
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 16 NO. 1 PAGE 232–243 (2023)
DOI: HTTPS://DOI.ORG/10.36890/IEJG.1272924

Weierstrass Representation of Lightlike
Surfaces in Lorentz-Minkowski 4-Space

Davor Devald* and Željka Milin Šipuš
(Dedicated to the memory of Prof. Dr. Krishan Lal DUGGAL (1929 - 2022))

ABSTRACT

We present a Weierstrass-type representation formula which locally represents every regular two-
dimensional lightlike surface in Lorentz-Minkowski 4-Space M4 by three dual functions (ρ, f, g)
and generalizes the representation for regular lightlike surfaces in M3. We give necessary and
sufficient conditions on the functions ρ, f , g for the surface to be minimal, ruled or l-minimal. For
ruled lightlike surfaces, we give necessary and sufficient conditions for the representation itself to
be ruled. Furthermore, we give a result on totally geodesic half-lightlike surfaces which holds only
in M4.
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1. Introduction

The first Weierstrass-type representation was developed by K. Weierstrass and A. Enneper. It is a local
conformal parametrization of a surface in Euclidean space E3 which initially represented only minimal
surfaces, that is, surfaces of mean curvature H = 0. Every such surface is represented by a pair (f, g) of
functions, where f is a holomorphic and g a meromorphic complex function. The representation was later
generalized to regular two-dimensional surfaces (not necessarily minimal) in various ambient spaces.

The Weierstrass representation of maximal surfaces (spacelike surfaces with H = 0) in the Lorentz-
Minkowski space M3 was found by L. McNertney ([14]). As in E3, they are represented by a holomorphic
and a meromorphic complex function f and g of a complex variable z = u+ vi. Its counterpart for minimal
surfaces (timelike surfaces with H = 0) in M3 was found by M. Magid ([13]). Minimal surfaces are represented
by four real-valued functions (q, f, r, g), which depend on only one of their two real variables (parameters) u
and v. Each of these representations is generalized to any regular surface by using complex functions (with C∞

real and imaginary part) which are not necessarily holomorphic or meromorphic (spacelike case) or by using
any C∞ real functions of two variables (timelike case).

The representation of spacelike surfaces was generalized to surfaces in M4 by H. Liu ([12]). It represents
every maximal surface in M4 by three complex functions (ρ, f, g). The surface is maximal if and only if at least
one of the functions f and g is holomorphic. The representation of timelike surfaces in M4, which generalizes
the three-dimensional result, was found by one of the authors ([2]). It uses real functions (f, g) and complex
functions (q, r) of two real variables to represent every surface.

The representation for lightlike surfaces in M3 was not known until recently, when the authors found it by
using dual functions f and g ([3]). In this paper, this formula will be generalized to lightlike surfaces in M4 in
the analogous way as for spacelike and timelike surfaces.

Finally, let us mention that, B. Konopelchenko and G. Landolfi have found a different form of a Weierstrass-
type parametrization for Euclidean surfaces that represents a surface by a pair of functions (φ,ψ) that satisfy
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the so-called Dirac system of linear first-order differential equations. They have generalized this result to two-
dimensional surfaces in En and also found its counterpart for spacelike surfaces in M3 and M4 ([10, 9]). The
counterpart for timelike surfaces was found by S. Lee in M3 ([11]) and was generalized to surfaces in M4 by
one of the authors ([2]). A counterpart of this representation for lightlike surfaces does not exist ([3]).

2. Preliminaries

2.1. Half-lightlike surfaces

Let us recall the local theory of half-lightlike surfaces from Duggal’s book [6] in short. The Lorentz-
Minkowski space Mn is the real vector space Rn equipped with the pseudoscalar product · : Rn ×Rn → R,
given by

x · y := −x1y1 + x2y2 + · · ·+ xnyn.

A surface S in Mn is said to be spacelike, timelike or lightlike at the point p ∈ S if its induced metric in the
tangent space TpS is positive definite, indefinite or degenerate respectively.

Let S be a regular (n− 2)-dimensional lightlike surface in Mn, n ≥ 4, and p ∈ S any point. The vector space

RadTpS := TpS ∩ TpS⊥ ̸= {0}

is called the radical space of the surface S at the point p. We say that the surface S is half-lightlike at p if
dimRadTpS = 1. In Mn, every (n− 2)-dimensional surface is half-lightlike since dimRadTpS = 2 can never
occur (due to the Minkowski pseudometric). Surfaces with this property exist in pseudo-Riemannian spaces
of index greater than 1 and they are called coisotropic surfaces. More on theory of coisotropic surfaces can be
read in [6].

Notice that two-dimensional lightlike surfaces in M4 are half-lightlike. For half-lightlike surfaces we can
introduce an induced connection and the second fundamental form. The fundamental result from [6] states
that for every point p there exists a spacelike subspace S(TpS) ⊆ TpS of dimension n− 3, which is not unique,
such that

S(TpS)⊕orth RadTpS = TpS.

