmış, buna karşılık çarpıklık katsayısı n ve ρ 'ya bağlı olarak bir miktar varyasyon göstermiştir.

Şekil 1. n=16 ve $\rho = -1,0$ (0,1) 1,0 için türetilen örneklerden hesaplanan Q_n ile r istatistiklerine ilişkin ortalama değerler (Her nokta 100.000 örneğe dayanmaktadır).

			ρ=0		
Ν	Ortalama	Varyans	Çarpıklık	Basıklık	Korelasyon
15	-0,002	0,069	0,011	2,868	0,753
25	0,000	0,041	0,001	2,916	0,751
50	0,001	0,020	0,004	2,964	0,749
100	0,001	0,013	-0,013	2,982	0,746
500	0,000	0,002	-0,005	2,997	0,750
1000	0,000	0,001	0,005	3,003	0,750
			ρ=0,8		
N	Ortalama	Varyans	Çarpıklık	Basıklık	Korelasyon
15	0,617	0,042	-0,410	3,034	0,526
25	0,617	0,025	-0,342	3,093	0,523
50	0,622	0,012	-0,219	3,012	0,516
100	0,623	0,006	-0,147	3,034	0,503
500	0,625	0,001	-0,049	2,977	0,497
1000	0,624	0,001	-0,024	2,946	0,505

Tablo 1. Q_n'e ilişkin örnek momentleri (Uniform (0, 3,464) Dağılım)

Tablo 2, Q_n'e ilişkin örnek momentleri (Normal(0,1) Dağılım)

ρ=0								
n	Ortalama	Varyans	Çarpıklık	Basıklık	Korelasyon			
15	0,000	0,068	0,010	2,870	0,676			
25	0,000	0,041	0,009	2,941	0,662			
50	0,000	0,020	0,005	2,983	0,654			
100	0,000	0,010	0,008	2,961	0,648			
500	0,000	0,002	0,000	2,997	0,643			
1000	0,000	0,001	-0,003	2,998	0,643			

		3	p=0,8		ρ=0,8								
n	Ortalama	Varyans	Çarpıklık	Basıklık	Korelasyon								
15	0,593	0,044	-0,389	3,052	0,525								
25	0,591	0,026	-0,300	3,005	0,506								
50	0,590	0,013	-0,254	3,079	0,492								
100	0,590	0,007	-0,174	3,031	0,479								
500	0,591	0,001	-0,021	2,981	0,488								
1000	0,591	0,001	-0,077	3,012	0,471								

98

			ρ=0		
n	Ortalama	Varyans	Çarpıklık	Basıklık	Korelasyon
15	0,020	0,068	0,034	2,787	0,734
25	0,025	0,039	-0,004	2,932	0,723
50	0,021	0,020	0,020	2,907	0,719
100	0,021	0,010	0,024	2,999	0,708
500	0,022	0,002	-0,022	3,048	0,709
1000	0,022	0,001	-0,023	3,037	0,710
			ρ=0,8		
n	Ortalama	Varyans	Çarpıklık	Basıklık	Korelasyon
15	0,604	0,044	-0,403	2,975	0,585
25	0,601	0,027	-0,353	3,140	0,585
50	0,605	0,013	-0,277	3,054	0,588
100	0,601	0,007	-0,191	3,024	0,592
500	0,602	0,001	-0,047	3,005	0,592
1000	0,603	0,001	-0,061	2,981	0,594

Tablo 3. O.,'	e iliskin örnek	momentleri (I	Jstlü(1)	Dağılım)
---------------	-----------------	---------------	----------	----------

3 UYGULAMA

Doğal şekillerin noktalar, çizgiler ve düzlemler yardımıyla görüntülenmesi oldukça zor bir iştir. Oysa ilk defa 1980'li yılarda Mandelbrot'un geliştirdiği fraktal geometri teknikleri ile dağ, bulut, bitki örtüsü gibi doğal şekillerin kolayca oluşturulması mümkün olmuştur. Fraktal geometri, temelde bir başlangıç resmine belli bir dönüşümün tekrar tekrar uygulanarak sonuçta sabitleşen bir resminin elde edilmesine dayanmaktadır. Bir başka ifadeyle doğal şekiller bir takım dönüşümleri temsil eden matrislerle oluşturulabilmektedir. Bu tür dönüşümler yardımıyla söz konusu objeler oluşturup birleştirilerek bir doğa manzarası elde edilebilmektedir (Barnsley, 1992).

