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Abstract
This paper presents a three-component model consisting of one prey and two predator species using
imprecise biological parameters as interval numbers and applied functional parametric form in the
proposed prey-predator system. The positivity and boundedness of the model are checked, and a
stability analysis of the five equilibrium points is performed. Numerical simulations are performed to
study the effect of the interval number and to illustrate analytical studies.
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1 Introduction

The dynamics of predator-prey relationships [1–5] relationships is an essential aspect of any
ecosystem where plants, animals, and other living organisms coexist in a delicate balance. Prey-
predator model dynamics [6–10] are influenced by a variety of factors, including environmental
conditions, competition from the predator population, and mortality rates. Mathematical ecology
is an area of study that investigates the dynamic relationships between prey and predators. In this
research, we analyze a three-species prey-predator model [11–15] with competition in predator
populations to study dynamics with imprecise parameters.
Most previous research on prey-predator models has been based on the assumption of exact
biological parameters [1–15]. However, in reality, biological parameters may not be fixed and
can change due to various reasons, making the exact estimation of these parameters difficult.
To address this issue, we consider interval number biological parameters in our study. Interval
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numbers allow us to incorporate uncertainty into our models and make more realistic predictions
about the behavior of the system.
Furthermore, using interval numbers for parameters can capture the complex dynamics of
predator-prey systems, such as boom-bust cycles, where the populations of both species os-
cillate over time. Interval numbers can also provide greater flexibility in modeling a prey-predator
system, enabling us to simulate the effect of different environmental factors on the system and
explore different scenarios.
In this paper, we focus on studying the advantages of using interval number biological parameters
for prey-predator systems and the effect of certain model parameters on the system. Although
some studies have explored the use of interval parameters in prey-predator models [16–22], our
research offers new insights into the potential benefits of this approach. Ultimately, our findings
can contribute to a better understanding and management of these vital ecosystems.

2 Prey-predator imprecise model with interval number

In this proposed model, we consider one prey species and two predator species. Let X (t) denote
the prey density, Y (t) the 1st predator and Z (t) the 2nd predator density at any time t.
The biological environment of populations is not completely predictable, so the biological pa-
rameters of modeling the prey-predator system should be considered imprecise. The proposed
prey-predator system is developed on the following assumptions:
Assumption 1. The prey population grows according to the logistic curve with carrying capacity
k(kϵR+) and with an intrinsic growth rate r(rϵR+), in the absence of both predator species. The
logistic equation is a mathematical model that describes the growth of a population over time. It
is represented by the following differential equation:

dN
dt

= rN
(

1 −
N
K

)
,

where N is the population size, t is time, r is the intrinsic growth rate of the population, and K
is the carrying capacity, which is the maximum number of individuals that the environment can
support.
The logistic equation incorporates the concept of density dependence, which means that the
growth rate of the population decreases as it approaches the carrying capacity. This results
in an S-shaped growth curve, where the population initially grows rapidly, slows down as it
approaches the carrying capacity, and eventually stabilizes at the carrying capacity. In the presence
of predators, Y and Z, the population of prey X will decrease due to the attack of predators. The
first and second predators attack the prey with an interval-valued rate β̂1 (> 0) and β̂2 (> 0)
respectively and the Holling type I functional response manner. Holling type function, also known
as the functional response curve, is a mathematical model that describes the rate at which a
predator consumes prey as a function of prey density. It is named after Canadian ecologist C.S.
Holling, who first proposed the idea in the 1950s.
The Holling type function is typically represented by one of three functional forms:
Type I: f (x) = ax, where a is a constant that represents the attack rate of the predator.
Type II: f (x) = ax

1+ ax
h

, where h is a constant that represents the handling time, or the time it takes
for the predator to consume a single prey item.
Type III: f (x) = ax2

1+bx+ x2
k

, where b and k are constants that determine the shape of the curve.