The vector bundle S(TS) = ∪p∈SS(TpS) is called the screen distribution of the surface S. Furthermore, locally
there exist vector fields U and ξ on the surface S such that U · U = 1, U · ξ = 0, ξ · ξ = 0 and ξ ·X = 0 for
every vector field X tangential to S. The field ξ induces the radical bundle RadTS, and it is unique up to
a multiplication by a scalar non-zero function. Let us define Dp = [U(p)] and D⊥

p as its orthogonal complement
in the subspace S(TpS)⊥, that is

D⊥
p = {v ∈ S(TpS) : v · U(p) = 0} .

The space D⊥
p is non-degenerate with respect to the Minkowski pseudometric and ξ(p) ∈ D⊥

p . Finally, there
exists a unique vector field N such that N(p) ∈ D⊥

p and

N · ξ = 1, N ·N = N · U = 0,

(see [6] for details). The field N induces the lightlike transversal bundle ltr(TS) by ltr(TpS) := [N(p)]. If we
choose another ξ∗ = αξ, then it will beN∗ = 1

αN , so ltr(TS) depends only on the choice ofU . Now we define the
transversal bundle tr(TS) by tr(TpS) := Dp ⊕orth ltr(TpS). In this way we obtain the following decomposition

TpMn = (S(TpS)⊕orth RadTpS)⊕ (Dp ⊕orth ltr(TpS)) = TpS ⊕ tr(TpS).

The space tr(TpS) plays the role of a normal space of the surface S at p, while U and N are the spacelike unit
and the lightlike normal vector fields of S. Let now ∇̃ be the Levi-Civita connection of Mn. Then with respect
to the above decomposition, every vector field ∇̃XY has a unique tangential and normal component, so the
following Gauss-Weingarten equation holds

∇̃XY = ∇XY + h(X,Y ). (2.1)

The mapping ∇ is the induced connection on the surface S and the bilinear map h is the second fundamental
form of the surface. The connection ∇̃ is a metric connection, which means that

∇̃X(Y · Z) = (∇̃XY ) · Z + Y · (∇̃XZ) (2.2)

for any vector fields X , Y and Z. This is not true in general for the induced connection ∇.
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2.2. Minimal lightlike surfaces

The mean curvature H cannot be defined for lightlike surfaces in the same way as it is defined for spacelike
and timelike surfaces. Therefore, to define minimal lightlike surfaces, a different approach is used ([7]).

Let S and S̃ be any regular surfaces in Mn. A smooth bijective map φ : S → S̃ is called a G-transformation if
the planes TpS and Tφ(p)S̃ are parallel for every p ∈ S. A trivial example of a G-transformation is a translation.
A G-transformation is non-trivial if it is not a translation. For spacelike resp. timelike surfaces, in [14] it was
proved that H = 0 if and only if there exists a one-parameter family (Sθ)θ∈R of surfaces such that

1. S0 = S,

2. for every θ ∈ R, there exists a locally isometric G-transformation φθ : S → Sθ,

3. the G-transformations φθ and φβ ◦ φ−1
α are non-trivial for all θ, α, β ∈ R.

The surfaces Sθ are called the associated surfaces of S, and they are all maximal resp. minimal.
This characterization was used as a definition of a minimal lightlike surface in [7]. It was further proved

that locally there are two disjoint classes of lightlike surfaces which satisfy the definition: ruled surfaces with
lightlike rulings and the so-called l-minimal surfaces.

A lightlike surface S is a ruled surface if it can be parametrized by a map x : I ×R → S of form

x(u, v) = c(u) + ve(u), (2.3)

where c is a regular spacelike curve and e ̸= 0 a lightlike vector field along c such that c′ · e = 0.
A lightlike surface S is l-minimal if it can be parametrized by a map x : U ⊆ R2 → S, x(u, v) such that

1. the curves u = const. are lightlike and xu · xv = 0,

2. the fields xv and xvv are linearly independent for all (u, v) ∈ U ,

3. the fields xv and xuv are linearly dependent for all (u, v) ∈ U .

In M3, every regular lightlike surface is ruled (and therefore, minimal). For n ≥ 4, there exist both classes of
surfaces in Mn and also lightlike surfaces which are not minimal at all.

Let now S be a regular lightlike surface in Mn and x : U ⊆ R2 → S any parametrization. The functions

E := xu · xu, F := xu · xv, G := xv · xv

are called the metric coefficients of x. We say that the parametrization x is conformal if

E = λ > 0, F = G = 0.

The function λ is called the conformal factor of x. Every lightlike surface can be locally parametrized by a
conformal map. The proof is similar to the proof of existence of an orthogonal parametrization in Euclidean
space (satisfying F = 0), ([4]). Notice that the parametrizations in the definition of a ruled lightlike surface and
an l-minimal surface are also conformal.

Spacelike and timelike surfaces have different conformality conditions. In the spacelike case, if x(u, v) is
a conformal parametrization and we reparametrize it by complex variables z = u+ vi and z = u− vi, the
reparametrization has metric coefficients

E = G = 0, F =
λ

2
.