Fraktal geometri uygulamalarından elde edilen olumlu sonuçlardan sonra akla gelen ilk soru işlemin tersine işleyip işlemeyeceği olmuştur. Bu noktadan hareket eden matematikçiler, bir resmin içinden alınacak parçalarla o resmin bir benzerini bir takım dönüşümlerden sonra elde etmenin mümkün olabileceğini göstermişlerdir. Bu konudaki ilk çalışma Barnsley (1988) tarafından yapılmıştır. Jacquin (1992) eldeki resmi parçalara ayırıp her parça için ayrı bir dönüşüm bulup bunları birleştirerek orijinal resmin benzerini elde eden bir algoritma geliştirmiştir. Bu yöntemin en önemli uygulaması görüntü sıkıştırma konusunda olmuştur.

3.1 Fraktal Görüntü Sıkıştırma

Fraktal görüntü sıkıştırma tekniği, görüntü üzerinde oluşturulan referans blokları ile, yine aynı görüntü üzerinde referans bloklardan daha büyük olacak şekilde seçilen test bloklarının eşleştirilmesi esasına dayanır. Referans blokları birbirleriyle çakışmayacak şekilde düzenlendikleri halde test blokları için bu kural geçerli değildir. Referans ve test bloklara birkaç örnek Şekil 2'de gösterilmiştir.

Şekil 2. Lena görüntüsü üzerinde referans ve test blokların eşleştirilmesi

Genel olarak test blokların büyüklüğü referans blokların iki misli olarak seçilir. Ancak birbirine bitişik kare şeklindeki alanda 4 hücrenin ortalaması alınarak elde edilen küçültülmüş boyutlardaki bloklar referans blokları ile eşleştirilir. Bu bloklarda yer alan piksel değerleri arasında basit doğrusal ilişkinin olduğu varsayılırsa bunlar için

$$r_i = \alpha + \beta D_i + e_i \quad i = 1, 2, ..., n \tag{7}$$

şeklinde basit *regresyon* modeli yazılabilir. Burada r_i ve D_i sırasıyla referans ve test bloklara ilişkin piksel değerlerini, α ve β sırasıyla parlaklık ve kontrastla ilgili parametreleri e_i ise hata terimini göstermektedir. Bu modelin parametreleri en küçük kareler yöntemine göre tahmin edildikten sonra RMS(*Root Mean Square*) değeri aşağıdaki gibi hesaplanabilir:

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(r_i - \hat{\alpha} - \hat{\beta}D_i\right)^2} \tag{8}$$

Burada $\hat{\alpha}$ ve $\hat{\beta}$ parametre tahminleridir. Buna göre eldeki bir referans blok, havuzdaki tüm test bloklarla eşleştirilerek bu çiftler için RMS değerleri hesaplanır. RMS değeri en küçük olan durumdaki test blok eldeki referans bloğa en çok benzeyen blok olarak

seçilir. Bu seçimde pozitif korelasyon esas alındığından, minimum RMS değerini veren eşleştirmeler yapılırken bu durumun dikkate alınması gerekir.

Resim üzerindeki bloklar her zaman birbirlerine tam olarak benzemezler. Aralarında kontrast ve parlaklık farkı ile piksel dizilişlerinde farklılıklar olabilir. Piksellerin diziliş farkı 8 simetri işlemi ile ifade edilebilir. Bunlar; bloklar resimden alındıkları hali ile benzeyebilirler veya 90°, 180° ve 270° çevrilmiş halleri ile benzeyebilirler, diğer dört diziliş ise ilk dört işlemin *x*-eksenine göre simetrik halleridir. Bloklar arasındaki kontrast ve parlaklık farkı ile 8 simetri işleminden hangisinin uygulanacağı kolayca bulunabilmektedir (Fisher, 1995).

256 gri seviyeli iki resim arasındaki kalite farkı ise aralarındaki RMS ölçümünün bir fonksiyonu olan PSNR (*Peak Signal to Noise Ratio*) ile ifade edilir :

$$PSNR = 20\log_2\left(\frac{255}{RMS}\right) \tag{9}$$

3.2 Resmin Oluşturulması (Decoding)

Tüm referans bloklarının kodlanmış halleri resmin tamamını ifade eden bir dosya içerisine yazılırlar. Dosyadan geri açma aşamasında Şekil 3'de gösterildiği gibi siyah bir resimden başlanarak tüm dönüşümler tekrar tekrar uygulanarak sonuç resme ulaşılır. Belli bir tekrardan sonra işleme devam edilse dahi sonucun değişmediği gözlenir. Resmin oluşturulmasında çok fazla işlem karmaşası olmadığından sonuca birkaç tekrarla hızlı bir şekilde ulaşılır (Şekil 3).

