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Abstract. The purpose of this paper is to investigate some properties of

multiplicative regular and periodic Sturm-Liouville problems given in general

form. We first introduce regular and periodic Sturm-Liouville (S-L) problems
in multiplicative analysis by using some algebraic structures. Then, we dis-

cuss the main properties such as orthogonality of different eigenfunctions of
the given problems. We show that the eigenfunctions corresponding to same

eigenvalues are unique modulo a constant multiplicative factor and reality of

the eigenvalues of multiplicative regular S-L problems. Finally, we present
some examples to illustrate our main results.

1. Introduction

Grossman and Katz established a new part of analysis by giving definitions
of new kinds of derivatives and integrals in the period between 1967 and 1970,
which is called non-Newtonian calculus [12, 13]. This calculus provides alterna-
tive approaches to the classical calculus developed by Newton and Leibniz. Non-
Newtonian calculus has many subbranches as multiplicative, anageometric, biogeo-
metric, quadratic, and harmonic calculus. One of the most popular of them is
multiplicative calculus. Arithmetics, which are a complete ordered field on a subset
of real numbers, play a substantial role in the construction of non-Newtonian calcu-
lus. It is well known that the system of real numbers is a classical arithmetic. Each
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arithmetic yields one generator, the opposite of this is also true, i.e., each genera-
tor yields one arithmetic. For instance, usual arithmetic and geometric arithmetic
are produced by the generators I (unit operator) and exp, respectively. Also, the

function σ(x) = ex−1
ex+1 is a generator for sigmoidal arithmetic which characterizes

sigmoidal curves that appear in the research of biological growth and population.
There is a useful relationship providing advantages to each other between ordinary
Newtonian calculus and multiplicative calculus. There are actually many reasons
to investigate multiplicative analysis. For instance, it is not easy to find solutions
of nonlinear differential equations in general, but this theory provides more ad-
vantages to get this kind of solutions [25]. The main difference of multiplicative
calculus from the classical analysis is that it moves the roles of subtraction and ad-
dition in ordinary Newtonian calculus to division and multiplication, respectively.
Since several events in the real world such as the magnitudes of earthquakes, the
levels of sound signals and the acidities of chemicals change exponentially, geomet-
ric calculus which is defined as multiplicative calculus provides a great benefit.
Multiplicative calculus is convenient for some problems, e.g., in applied math-
ematics [1, 3, 4, 6, 19, 28, 29], mathematical analysis [6, 15, 19, 21, 24, 30], spectral
analysis [11, 14, 31], physics [10, 22], biology [16, 17], economics and finance [7, 8],
medicine [9], pattern recognition in images [18] and signal processing [20]. In re-
cent years, multiplicative calculus has received a lot of attention, and most of the
published research has been interested in some problems of differential equation,
integral equation, spectral analysis, mathematical analysis. Sturm-Liouville equa-
tions lead to the development of many problems in mathematics and physics [32].
Important results have been obtained on Sturm-Liouville equations by many re-
searchers over the years. Recently, some spectral properties of Sturm-Liouville
problems in multiplicative calculus have been studied by many authors [11,14,31].
In [11], the author has moved a special S-L problem in the usual case to multi-
plicative calculus in the aspect of spectral analysis. He has investigated asymptotic
behaviors of eigenvalues and eigenfunctions of the given S-L problem.

General properties of multiplicative Sturm-Liouville problems which arise in
many problems of mathematics, physics, engineering have not been studied in mul-
tiplicative analysis yet. In this paper, we deal with multiplicative Sturm-Liouville
problems in general form. We give some general properties of multiplicative regular
and periodic Sturm-Liouville problems.

The paper is organized as follows. In Section 2, we recall some main definitions
and concepts in multiplicative analysis. In Section 3, we present orthogonality
of different eigenfuctions corresponding to different eigenvalues of multiplicative
Sturm-Liouville problems and we discuss the uniqueness with a constant factor
difference of eigenfunctions corresponding to same eigenvalues. Also, we find that
the eigenvalues of multiplicative regular S-L problems are real. Finally, we give
some applications of our main problems in the last section.