The same happens for timelike surfaces when we reparametrize by real variables s = −u+ v and t = u+ v. The
above metric coefficients must hold for every Weierstrass parametrization. It was shown in [3] that to obtain
the above metric coefficients for a lightlike surface, its conformal parametrization must be reparametrized by
dual variables.

2.3. Dual numbers and functions

A dual number is a number of form z = x+ yε, where x, y ∈ R and ε /∈ R is an imaginary unit such that
ε2 = 0. The set D of all dual numbers with standard addition and multiplication is a ring, but not a field (as
opposed to C). A dual function is any function f : U ⊆ D → D. The theory of holomorphic dual functions is
given in [15], and here we will recall some of its main parts.

dergipark.org.tr/en/pub/iejg 234

https://dergipark.org.tr/en/pub/iejg


D. Devald & Ž. Milin Šipuš

Theorem 2.1. A dual function f = f1 + εf2 : U → D, where U ⊆ D ≡ R2 is an open set, is holomorphic if and only if
f1 and f2 are differentiable real functions which satisfy

∂yf1 = 0, ∂yf2 = ∂xf1.

If f is holomorphic, then the derivative with respect to the variable z = x+ yε is given by

f ′ = ∂xf = ∂yf2 + ε∂xf2. (2.4)

We say that f is meromorphic if there exist holomorphic dual functions g and h such that f = g
h . For a dual

function h = h1 + h2ε : [a, b] ⊆ R → D, such that h1 and h2 are integrable functions, we define∫ b

a

h(t) dt :=

∫ b

a

h1(t) dt+ ε

∫ b

a

h2(t) dt.

Now if f = f1 + εf2 : U ⊆ D → D is a continuous dual function and γ : [a, b] → U a path of class C1, we define∫
γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt.

Then we have the following version of the Newton-Leibniz formula ([15]):

Theorem 2.2. If f has a primitive function F (that is, such that F ′ = f ), then∫
γ

f(z) dz = F (γ(b))− F (γ(a)).

If S is a regular lightlike surface in Mn and x : U ⊆ R2 → S a conformal parametrization (E = λ, F = G = 0),
then for the reparametrization x(z, z), where z = u+ vε, the first fundamental form is

λ dzdz = λ (du+ ε dv)(du− ε dv) = λ du2 − λε2 dv2 = E du2 + 2F dudv +Gdv2 = ds2.

From this we read that the metric coefficients of the reparametrization are

E(z, z) = G(z, z) = 0, F (z, z) =
λ

2
.

This leads to the conclusion that the functions representing a lightlike surface should be dual. In [3], the
following Weierstrass-type representation of lightlike surfaces in M3 was derived, in a similar way as it was
done for spacelike surfaces ([14]):

Theorem 2.3. Let S be a regular lightlike surface in M3. Then S can be locally parametrized by a conformal map
x : U ⊆ R2 → S, given by

x1(u, v) =
1

2
Im

∫ z

z0

f(1 + g2) dw

x2(u, v) = −1

2
Im

∫ z

z0

f(1− g2) dw

x3(u, v) = Im
∫ z

z0

fg dw,

(2.5)

where z0 ∈ U , z = u+ vε and f, g : U ⊆ D → D are dual functions such that f is holomorphic, g is meromorphic and
fg2 is holomorphic.

3. Weierstrass representation of lightlike surfaces in M4

In [12], a Weierstrass representation describing spacelike surface in M4 by three complex functions ρ, f and
g was given. This result generalizes the representation of spacelike surfaces M3 given in [14] (which represents
the surface by two complex functions f and g) in the way that when we interchange f and g and then substitute

ρ =
f̃ g̃

2
, f =

1

g̃
, g = g̃,
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the expressions for x1, x2, x3 reduce to the formula in M3 with Weierstrass data (f̃ , g̃) and x4 = const.
Since the representation (2.5) for lightlike surfaces in M3 was derived in a similar way as for spacelike

surfaces, we will generalize it in such a way that lightlike surfaces in M4 will be represented by three dual
functions (ρ, f, g).

Let S be a lightlike surface in M4 and p ∈ S. Then there exists a conformal parametrization x =
(x1, x2, x3, x4) : U ⊆ R2 → S such that p ∈ x(U). Let z = u+ vε and fk : U ⊆ D → D be functions given by

fk :=

∫
∂vxk du+ εxk.