Resmi kodlarken sabit boyutlu referans bloğu kullanmak sabit sıkıştırma oranı döndürmektedir. Bunun yerine, referans blokların boyutlarını 2ⁿ olacak şekilde birkaç farklı boyutta seçip, büyük boyutlu referans bloklardan başlayarak eşleştirme yapmak daha etkin bir yaklaşım olarak benimsenmiştir. Eldeki referans bloğa uygun bir eş bulunamaması durumunda blok dörde bölünüp, küçük parçaların benzerlerinin aranması yoluna gidilir. Bu yaklaşım literatürde *quadtree* yöntemi olarak bilinir (Fisher, 1995). Bu teknikle çok basit bir şekilde, iyi bir sıkıştırma elde edilebilmektedir.

Fraktal görüntü sıkıştırma konusunda, arama işlemini hızlandırmak amacıyla farklı sınıflandırma teknikleri geliştirilmiştir. Bir görüntüden elde edilen referans ve test sayıları sırasıyla k ve l ise herhangi bir sınıflandırma yapmadan tüm eşleştirme yapma işlemlerinin karmaşıklığı O(kl) dir. Hesaplama maliyetini düşürmek için hem quadtree hem de sınıflandırma stratejilerinin birlikte uygulanması gerekmektedir.

Şekil 3. Kodlanmış Lena görüntüsünün siyah bir resimden geri açılması adımları. Üstte başlangıç resmi (tümüyle siyah) ve birinci aşama, altta ise ikinci ve üçüncü tekrarlar görülmektedir (sıkıştırma oranı 20:1 ve PSNR 32,7).

3.3 Q_n İstatistiğinin Uygulanışı

Referans-test eşleştirme işleminden önce test bloklarını basitçe sıralamak için Q_n istatistiğinde kullanılan tekniğin bir benzeri sınıflandırma için kullanılabilir. Daha sonra sınıflandırılmış listeler içerisinde arama yapılır. Bunun için izlenen aşamalar şu şekildedir.

 a. 4×4 'dan büyük bloklar, komşu piksellerin ortalaması alınarak 4×4 boyutlarına indirgenir. İndirgenmiş bloktaki i'nci piksel değeri için tanımlanan

$$J_{i} = \begin{cases} 1 & e\breve{g}er(x_{i} \ge \overline{x}) \text{ ise} \\ 0 & aksi \ durumda \end{cases} \qquad i = 1, 2, \dots, 16$$
(10)

kullanılarak

$$k = \sum_{i=1}^{16} J_i \tag{11}$$

şeklinde bir değer bulunur. Tüm test bloklar için k değeri hesaplanarak, test bloklar bu değere göre sınıflandırılır. Bu duruma göre en çok 16 sınıf oluşturulabilir. test bloklar sınıf numaraları aracılığı ile, 16 elamanlı listede ilgili numaralı alt listeye eklenirler.

- **b.** Ele alınan bir referans blokla ilgili sınıf numarası da (11)'deki gibi bulunur.
- c. Referans bloğunun benzeri, test bloklarından oluşan havuzda, aynı sınıf numarasındaki bloklar içinde aranır. Eşleştirme işlemini hızlandırmak için Q_n istatistiği kullanılır. Bu amaçla, her iki bloğun J_i değerleri 16 bitlik tamsayı değişkenlerinde saklanırsa, bu değişkenler XOR'lanarak ve elde edilen sonuçtaki '1' olan bitler sayılarak, Q_n basitçe hesaplanabilir (Mano, 1993). Bu aşamada Q_n için belirlenen bir eşik değerine göre (bu çalışmada eşik $Q_n=0,75$ seçilmiştir) test bloklar ayıklanarak geri kalanlar arasında minimum RMS değerini veren referans-test çifti aranır.
- *d.* Listedeki tüm test bloklarla karşılaştırma tamamlandığında bulunan minimum RMS değeri önceden belirlenen eşik değerinden daha büyük çıkarsa, komşu bir alt sınıf, bir üst sınıf (Δ =1), iki alt sınıf, iki üst sınıf (Δ =2), üç alt sınıf, üç üst sınıflardaki (Δ =3) test bloklarında benzerlik bulununcaya kadar arama işlemlerine devam edilir.
- *e.* Yukarıdaki son adımda da benzerlik bulunamamışsa o zaman eldeki referans blok dört eşit parçaya bölünerek arama işlemleri her bir alt blok için öz-yineli (*recursive*) olarak tekrarlanır.