MISCELLANEOUS PROPERTIES OF S-L PROBLEMS IN MULTIPLICATIVE CALCULUS1143

2. Preliminaries

In this section, we will recall some well-known fundamental definitions and the-
orems of the multiplicative calculus given in [2, 12,13,23].
Non-Newtonian calculus use different types of arithmetic and their generators. Let
α be a bijection between subsets X and Y of the set of real numbers R, with
α : X → Y ⊂ R. α defines an arithmetic if the following operators are satisfied:

x⊕ y = α
(
α−1(x) + α−1(y)

)
x⊖ y = α

(
α−1(x)− α−1(y)

)
(1)

x⊙ y = α
(
α−1(x).α−1(y)

)
x⊘ y = α

(
α−1(x)/α−1(y)

)
.

If we choose α as identity function and X = R, then (1) reduces to standard
arithmetic and we get the ordinary Newtonian calculus.
Throughout the paper, we fix α(x) = ex, α−1(x) = ln(x), and X = R+. Then, it
follows from (1)

x⊕ y = x.y,

x⊖ y =
x

y
,

x⊙ y = xln(y),

x⊘ y = x
ln(

1

y
)

.

Let a, b, c ∈ R+. The operation ⊙ satisfies the following properties (cf. Proposition
2.1 of [5, 24])

i) a⊙ b = b⊙ a (commutativity)
ii) a⊙ (b⊙ c) = (a⊙ b)⊙ c (associativity)
iii) a⊙ e = a (Euler’s number e is the neutral element for ⊙)
iv) If a{−1} = e⊘ a, a ̸= 1, then a⊙ a{−1} = e (inverse element)
v) b⊙ a{−1} = b⊘ a

vi)
(
a{−1}){−1}

= a
vii) ln(a⊙ b) = ln(a)⊕ ln(b)
viii) (a⊙ b){−1} = a{−1} ⊙ b{−1}.

In view of the mentioned properties, (R+,⊕,⊙) is a field (see [5]).
Let A be a set of positive functions defined on a subset of R and let ⊕ : AxA→ A
be an operation satisfying the following properties:

f ⊕ g = fg

f ⊖ g =
f

g
(2)

f ⊙ g = f ln g = gln f .
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Then, the algebraic structure (A,⊕) is called a multiplicative group and (A,⊕,⊙)
is a multiplicative ring [2]. This situation allows us to define different structures.

Definition 1. Let S ⊂ A ̸= ∅ and <,>∗: S × S → R+ be a mapping such that the
following axioms are satisfied for each f, g, h ∈ S :

i) < f, f >∗≥ 1,
ii) < f, f >∗= 1 if f = 1,
iii) < f ⊕ g, h >∗=< f, h >∗ ⊕ < g, h >∗,
iv) < eα ⊙ f, g >∗= eα⊙ < f, g >∗, α ∈ R,
v) < f, g >∗=< g, f >∗.

This mapping is called multiplicative inner product on S and is denoted by <,>∗.
Also, the space (S,<,>∗) is called the ∗inner product space [11].

Definition 2 (see [2]). Let f : A ⊆ R → R+ be a positive function. The multi-
plicative derivative of the function f , which is denoted by f∗, is defined as

f∗ (x) = lim
h→0

[
f (x+ h)

f (x)

] 1
h
,

if the above limit exists. Note that the multiplicative derivative is also called geo-
metric derivative.

Since f is a positive function, we can write the multiplicative derivative in the
following form

f∗ (x) = e(ln ◦f)′(x)

by using the properties of the classical derivative. It is seen that there exists the
following relation between the classical derivative and multiplicative derivative

f ′ (x) = f (x) ln f∗ (x) ,

where f is a positive function. Moreover, the second order multiplicative derivative
of f is obtained by taking multiplicative derivative of the function f∗ and it is
represented by f∗∗. By taking n-times multiplicative derivative of the function f
consecutively, we get n-th order multiplicative derivative of the function f at the
point x as

f∗(n) (x) = e(ln ◦f)(n)(x).

Theorem 1 (see [2]). Assume that f ,g are multiplicative differentiable functions
and h is a classical differentiable function at the point x. Then, it follows

i) (cf)
∗
(x) = f∗ (x),

ii) (fg)
∗
(x) = f∗ (x) g∗ (x),

iii)
(
f
g

)∗
(x) = f∗(x)

g∗(x) ,

iv)
(
fh
)∗

(x) = f∗ (x)
h(x)

f (x)
h′(x)

,
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v) (f ◦ h)∗ (x) = f∗ (h (x))
h′(x)

,

vi) (f + g)
∗
(x) = f∗ (x)

f(x)/(f(x)+g(x))
g∗ (x)

g(x)/(f(x)+g(x))
,

where c is a positive constant.