It follows from (2.4) that we can use ∂z := ∂u as the generalization of the derivative for dual functions which
are not holomorphic (but only have a smooth real and imaginary part). Then

∂zfk = ∂vxk + ε∂uxk. (3.1)

Notice that (3.1) is a generalization of (2.4) for non-holomorphic functions. Now, since the parametrization x is
conformal, it follows that

−(∂zf1)
2 + (∂zf2)

2 + (∂zf3)
2 + (∂zf4)

2 = [−(∂vx1)
2 + (∂vx2)

2 + (∂vx3)
2 + (∂vx4)

2]

+ ε2[−(∂ux1)
2 + (∂ux2)

2 + (∂ux3)
2 + (∂ux4)

2]

+ 2ε[−(∂ux1)(∂vx1) + (∂ux2)(∂vx2) + (∂ux3)(∂vx3) + (∂ux4)(∂vx4)]

= G+ ε2 · E + 2ε · F = 0 + 0 · E + 2ε · 0 = 0

From this it follows that
(∂zf3)

2 + (∂zf4)
2 = (∂zf1 − ∂zf2)(∂zf1 + ∂zf2). (3.2)

Let us now define functions ρ, f, g : U ⊆ D → D by

ρ :=
∂zf1 − ∂zf2

2
, f :=

∂zf3 + ∂zf4

2
√
2ρ

, g :=
∂zf3 − ∂zf4

2
√
2ρ

. (3.3)

In the case when ρ is a purely imaginary function, instead of previous f , g, we define

f :=
Im (∂zf3 + ∂zf4)

2
√
2 Im ρ

, g :=
Im (∂zf3 − ∂zf4)

2
√
2 Im ρ

,

because imaginary numbers are not invertible in D. Now we have

∂zf1 − ∂zf2 = 2ρ

∂zf3 + ∂zf4 = 2
√
2ρf

∂zf3 − ∂zf4 = 2
√
2ρg.

From the last two equations we obtain

∂zf3 =
√
2ρ(f + g)

∂zf4 =
√
2ρ(f − g).

(3.4)

Therefore,
(∂zf3)

2 + (∂zf4)
2 = 2ρ2(f + g)2 + 2ρ2(f − g)2 = 4ρ2(f2 + g2).

Now from (3.2) it follows

∂zf1 + ∂zf2 =
4ρ2(f2 + g2)

2ρ
= 2ρ(f2 + g2).

And finally we obtain

∂zf1 = ρ(1 + f2 + g2)

∂zf2 = −ρ(1− f2 − g2).
(3.5)

By integrating both sides in (3.4) and (3.5) and applying Theorem 2.3, we obtain the following representation
for lightlike surfaces, which is the central theorem of this paper.
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Theorem 3.1. Let S be a regular lightlike surface in M4. Then S can be locally parametrized by a conformal map
x : U ⊆ R2 → S, given by

x1(u, v) = Im
∫
ρ(1 + f2 + g2) dz

x2(u, v) = −Im
∫
ρ(1− f2 − g2) dz

x3(u, v) =
√
2 Im

∫
ρ(f + g) dz

x4(u, v) =
√
2 Im

∫
ρ(f − g) dz,

(3.6)

where z = u+ vε and ρ, f, g : U ⊆ D → D are dual functions such that their real and imaginary part is smooth.

Remark 3.1. The parametrization (3.6) is similar to the representation of spacelike surfaces given in [12], it only
uses polynomials 1± (f2 + g2) instead of 1± fg. This is because the expression (∂zf3)

2 + (∂zf4)
2 cannot be

factorized into linear factors over D (while over C it can).
Remark 3.2. If we substitute

ρ =
f̃

2
, f = g =

g̃√
2

into (3.6), we obtain (2.5) with Weierstrass data (f̃ , g̃) and x4 = const. This shows that the representation (3.6)
generalizes the formula (2.5) for surfaces in M4, in the same way as the analogous formula does for spacelike
or timelike surfaces.

Remark 3.3. The real variables u and v cannot be expressed as linear combinations of z and z because vε =
z − z

2
and the imaginary unit ε is not invertible in D (as opposed to C). However, if x is a ruled parametrization of
form (2.3), the dual variables can be substituted explicitly in the following way:

x(u, v) = Im (εc(u) + εve(u)) = Im
(
εc

(
z + z

2

)
+ ε

z − z

2
e

(
z + z

2

))
.

Remark 3.4. In [2], complex functions of two real variables are used to represent a timelike surface because the
expression (∂zx3)

3 + (∂zx4)
2 cannot be factorized over R into linear factors. On the other hand, identifying R2

with C in the domain would not provide the analogy with the spacelike case because in the timelike case,

a complex reparametrization does not result in metric coefficients E = G = 0 and F =
λ

2
. However, in the

lightlike case, we cannot do analogously, factorize over C and use functions U ⊆ D → C, because the product
i · ε is not defined, not even in the set {a+ bi+ cε : a, b, c ∈ R} (in other words, this set is not a ring). On the
other hand, the representation for lightlike surfaces in M3 ([3]) was constructed in a similar way as for spacelike
surfaces ([14]), which suggests that the analogy with the spacelike case should continue in M4. By this analogy,
the domain and the codomain of the functions representing the surface should be the same ring.

4. Ruled lightlike surfaces and l-minimal surface

4.1. Minimal lightlike surfaces

It is easy to see for the classical representation formula given in [14], that complex functions f and g that
are not holomorphic, but have a smooth real and imaginary part, represent all regular spacelike surfaces.
Furthermore, the surface will be maximal if and only if f is holomorphic, g meromorphic and fg2 holomorphic.
The same result holds for (minimal) lightlike surfaces in M3, ([3]).