 Δ =3 sınırı çeşitli görüntüler üzerinde yapılan denemelerden sonra kabul edilebilecek optimum değer olarak belirlenmiştir. Lena görüntüsü için sınıflara göre test bloklarının dağılımı Tablo 4'de verilmiştir (diğer görüntülerde de benzer bir dağılım vardır). Tablo 5, 6 ve 7'de Δ değerlerine göre eşleştirme dağılımları verilmiştir. Tablo 8, 9 ve 10'da ise Δ değerinin sıkıştırma oranı, PSNR ve toplam süre üzerine etkileri verilmiştir. Ayrıca aynı tablolarda *Brute-force* ve Saupe'un *kd-tree* sınıflandırma yöntemi ile elde edilen değerler ile karşılaştırmalar yapılmıştır (Değerler 1GB bellekli, Pentium IV 3Ghz makine ile alınmıştır).

Tablo 4. 512x512 Lena test görüntüsünde, farklı boyutlarda, sınıf listeleri altındaki test blokları sayılarının dağılımı.

Blok								k				00. HE 70				
Boyutu	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4x4	1	17	63	294	624	1586	3007	4961	3114	1605	586	193	53	8	0	0
8x8	0	23	141	493	691	1469	2559	4393	2792	1646	765	544	83	24	2	0
16x16	8	48	200	790	766	1465	2219	3570	2218	1414	884	862	164	28	5	0
32x32	0	6	77	671	816	1535	2160	3130	1931	1274	724	306	125	14	0	0

Blok Boyutu	Δ=0	Δ=1	∆=2	∆=3	Toplam
4x4	1.834 (%84,3)	213 (%9,8)	87 (%4,0)	42 (%1,9)	2.176
8x8	649 (%92,7)	43 (%6,1)	8 (%1,1)	0 (%0,0)	700
16x16	265 (%90,4)	22 (%7,5)	6 (%2,0)	0 (%0,0)	293
32x32	98 (%93,3)	7 (%6,7)	0 (%0,0)	0 (%0,0)	105

Tablo 5. Lena görüntüsünde en iyi referans-test eşleştirmelerinin △ değerlerine göre dağılımı

Tablo 6. Mandrill görüntüsünde en iyi referans-test eşleştirmelerinin Δ değerlerine göre dağılımı

Blok Boyutu	∆=0	Δ=1	Δ=2	Δ=3	Toplam
4x4	4.867 (%40,0)	2.672 (%22,0)	2.537 (%20,9)	2.060 (%17,0)	12.136
8x8	508 (%90,4)	43 (%7,7)	7 (%1,2)	4 (%0,7)	562
16x16	96 (%91,4)	6 (%5,7)	0 (%0,0)	3 (%2,9)	105
32x32	5 (%100,0)	0 (%0,0)	0 (%0,0)	0 (%0,0)	5

Tablo 7. Goldhill görüntüsünde en iyi referans-test eşleştirmelerinin Δ değerlerine göre dağılımı

Blok					
Boyutu	∆=0	$\Delta = 1$	Δ=2	∆=3	Toplam
4x4	4.167 (%81,7)	510 (%10,0)	257 (%0,5)	166 (%3,3)	5.100
8x8	1.220 (%90,7)	103 (%7,7)	12 (%0,8)	10 (%0,7)	1.345
16x16	210 (%93,3)	11 (%4,9)	2 (%0,1)	2 (%2,9)	225
32x32	35 (%97,2)	1 (%2,8)	0 (%0,0)	0 (%0,0)	36

Tablo 8. Lena görüntüsünde.farklı ∆ değerleri ile elde edilen sonuçlar.

Kullanılan Yöntem	Sıkıştırma Oranı	PSNR	Test Sayısı	Süre (sn)	
Önerilen ($\Delta = 0$)	20,67:1	33,771	2.966.642	3,34	
Önerilen ($\Delta \leq 1$)	22,08:1	33,523	4.817.309	5,47	
Önerilen ($\Delta \leq 2$)	22,36:1	33,497	5.541.897	6,61	
Önerilen ($\Delta \leq 3$)	22,54:1	33,454	6.271.008	7,56	
Brute Force	22,72:1	33,743	65.508.848	34,53	
Saupe kd-tree	22,11:1	33,749	216,400	1,39	