Definition 3 (see [2]). Let f be a positive bounded function on [a, b] where
−∞ < a < b <∞. A multiplicative integral of the function f is defined by

b∫
a

f (x)
dx

= e

b∫
a

(ln f(x))dx

if f is Riemann integrable on [a, b].
On the other hand, the multiplicative integral of f on [a, b] shows that

b∫
a

f (x) dx = ln

b∫
a

(
ef(x)

)dx
.

This multiplicative integral has the following properties:

i)

b∫
a

[
f (x)

k
]dx

=

 b∫
a

f (x)
dx

k ,
ii)

b∫
a

[f (x) g (x)]
dx

=

b∫
a

f (x)
dx

b∫
a

g (x)
dx
,

iii)

b∫
a

[
f(x)
g(x)

]dx
=

b∫
a

f(x)dx

b∫
a

g(x)dx

,

iv)

b∫
a

f (x)
dx

=

c∫
a

f (x)
dx

b∫
c

f (x)
dx
,

where f, g are multiplicative integrable functions, k ∈ R is a constant and c ∈ [a, b].

Definition 4. Assume that y1, y2, . . . , yn functions are positive functions which are
multiplicative differentiable at least (n-1) times and a matrix M with dimension
n× n is defined as

M =


ln y1 ln y2 . . . ln yn
ln y∗1 ln y∗2 . . . ln y∗n
...

... . . .
...

ln y
∗(n−1)
1 ln y

∗(n−1)
2 . . . ln y

∗(n−1)
n

 .
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Then, the determinant Wn defined as

Wn (y1, y2, . . . , yn) = detM

is called the multiplicative Wronskian determinant of the functions {yi}ni=1 [26].

Note that the space L∗
2 [a, b] =

{
f :

∫ b

a

[f (x)⊙ f (x)]
dx
<∞

}
is an ∗inner product

space with multiplicative inner product

<,>∗: L
∗
2 [a, b]× L∗

2 [a, b] → R+, < f, g >∗=

∫ b

a

[f (x)⊙ g (x)]
dx
,

where f, g ∈ L∗
2 [a, b] are positive functions. It is clear that the space L∗

2 [a, b] is the
multiplicative analogue of the well-known L2 [a, b]. Since this space is a linear space
and the field that we study is a special field whose scalars are real numbers, it helps
us to find the properties of eigenvalues of the problems. Hence, it is important to
study in the field (R+,⊕,⊙) for our results.

Definition 5. i) The n-th order multiplicative linear differential expression
is given by

T (y) =
[
y∗(n)

]an(x) [
y∗(n−1)

]an−1(x)

...ya0(x).

Here an(x), an−1(x), ..., a0(x) are continuous exponents on [a, b] and
y(x) ∈ C∗(n), where C∗(n) is the set of the functions which are n-th order
multiplicative differentiable and continuous.

ii) A solution of T (y) = yλ which satisfies y ̸= 1 and y ∈ L∗
2 [a, b] is called a

multiplicative eigenfunction of the operator T and the corresponding value
of λ is called a multiplicative eigenvalue of the operator T [11].

3. Main Results

Let us start our discussion with the boundary value problem

L [y] =
(
(y∗)

p(x)
)∗
yq(x) = y−λs(x); p(x) > 0, s(x) > 0 (3)

defined on (a, b), which has the boundary conditions

(y (a))
a1 (y∗ (a))

a2 = 1

(4)

(y (b))
b1 (y∗ (b))

b2 = 1,

where ai, bi; i = 1, 2 are given constants, a21 + a22 ̸= 0, b21 + b22 ̸= 0, p(x), p∗(x),
q(x) and s(x) are to be assumed continuous for x ∈ [a, b]. This problem is called a
multiplicative regular Sturm-Liouville problem.
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Definition 6. Let {ψk} be a sequence of multiplicative integrable functions and s
be a positive function on [a, b]. If the following equation holds for k ̸= j∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx

= 1, (5)

then the sequence of functions {ψk} is orthogonal with respect to the weight function
s on [a, b]. In particular, the special case of this definition for s = 1 was given
in [11].