The parametrization given in [12] represents all spacelike surfaces in M4 by three complex functions (ρ, f, g).
The surface is maximal if and only if at least one of the functions f and g is holomorphic. In the timelike case,
both in M3 and M4, any timelike surface can represented by four functions (q, f, r, g) and it is minimal if and
only if fv = gu = qv = ru = 0.

Since in M4 there exit lightlike surfaces which are not minimal, our aim is to find necessary and sufficient
conditions on the functions (ρ, f, g) such that the lightlike surface given by (3.6) is minimal. We require the
following lemma, which was proved in [7].
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Lemma 4.1. Let S be a regular lightlike surface in Mn and x : U ⊆ R2 → S a conformal map. Then S does not have an
associate family of surfaces if and only if the vector fields xv, xvv and xuv are linearly independent.

This gives us two possibilities for a minimal lightlike surface. The first is that the vector fields xv and xvv

are collinear, which describes the class of ruled lightlike surfaces. The second possibility is that xv and xvv are
linearly independent and xuv is their linear combination, which gives exactly the class of l-minimal surfaces
([7]).

From (3.1) it follows that ∂vxk = Re ∂zfk for k ∈ {1, 2, 3, 4}. Therefore,

xv = (Re (1 + f2 + g2),Re (−1 + f2 + g2),
√
2Re ρ(f + g),

√
2Re ρ(f − g)).

Let now ρ := ρ1 + ερ2, f := f1 + εf2 and g := g1 + εg2 (the functions f1 and f2 are not the same as above, which
will not be used further). Since dual numbers satisfy Re (z1z2) = (Re z1)(Re z2), we have

xv = ρ1(1 + f21 + g21 ,−1 + f21 + g21 ,
√
2(f1 + g1),

√
2(f1 − g1)). (4.1)

If we differentiate both sides with respect to v, we get

xvv = (∂vρ1)(1 + f21 + g21 ,−1 + f21 + g21 ,
√
2(f1 + g1),

√
2(f1 − g1))

+ ρ1(2(f1∂vf1 + g1∂vg1), 2(f1∂vf1 + g1∂vg1),
√
2(∂vf1 + ∂vg1),

√
2(∂vf1 − ∂vg1)).

Since S is regular, it must be xv ̸= 0. Furthermore, S is a ruled surface if and only if xvv = αxv for some scalar
function α. Comparing the above expressions for xv and xvv, we see that this will hold if and only if

ρ1(∂vf1)(2f1, 2f1,
√
2,
√
2) + ρ1(∂vg1)(2g1, 2g1,

√
2,−

√
2) = 0.

It must be ρ1 ̸= 0 because S is regular. Now since the above two vectors are linearly independent, it follows
that S is ruled if and only if

∂vf1 = ∂vg1 = 0.

Suppose now that ∂vf1 ̸= 0 or ∂vg1 ̸= 0. We want to find necessary and sufficient conditions such that xuv =
αxv + βxvv for some scalar functions α and β. The vector fields xv and xvv can be further decomposed as

xv = ρ1(1,−1, 0, 0) + ρ1f1(f1, f1,
√
2,
√
2) + ρ1g1(g1, g1,

√
2,−

√
2)

xvv = (∂vρ1)(1,−1, 0, 0) + (∂vρ1)f1(f1, f1,
√
2,
√
2) + (∂vρ1)g1(g1, g1,

√
2,−

√
2)

+ ρ1(∂vf1)(2f1, 2f1,
√
2,
√
2) + ρ1(∂vg1)(2g1, 2g1,

√
2,−

√
2)

= (∂vρ1)(1,−1, 0, 0) + (∂v(ρ1f1))(f1, f1,
√
2,
√
2) + (∂v(ρ1g1))(g1, g1,

√
2,−

√
2)

+
ρ1
2
(∂v(f

2
1 + g21))(1, 1, 0, 0).

(4.2)

Notice that the four vectors which appear in the above decomposition of xvv are linearly independent, that is,
they make a basis for M4. Now if α and β are any scalar functions, we have that

αxv + βxvv = (αρ1 + β∂vρ1)(1,−1, 0, 0) + (αρ1f1 + β∂v(ρ1f1))(f1, f1,
√
2,
√
2)

+ (αρ1g1 + β∂v(ρ1g1))(g1, g1,
√
2,−

√
2) +

βρ1
2

(∂v(f
2
1 + g21))(1, 1, 0, 0).

In the same way, differentiating both sides of (4.1) with respect to u and further decomposing, we get

xuv = (∂uρ1)(1,−1, 0, 0) + (∂u(ρ1f1))(f1, f1,
√
2,
√
2)

+ (∂u(ρ1g1))(g1, g1,
√
2,−

√
2) +

ρ1
2
(∂u(f

2
1 + g21))(1, 1, 0, 0).