In general, the Holling type function predicts that the rate of predation increases with prey density
up to a certain point, after which the rate of predation begins to level off as the predator becomes
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saturated with prey. The precise shape of the curve depends on the specific functional form of the
model. Then the mathematical form of the above assumption is as follows.

dX
dt

= rX
(

1 −
X
k

)
− β̂1XY − β̂2XZ. (1)

Assumption 2. Prey X are food for predators (Y and Z), so in the presence of food, the population
density of predators (Y and Z) will increase in the Holling type I functional response manner. We
introduced the natural death of predators. Here we also consider the competition between the
predators, and for this reason, the population density of both predators will decrease. We consider
the competition parameters δ̂1 and δ̂2 to be imprecise. Hence, from the above assumption, we have

dY
dt

= β̂1XY − d1Y − δ̂1YZ, (2)

dZ
dt

= β̂2XZ − d2Z − δ̂2YZ. (3)

Therefore, our final mathematical model with four interval-valued parameters is as follows.

dX
dt

= rX
(

1 −
X
k

)
− β̂1XY − β̂2XZ,

dY
dt

= β̂1XY − d1Y − δ̂1YZ, (4)

dZ
dt

= β̂2XZ − d2Z − δ̂2YZ,

where β̂1 ∈ [β1l , β1u], β̂2 ∈ [β2l , β2u], δ̂1 ∈ [δ1l , δ1u] , δ̂2 ∈ [δ2l , δ2u], for β1l > 0, β2l > 0, δ1l > 0
and δ2l > 0, with initial conditions

X(0) > 0, Y(0) > 0, and Z(0) > 0. (5)

Using the parametric form of interval-valued parameters, the equations (4) can be written in the
parametric prey-predator model [16, 17] for p ∈ [0,1] is as follows:

dX
dt

= rX
(

1 −
X
k

)
− β

1−p
1l β

p
1uXY − β

1−p
2l β

p
2uXZ,

dY
dt

= β
1−p
1l β

p
1uXY − d1Y − δ

1−p
1l δ

p
1uYZ, (6)

dZ
dt

= β
1−p
2l β

p
2uXZ − d2Z − δ

1−p
2l δ

p
2uYZ,

subject to the initial conditions

X(0) > 0, Y(0) > 0 and Z(0) > 0. (7)

The biological descriptions of each parameter have been discussed in Table 1.
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Table 1. Biological meaning of the model parameters

Parameter Biological meaning
X Prey species
Y 1st predator species
Z 2nd predator species
r Intrinsic growth rate
k Carrying capacity

β1 Consumption rate of 1st predator
β2 Consumption rate of 2nd predator
δ1 Competition rate between the 1st predator (Y) to 2nd predator (Z)
δ2 Competition rate between the 2nd predator (Z) to 1st predator (Y)
d1 Natural death rate of 1st predator
d2 Natural death rate of 2nd predator

3 Dynamical behavior

In this section, we describe the rigorous dynamical behavior of the proposed model system. To do
so, we first check the positivity of the solutions of the interval model and the uniform boundedness
of the solution of the same model.

Positivity

Theorem 1 Every solution of system (6) with initial conditions (7) exists in the interval [0,∞) and
X(0) > 0, Y(0) > 0 and Z(0) > 0 for all t ≥ 0.

Proof Since the right-hand side of the system (6) is completely continuous and locally Lipschitzian
on C, the solution (X(t), Y(t), Z(t)) of (6) with initial conditions (7) exists and is unique on [0, ξ),
where 0 < ξ < ∞.
From system (6) with initial conditions (7), we have

X(t) = X(0)exp
[∫ t

0
{r(1 − (X(θ))/k)− β

1−p
1l β

p
1uY(θ)− β

1−p
2l β

p
2uZ(θ)}dθ

]
> 0,

Y(t) = Y(0)exp
[∫ t

0
{β

1−p
1l β

p
1uX(θ)− d1 − δ

1−p
1l δ

p
1uZ(θ)}dθ

]
> 0,

Z(t) = Z(0)exp
[∫ t

0
{β

1−p
2l β

p
2uX(θ)− d2 − δ

1−p
2l δ

p
2uY(θ)}dθ

]
> 0,

which completes the proof. ■

Uniform boundedness

Theorem 2 The solutions of the model system (6) are completely bounded.

Proof We construct a function such as Λ(t) = X(t) + Y(t) + Z(t).
Differentiating both sides with respect to t, we have

dΛ(t)
dt

=
dX(t)

dt
+

dY(t)
dt

+
dZ(t)

dt
.
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Therefore,

dΛ
dt

= rX(1 −
X
k
)− β

1−p
1l β

p
1uXY − β

1−p
2l β

p
2uXZ

+β
1−p
1l β

p
1uXY − d1Y − δ

1−p
1l δ

p
1uYZ + β

1−p
2l β

p
2uXZ − d2Z − δ

1−p
2l δ

p
2uYZ

= rX(1 −
X
k
)−

(
δ

1−p
1l δ

p
1u + δ

1−p
2l δ

p
2u

)
YZ − d1Y − d2Z.