Theorem 2. Let ψj (x, λj) and ψk (x, λk) be multiplicative eigenfunctions of the
regular Sturm-Liouville problem (3)-(4) corresponding to different multiplicative
eigenvalues λj and λk, respectively. Then, ψj (x, λj) and ψk (x, λk) are orthogonal
with respect to the weight function s.

Proof. Since ψj (x, λj) and ψk (x, λk) are the solutions of the equation (3), we can
write (

ψ∗
j (x)

p(x)
)∗
ψj (x)

q(x)
= ψj (x)

−λjs(x) (6)(
ψ∗
k (x)

p(x)
)∗
ψk (x)

q(x)
= ψk (x)

−λks(x) . (7)

By using (6) and (7), we obtain(
ψ∗
j (x)

p(x)
)∗ lnψk(x)

(
ψ∗
k (x)

p(x)
)∗ lnψj(x)

=
ψj (x)

−λjs(x) lnψk(x)

ψk (x)
−λks(x) lnψj(x)

. (8)

On the other hand, we have(
ψ∗
j (x)

p(x)
)∗ lnψk(x)

(
ψ∗
k (x)

p(x)
)∗ lnψj(x)

=

(
ψ∗
j (x)

p(x) lnψk(x)
)∗

(
ψ∗
k (x)

p(x) lnψj(x)
)∗ =

(
ψ∗
j (x)

p(x) lnψk(x)

ψ∗
k (x)

p(x) lnψj(x)

)∗

. (9)

From (8) and (9), it follows(
ψ∗
j (x)

p(x) lnψk(x)

ψ∗
k (x)

p(x) lnψj(x)

)∗

=
ψj (x)

−λjs(x) lnψk(x)

ψk (x)
−λks(x) lnψj(x)

. (10)

By taking the multiplicative integral from a to b in (10) and using the properties of
multiplicative integrals given in previous section, the following equation is obtained

ψ∗
j (b)

p(b) lnψk(b)

ψ∗
k (b)

p(b) lnψj(b)

ψ∗
k (a)

p(a) lnψj(a)

ψ∗
j (a)

p(a) lnψk(a)
=

(∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx)λk−λj

. (11)

By the help of the boundary conditions in (4) and the equation (11), we find(∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx)λk−λj

= 1.
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Since λj ̸= λk, the proof of theorem is completed. □

Now, consider a multiplicative periodic Sturm-Liouville problem

L [y] =
(
(y∗)

p(x)
)∗
yq(x) = y−λs(x), x ∈ [a, b]

with the periodic boundary conditions

y (a) = y (b)

(12)

y∗ (a) = y∗ (b) ,

where p(a) = p(b).

Theorem 3. The multiplicative eigenfunctions of the multiplicative periodic Sturm-
Liouville problem (3)-(12) are orthogonal with respect to the weight function s on
[a, b].

Proof. Let ψj (x, λj) and ψk (x, λk) be multiplicative eigenfunctions corresponding
to distinct multiplicative eigenvalues λj and λk, respectively. Since ψj and ψk
satisfy the periodic boundary conditions, we have

ψj (a) = ψj (b) , ψ∗
j (a) = ψ∗

j (b)
ψk (a) = ψk (b) , ψ∗

k (a) = ψ∗
k (b) .

(13)

By using (3), we can easily find(
ψ∗
j (b)

lnψk(b)

ψ∗
k (b)

lnψj(b)

)p(b)(
ψ∗
k (a)

lnψj(a)

ψ∗
j (a)

lnψk(a)

)p(a)
=

(∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx)λk−λj

.

Since p (a) = p (b) is in the periodic Sturm-Liouville problem and by the help
of (13), by taking into account multiplicative algebraic operations given by (2) it
follows ∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx

= 1

for λj ̸= λk. □

Lemma 1. All multiplicative eigenvalues of the multiplicative regular Sturm-Liouville
problem (3)-(4) are real.