Now, since the four vectors are linearly independent, the equality xuv = αxv + βxvv is equivalent to the
following system of equations

∂uρ1 = αρ1 + β∂vρ1

∂u(ρ1f1) = αρ1f1 + β∂v(ρ1f1)

∂u(ρ1g1) = αρ1g1 + β∂v(ρ1g1)

ρ1
2
∂u(f

2
1 + g21) =

βρ1
2
∂v(f

2
1 + g21).
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We have to check under which conditions this system has a solution (for the unknowns α and β). By expressing
α from the first three equations, we get that

∂uρ1 − β∂vρ1
ρ1

=
∂u(ρ1f1)− β∂v(ρ1f1)

ρ1f1
=
∂u(ρ1g1)− β∂v(ρ1g1)

ρ1g1
. (4.3)

The first of the above two equations is equivalent to

f1∂uρ1 − βf1∂vρ1 = (∂uρ1)f1 + ρ1∂uf1 − β((∂vρ1)f1 + ρ1∂vf1)

⇔ βρ1∂vf1 = ρ1∂uf1 ⇔ β =
∂uf1
∂vf1

.

In the same way, from (4.3) we obtain

β =
∂ug1
∂vg1

.

Now it turns out that it must be

∂uf1
∂vf1

=
∂ug1
∂vg1

⇔ (∂uf1)∂vg1 = (∂ug1)∂vf1.

This last condition is sufficient for the fourth equation of the system also to be satisfied because

βρ1
2
∂v(f

2
1 + g21) =

ρ1
2
β · 2f1∂vf1 +

ρ1
2
β · 2g1∂vg1

=
ρ1
2

· ∂uf1
∂vf1

· 2f1∂vf1 +
ρ1
2

· ∂ug1
∂vg1

· 2g1∂vg1

=
ρ1
2
∂u(f

2
1 + g21)

Notice that the condition (∂uf1)∂vg1 = (∂ug1)∂vf1 is also satisfied for ruled lightlike surfaces because then both
sides are equal to 0, which implies that this equality characterizes all minimal lightlike surfaces in M4.

Theorem 4.1. A regular lightlike surface S, represented by the Weierstrass data (ρ, f, g), is minimal if and only if

(∂u Re f)∂v Re g = (∂u Re g)∂v Re f. (4.4)

In particular, the surface S is ruled with lightlike rulings if and only if

∂v Re f = ∂v Re g = 0. (4.5)

From the previous theorem it follows that a lightlike surface S is l-minimal if and only if (4.4) is satisfied
and (4.5) is not satisfied (see examples). Furthermore, if we compare (4.5) to the M3 case (where all lightlike
surfaces are ruled) and to Theorem 2.1, we see that only one of the two Cauchy-Riemann conditions must be
satisfied in order for S to be ruled. Also, the minimality condition (4.4) is weaker than in the spacelike case.

Remark 4.1. Since taking the real part of a dual number commutes with ∂u and ∂v, equation (4.4) can be written
as

Re ((∂uf)∂vg − (∂ug)∂vf) = 0 ⇔ Re det∇F = 0,

where F : U ⊆ R2 → D2 is a function given by F := (f, g) and ∇ stands for the Jacobian matrix. This last
equality says that the surface is minimal if and only if the Jacobian determinant of F is purely imaginary.

4.2. Ruled parametrizations

A ruled lightlike surface can have parametrizations that are not of the form (2.3). In M3, substituting dual
functions f and g such that f is holomorphic, g meromorphic and fg2 holomorphic into (2.5) always results
in a ruled parametrization. If we substitute functions which are not holomorphic or meromorphic, we get a
conformal parametrization which may not ruled. However, substituting non-holomorphic functions will not
result in a greater class of surfaces because every lightlike surface in M3 is ruled.

On the other hand, in M4 there exist lightlike surfaces which are not ruled and we know that the surface itself
is ruled (that is, it has at least one ruled parametrization) if and only if (4.5) holds. Since a ruled surface can
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have conformal parametrizations which are not ruled, this condition is not sufficient for the parametrization
(3.6) itself to be ruled. We want to find out which conditions are necessary and sufficient for the Weierstrass
representation itself to be ruled.

First of all, let us notice that a certain counterpart of the three-dimensional case holds in M4: if we substitute
holomorphic functions ρ, f , g into (3.6), we get a ruled parametrization. This is because then from (3.4) and
(3.5) it follows that the functions ∂zfk (from Section 3) are holomorphic. But then from (3.1) and the Cauchy-
Riemann theorem, it follows that ∂2vxk = ∂v Re fk = 0. Now, by integrating twice with respect to v, we can
conclude that x is of form (2.3). However, the condition that ρ, f and g are holomorphic is not necessary for the
parametrization to be ruled.