Tablo 9. Mandrill görüntüsünde.farklı A değerleri ile elde edilen sonuçlar

Kullanılan Yöntem	Sıkıştırma Oranı	PSNR	Test Sayısı	Süre (sn)
Önerilen ($\Delta = 0$)	5,68:1	26,747	3.781.774	8,53
Önerilen ($\Delta \leq 1$)	5,75:1	27,382	13.253.637	21,50
Önerilen ($\Delta \leq 2$)	5,76:1	27,483	15.501.771	28,00
Önerilen ($\Delta \leq 3$)	5,77:1	27,513	18.132.796	32,44
Brute Force	5,79:1	27,663	268.937.796	105,41
Saupe kd-tree	5,76:1	27,527	850,600	5,84

Kullanılan Yöntem	Sıkıştırma Oranı	PSNR	Test Sayısı	Süre (sn)
Önerilen ($\Delta = 0$)	10,30:1	32,154	4.521.444	5,61
Önerilen ($\Delta \leq 1$)	10,82:1	32,179	8.412.712	9,86
Önerilen ($\Delta \leq 2$)	10,89:1	32,182	9.819.364	12,00
Önerilen ($\Delta \leq 3$)	10,95:1	32,169	11.315.240	13,80
Brute Force	11,06:1	32,489	137.880.412	61,48
Saupe kd-tree	10,71:1	32,484	452.600	3,13

Tablo 10. Goldhill görüntüsünde.farklı ∆ değerleri ile elde edilen sonuçlar

Tablolarda üç farklı görüntü için elde edilen sonuçlardan da anlaşılacağı üzere sınıflandırma şeması ve Q_n istatistiği test edilen blok çiftlerinin sayısını 70 kata kadar azaltmış, bu da "brute-force" karşısında zaman olarak 12 kata kadar hız sağlamıştır. Ayrıca $\Delta \leq 1$ iken tatmin edici sonuçlara ulaşıldığı görülmektedir (Şekil 4).

Şekil 4. Solda orijinal Lena, ortada $\Delta \le 1$ için ve sağda $\Delta \le 3$ için elde edilen görüntüler

Şekil 5. Solda orijinal Mandrill, ortada $\Delta \le 1$ için ve sağda $\Delta \le 3$ için elde edilen görüntüler

Cengiz GÜNGÖR – Aydın ÖZTÜRK

Şekil 6. Solda orijinal Goldhill, ortada $\Delta \le 1$ için ve sağda $\Delta \le 3$ için elde edilen görüntüler

KAYNAKLAR

BARNSLEY, M. (1992), Fractals Everywhere, Academic Press, San Diego, CA, USA.

BOSS, R.D. and JACOBS, E.W. (1991), Studies of iterated transform image compression, and its application to color and DTED., Technical report 1468, Naval Ocean Systems Center, San Diego, CA.

FISHER, Y. (1995),. Fractal image compression, Theory and application., Springer-Verlag.

- JACOBS, E.W., BOSS, R.D. and FISHER, Y. (1992), *Image compression: A study of the iterated transform method*, Signal Processing, 29:251-263.
- JACQUIN, A. (1990), A novel Fractal block coding technique for digital images, IEEE ICASP Prroc., 4:2225-2228.
- KOMINEK, J. (1995), Advances in Fractal Compression for Multimedia Applications, To appear in Multimedia System Journal.
- MANDELBROT, B. (1983), The Fractal Geometry of Nature, W.H.Freeman & Co., Second Edition.
- LOE, K.F., GU, W.G. and PHUA, K.H. (1997), Speed-up fractal image compression with a fuzzy classifier, Signal Processing: Image Communication 10: 303-311.
- MANO, M.M. (1993), Computer System Architecture, Prentice Hall International Inc., pp 6-7.
- SAUPE, D. (1995), Accelerating fractal image compression by multi-dimensional nearest neighbor search. In J. A. Storer and M. Cohn, editors, *Proceedings DCC'95 (IEEE Data Compression Conference)*, pages 222-231, Snowbird, UT, USA, March 1995.
- SOLOMON, D. (2000), Data compression. The complete reference. Springer-Verlag Inc. 240-242

A SIMPLE ESTIMATOR OF CORRELATION AND ITS APPLICATION ON FRACTAL IMAGE COMPRESSION

ABSTRACT

Fractal image compression which is based on finding similar image blocks, in an efficient method for compression of similar pieces. Fractal image compression method generally obtains more realistic results than the other methods on high compression rates. However, searching similar pieces requires tedious computations. In order to reduce the computational coast domain blocks are classified and search for finding the similar pairs are performed within those classes. In this study, it is shown that similar pairs can be obtained by proposed classification method.

Key Words: Correlation coefficient, Fractal image compression, Similarity measures.

ding Mari

107