Proof. Let λj = α+ iβ be a complex multiplicative eigenvalue of the problem (3)-
(4) corresponding the eigenfunction ψj (x, λj). Then, λk = α − iβ, which is the
conjugate of the multiplicative eigenvalue of λj , is also the multiplicative eigenvalue
for (3)-(4) corresponding to eigenfunction ψk (x, λk). By means of Theorem 2(∫ b

a

(
ψk (x, λk)

s(x) lnψk(x,λk)
)dx)λk−λj

= 1, (14)

from rule (i) in Definition 3, it follows
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∫ b

a

((
ψk (x, λk)

s(x) lnψk(x,λk)
)λk−λj

)dx
= 1.

By definition of the multiplicative integral, we obtain

2iβ

∫ b

a

s (x) |lnψk (x, λk)|
2
dx = 0.

The last equation holds if and only if when β = 0. Because, s (x) is a positive
function and ψk (x, λk) can not be equal to 1 . This is a contradiction, i.e., all
multiplicative eigenvalues of (3)-(4) are real. □

Theorem 4. If the functions ψj (x) and ψk (x) are any two solutions of (3) on
[a, b], then the following equation is verified

p (x)W
(
x;ψj , ψk

)
= µ,

where W is Wronskian and µ is a constant.

Proof. Since the functions ψj (x, λ) and ψk (x, λ) are solutions of the following
equation on [a, b]

L [y] = y−λs(x),

it follows from (10) (
ψ∗
j (x)

p(x) lnψk(x)

ψ∗
k (x)

p(x) lnψj(x)

)∗

= 1. (15)

By taking the multiplicative integral from a to x in (15), we find(
ψ∗
j (x)

lnψk(x)

ψ∗
k (x)

lnψj(x)

)p(x)(
ψ∗
k (a)

lnψj(a)

ψ∗
j (a)

lnψk(a)

)p(a)
= 1. (16)

From the definition of Wronskian, we get

W
(
x;ψj , ψk

)
= lnψ∗

k (x)
lnψj(x) − lnψ∗

j (x)
lnψk(x)

= ln

(
ψ∗
k (x)

lnψj(x)

ψ∗
j (x)

lnψk(x)

)
. (17)

By using (16) and (17) the following can be easily seen

e−W(x;ψj ,ψk)p(x)eW(a;ψj ,ψk)p(a) = 1.

It is seen that
W
(
x;ψj , ψk

)
p (x) =W

(
a;ψj , ψk

)
p (a) .

By the help of the last equality, the proof is completed. □

Theorem 5. The multiplicative eigenfunction corresponding to any multiplicative
eigenvalue of the regular Sturm-Liouville problem given by (3)-(4) is unique with a
constant factor difference.
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Proof. Let ψj (x, λ) and ψk (x, λ) be multiplicative eigenfunctions of (3) correspond-
ing to multiplicative eigenvalue λ. From Theorem 4, we have

p (x)W
(
x;ψj , ψk

)
= µ,

where p > 0. It is clear from this equation that for each any point x0 ∈ [a, b] if
W
(
x0;ψj , ψk

)
= 0, then for all x0 ∈ [a, b] it should be W

(
x;ψj , ψk

)
≡ 0. On the

other hand, by using the boundary condition (4), we obtain

ψ∗
j (a)

a2 =
1

ψj (a)
a1 , ψ∗

k (a)
a2 =

1

ψk (a)
a1 . (18)

Since a1 and a2 should not be zero at once, it follows from the definition of Wron-
skian

e−W(a;ψj ,ψk) =
ψ∗
k (a)

lnψj(a)

ψ∗
j (a)

lnψk(a)
.

By using (18) and the last equality, we get

e−W(a;ψj ,ψk) =
ψj (a)

a1
a2

lnψk(a)

ψk (a)

a1
a2

lnψj(a)

= 1,

which gives W = 0 at the point x0 = a ∈ [a, b]. So, W ≡ 0 on [a, b]. This is a
sufficient condition for ψj and ψk to be linear dependent. Therefore, one of these
solution is a constant multiple of the other. □

4. Applications

In this section, we will give some examples of multiplicative Sturm-Liouville
problems defined by (3)-(4) and (3)-(12).

Example 1. Consider the multiplicative eigenvalue problem

y∗∗yλ = 1, 0 ≤ x ≤ π (19)

y (0) = y∗ (π) = 1.