Notice that x being a ruled parametrization is equivalent to xvv = 0. From (4.2) it follows that this is further
equivalent to

(∂vρ1)(1,−1, 0, 0) + (∂v(ρ1f1))(f1, f1,
√
2,
√
2) + (∂v(ρ1g1))(g1, g1,

√
2,−

√
2) +

ρ1
2
(∂v(f

2
1 + g21))(1, 1, 0, 0) = 0,

where ρ1 = Re ρ, f1 = Re f and g1 = Re g. Since the above vectors are linearly independent, this is equivalent
to

∂vρ1 = ∂v(ρ1f1) = ∂v(ρ1g1) =
ρ1
2
∂v(f

2
1 + g21) = 0. (4.6)

On the other hand, if x is ruled, then S is a ruled surface. Therefore, by Theorem 4.1., f1 and g1 must depend
only on u. If now ρ1 also depends only on u, then (4.6) is obviously satisfied. However, the condition that ρ1
depends only on u is also necessary because it appears in (4.6) as ∂vρ1 = 0. This proves the following result.

Theorem 4.2. Let S be a regular lightlike surface in M4 parametrized by the map x given in (3.6) with Weierstrass data
(ρ, f, g). Then x is a ruled parametrization if and only if

∂v Re ρ = ∂v Re f = ∂v Re g = 0.

Notice that if we substitute f = g into (4.4), which reduces the parametrization to the three-dimensional
case, it satisfies the equality (for any function), which is consistent with Gorkaviy’s definition by which every
lightlike surface in M3 is minimal. There are other possibilities to generalize minimality condition to lightlike
surfaces in Mn, which we are about to consider in the next section.

5. Totally geodesic surfaces and examples

We say that the surface S is totally umbilical if it’s second fundamental form is of form

h(X,Y ) = α(X · Y )

for some smooth function α : S → R. If h(X,Y ) = 0, the surface S is said to be totally geodesic.
It was proved in [5] that every lightlike surface in M3 is totally umbilical. On the other hand, each of them

is also minimal, thus a lightlike surface in M3 is minimal if and only if is totally umbilical. If we want to
generalize this condition to Mn in the way that minimal surfaces are those which are totally umbilical, we
loose the analogy with spacelike and timelike surfaces stating that the surface is maximal, resp. minimal, if
and only if it has an associated family of surfaces ([14]).

Let now ∇ be the induced connection on a half-lightlike surface S in Mn, n ≥ 4. We define

ε1(X) := (∇XY ) · ξ = (∇̃XY ) · ξ, ε2(X) := (∇XY ) · U = (∇̃XU) · U.

Then ∇XU = ε1(X)N + ε2(X)U . If we substitute Y = Z = U into (2.2), since U · U = 1, it follows that ε2 = 0.
In Duggal’s book [6], the following definition of minimality was given: a half-lightlike surface in Mn is

minimal if ε1(ξ) = 0 and traceh |S(TS)= 0. This is a counterpart of the definition given in [1], by which a
lightlike hypersurface in Mn is minimal if trace II |S(TS)= 0, where II is the scalar second fundamental form
of the hypersurface (ε1 is not defined for hypersurfaces). This definition can be applied to surfaces in M3.
However, this second definition is satisfied only for totally geodesic surfaces. Even more, the only totally
geodesic surfaces in M3 are lightlike planes ([8]), which is a significantly smaller class than all lightlike surfaces.
If we compare this to the spacelike case, this would be an analogy only if spacelike planes were the only
surfaces with H = 0 (because the only totally geodesic spacelike surfaces are spacelike planes). However, this
is not the case.
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Every totally geodesic half-lightlike surface in Mn minimal (in the sense of the above definition). It is
interesting that the converse is also true under some additional conditions on the surface. The following result
was proved in [6]:

Theorem 5.1. Let S be a totally umbilical half-lightlike surface in Mn. Then S is minimal if and only if S is totally
geodesic.

We will add new result similar to this one. We show that the claim holds if the assumption that S is totally
umbilical is replaced by the assumption that the induced connection ∇ on S is a metric connection. It is an
interesting result that holds only in M4.

First we need some preliminaries. Let

D1(X,Y ) := (∇̃XY ) · ξ, D2(X,Y ) := (∇̃XY ) · U.

Then h(X,Y ) = D1(X,Y )N +D2(X,Y )U . If S is a hypersurface, then h doesn’t have theD2(X,Y )U component,
while D1 becomes II (see [6] or [3] for details). A non-trivial result from [6] is that the induced connection ∇
on a half-lightlike surface is a metric connection if and only if D1 = 0. Furthermore, since h is a bilinear form,
traceh |S(TS)= 0 is equivalent to

n−3∑
k=1

D1(ek, ek) =

n−3∑
k=1

D2(ek, ek) = 0

for some orthonormal basis {e1, . . . , en−3} for S(TS). For n = 4, the condition simplifies to

D1(e1, e1) = D2(e1, e1) = 0,

and only in the case n = 4 we do not have more than one term in a sum. This is the reason why the claim holds
only for n = 4.