Assume that λ ≤ 0. We get the solution of (19) as follow

y (x) = ec1e
√

−λx+c2e
−

√
−λx

,

where c1 and c2 are real numbers. Since y (0) = y∗ (π) = 1, c1 = c2 = 0 is found.
Since for λ ≤ 0 we have the trivial multiplicative eigenfunction y (x, λ) = 1 of the
problem (19), there is no eigenvalue for λ ≤ 0. Now, assume that λ > 0. We get
the solution of (19)

y (x) = el1 cos
√
λx+l2 sin

√
λx,
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where l1 and l2 are real numbers. Using the condition y (0) = y∗ (π) = 1, we obtain
the multiplicative eigenfunctions

yn (x) = el2 sin( 2n−1
2 )x

of (19) corresponding to eigenvalues

λn =

(
2n− 1

2

)2

; n = 1, 2, 3 . . .

Without loss of generality, by taking l2 = 1, we get the family of eigenfunctions

yn (x) = esin(
2n−1

2 )x.

Remark 1. Since different multiplicative eigenfunctions corresponding to different
eigenvalues of (3)-(4) are orthogonal as a consequence of Theorem 2, the following
result holds∫ π

0

(
yn (x)

ln ym(x)
)dx

=

∫ π

0

(
esin(

2n−1
2 x) sin( 2m−1

2 x)
)dx

= 1.

Example 2. Let us consider the following multiplicative periodic eigenvalue prob-
lem

y∗∗yλ = 1, 0 ≤ x ≤ π (20)

y (0) = y (π) , y∗ (0) = y∗ (π) .

Since we have trivial eigenfunction y (x) = 1 for λ < 0, there is no eigenfunction of
S-L problem for λ < 0. For λ = 0, the nontrivial solution of the problem is obtained
as y (x) = e. Now, suppose that λ > 0. Then, we find the solution of (20) as follow

y (x) = ek1 cos
√
λx+k2 sin

√
λx,

where k1 and k2 are real numbers. From y (0) = y (π) , y∗ (0) = y∗ (π) , we find

k2 = −k1 sin
√
λπ + k2 cos

√
λπ, k1 = k1 cos

√
λπ + k2 sin

√
λπ,

from which it gives k1 = k2 = 0. So, we get only a trivial eigenfunction of (20)
for λ > 0. Thus, it is seen that the nontrivial solution of the given multiplicative
periodic eigenvalue problem is y (x) = e corresponding to eigenvalue λ = 0.

Example 3. Consider the following multiplicative Sturm-Liouville problem

(y∗∗)
x2

(y∗)
x
yλ = 1 (21)

y (1) = 1, y (e) = 1.

It is known that the following equalities are provided when the substitution x = et

is applied [27](
D̃y
)x

= D̃1y and
(
D̃(2)y

)x2

=
(
D̃

(2)
1 y

)(
D̃1y

)−1

, (22)
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where D̃ is the multiplicative derivative operator of y with respect to x and D̃1 is
the multiplicative derivative operator of y with respect to t. By the help of (22), we
write

(y∗)
x
=
(
eD ln y

)x
= eD1 ln y = D̃1y

(y∗∗)
x2

=
(
eD

2(ln y)
)x2

= eD1(D1−1) ln y =
(
D̃

(2)
1 y

)(
D̃1y

)−1

, (23)

where D is the derivative operator of y with respect to x and D1 is the derivative
operator of y with respect to t. Then, from (21) and (23), we get

e(D1(D1−1)+D1+λ) ln y = 1,

from which it follows (D2
1 + λ) ln y = 0. If λ ≤ 0, then we get

y(x) = em1e
√

−λ ln x+m2e
−

√
−λ ln x

,

where m1 and m2 are real numbers. By using the condition y (1) = 1, y (e) = 1,
it is clear that m1 = m2 = 0. Since for λ ≤ 0 we have the trivial multiplicative
eigenfunction y (x, λ) = 1 of this example, there is no eigenvalue for λ ≤ 0. If
λ > 0, we find the solution of (21) as follow

y(x) = ev1 cos(
√
λ ln x)+v2 sin(

√
λ ln x),

where v1 and v2 are real numbers. From the boundary condition y (1) = 1,
y (e) = 1, we get the multiplicative eigenfunctions

yn (x) = ev2 sin(nπ ln x)

of (21) corresponding to eigenvalues

λn = (nπ)
2
,

where n = 1, 2, 3, . . ..
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