Let us now prove the claim. The implication that a totally geodesic surface is minimal holds in general, so we
only have to prove the converse. Let S be a minimal half-lightlike surface in M4. Since the induced connection
∇ is a metric connection, it follows that D1 = 0. Applying now (2.1), we get that

ε1(ξ) = (∇ξU) · ξ = (∇̃ξU − h(ξ, U)) · ξ = (∇̃ξU) · ξ − h(ξ, U) · ξ
= D1(ξ, U)−D2(ξ, U)(U · ξ) = 0−D2(ξ, U) · 0 = 0

It is easy to show that in general we have ε1(X) = −D2(X, ξ), for any tangential vector field X . Substituting
X = ξ, we get

D2(ξ, ξ) = −ε1(ξ) = 0.

Alternatively, we could obtain the same conclusion by applying (2.2) on (∇ξξ) · U because now ∇ is a metric
connection. Let now e1 be any unit spacelike vector field such that S(TS) = [e1]. Since ξ · U = 0, applying (2.2)
we obtain that

D2(e1, ξ) = (∇̃e1ξ) · U = −(∇̃e1U) · ξ = −D1(e1, U) = 0.

Since h is symmetric, it follows that D2(ξ, e1) = 0. Also, since S is minimal, we have that D2(e1, e1) = 0. This
shows thatD2 is 0 on a basis {e1, ξ} for TS. But then it must be D2 = 0 because D2 is bilinear. Now D1 = D2 = 0
implies h = 0, so S is totally geodesic.

Theorem 5.2. Let S be a half-lightlike surface in M4 such that the induced connection ∇ on S is a metric connection.
Then S is minimal if and only if it is totally geodesic.

Furthermore, we also need the following result from Duggal’s book [6], given only in M4, on how to check
if a given surface is totally umbilical.

Theorem 5.3. Let S be a half-lightlike surface in M4 and S(TS) = [X]. Then S is totally umbilical if and only if there
exist functions h1, h2 : S → R such that

D1(X,X) = h1(X ·X), D2(X,X) = h2(X ·X), D2(X, ξ) = D2(ξ,X) = D2(ξ, ξ) = 0.

Next we will give examples of lightlike surfaces and find their Weierstrass data. The first example is from
Duggal’s book [6].
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Example 5.1. The surface in M4 given implicitly by the equations x3 = h(x2) and x1 = x4, where h is some
smooth function, is a ruled lightlike surface. It can be parametrized by the conformal map

x(u, v) = (0, u, h(u), 0) + v(1, 0, 0, 1).

For this surface it was shown in [6] that D1 = 0, D2(X, ξ) = D2(ξ, ξ) = 0 and D2(X,X) = h2(X,X), where

h2(p) =
h′′(p2)

(1 + h′(p2)2)2
.

Now Theorem 5.3 implies that the surface is totally umbilical. Further, from D1 = 0 it follows that its induced
connection is a metric connection. If we choose h such that h′′ ̸= 0, then the surface is not totally geodesic, so
this is an example of a proper totally umbilical surface.

Equations (3.1) and (3.3) provide the Weierstrass data of this surface as

ρ =
1− ε

2
, f =

1 + ε(h′(u) + 1)√
2

, g =
−1 + ε(h′(u)− 1)√

2
.

We see that all the functions depend only on u, as it should be by Theorem 4.2.

Next example is an example of a surface which is neither minimal nor totally umbilical.

Example 5.2. The surface in M4 given by

x(u, v) = (sinh v, cosh v, v cosu, v sinu)

is a regular lightlike surface and the map x is conformal.
It can be checked by direct calculation that the vector fields xv, xvv and xuv are linearly independent, so by

Lemma 4.1., the surface is not minimal. We can choose ξ = xv and U = xvv. Then

D2(ξ, ξ) = (∇̃xv
xv) · xvv = xvv · xvv = 1 ̸= 0,

so by Theorem 5.3, the surface is not totally umbilical.
The Weierstrass data of this parametrization are

ρ =
cosh v − sinh v

2
, f =

cosu+ sinu+ εv(cosu− sinu)√
2(cosh v − sinh v)

, g =
cosu− sinu− εv(cosu+ sinu)√

2(cosh v − sinh v)
.

It is easy to check that (4.4) is not satisfied, therefore, the surface is not minimal.

The last example is an l-minimal surface which is obtained by modifying the previous example.

Example 5.3. The surface given by the parametrization

x(u, v) = (sinh v, cosh v, cosu, sinu).

is l-minimal. This parametrization is based on a very general example given in [7] on how to construct an l-
minimal translation surface in Mn, n ≥ 4. We will only comment here that such a parametrization in M4 cannot
be conformal because the only way to decompose M4 is M2 ⊕ E2. The parametrization is of form

x(u, v) = c1(u) + c2(v),

where c1 is a curve in E2 and c2 a curve in M2. In order for x to be conformal, c2 must be a lightlike curve.
However, the only lightlike curve in M2 is a line, but then the surface does not have a non-trivial family of
G-transformations.

It is interesting that in M5 = M3 ⊕ E2, an l-minimal translation surface can have a conformal parametrization.
For example, for c2 we can choose the nul-helix

γ(s) =

(
s3

4
+
s

3
,
s2

2
,
s3

4
− s

3

)
from [8], which is a non-planar lightlike curve.
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