Now,

dΛ
dt

+ γΛ == rX(1 −
X
k
)−

(
δ

1−p
1l δ

p
1u + δ

1−p
2l δ

p
2u

)
YZ − d1Y − d2Z + γ (X + Y + Z) .

dΛ
dt

+ γΛ =

(
rX −

rX2

k
+ γX

)
− (d1 − γ) X − (d2 − γ)Y −

(
δ

1−p
1l δ

p
1u + δ

1−p
2l δ

p
2u

)
YZ.

Since
(

δ
1−p
1l δ

p
1u + δ

1−p
2l δ

p
2u

)
YZ > 0 and assuming γ < min (d1, d2) , then from the above equation,

we have

dΛ
dt

+ γΛ ≤
(

rX −
rX2

k
+ γX

)
≤ k

(r + γ)2

4r
= A (say) .

Applying the result of differential inequality, we obtain,
0 ≤ Λ (X(t), Y(t), Z(t)) ≤ A

γ

(
1 − e−γt)+ Λ (X(0), Y(0), Z(0)) e−γt,

which implies that 0 ≤ Λ ≤ A
γ as t → ∞ .

Hence all the solutions of (6) is uniformly bounded. ■

4 Equilibrium points and their existence and stability

In this section, we study the existence and stability behavior of the system (6) at equilibrium points
of the model system (6) are:

(I) Trivial equilibrium E0 (0, 0, 0), (II) Axial equilibrium E1 (k, 0, 0), (III) Planar equilibrium

(a) E2 (X2, Y2, 0) where X2 = d1

β
1−p
1l β

p
1u

and Y2 = r
β

1−p
1l β

p
1u

(
1 − d1

β
1−p
1l β

p
1uk

)
, (b) E3 (X3, 0, Z3) ,

where X3 = d2

β
1−p
2l β

p
2u

and Z3 = r
β

1−p
2l β

p
2u

(
1 − d2

β
1−p
2l β

p
2uk

)
. (IV) Interior equilibrium E∗ (X∗, Y∗, Z∗) ,

where X∗ =
k
(

β
1−p
1l β

p
1uδ

1−p
1l δ

p
1ud2+rd1δ

1−p
2l δ

p
2u+β

1−p
2l β

p
2ud1δ

1−p
2l δ

p
2u

)
rδ

1−p
1l δ

p
1uδ

1−p
2l δ

p
2u+kβ

1−p
1l β

p
1uβ

1−p
2l β

p
2u

(
δ

1−p
1l δ

p
1u+δ

1−p
2l δ

p
2u

) > 0, Y∗ =
β

1−p
2l β

p
2uX∗−d2

δ
1−p
2l δ

p
2u

,

and Z∗ =
β

1−p
1l β

p
1uX∗−d1

δ
1−p
1l δ

p
1u

.

Now Y∗ > 0 if β
1−p
2l β

p
2uX∗ > d2, and Z∗ > 0 if β

1−p
1l β

p
1uX∗ > d1.

Local stability analysis

In this section, we study the local stability of the system (6) at various equilibrium points.

Theorem 3 The equilibrium point E0 is always unstable.
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Proof Variational matrix of system (6) at E0(0, 0, 0) is given by

V(E0) =

 r 0 0
0 −d1 0
0 0 −d2

 .

Therefore, eigenvalues of the characteristic equation of V(E0) are λ1 = r > 0, λ2 = −d1 < 0,
λ3 = −d2 < 0. Here, one of the eigenvalues is positive and the other two are negative, so E0 is
always unstable. ■

Theorem 4 The equilibrium point E1 is stable if β
1−p
1l β

p
1uk < d1 and β

1−p
2l β

p
2uk < d2.

Proof Variational matrix of system (6) at E1(k, 0, 0) is given by

V(E1) =

 −r −β
1−p
1l β

p
1uk −β

1−p
2l β

p
2uk

0 β
1−p
1l β

p
1uk − d1 0

0 0 β
1−p
2l β

p
2uk − d2

 .

The eigenvalues of the characteristic equation of V(E1) are λ1 = −r < 0, λ2 = β
1−p
1l β

p
1uk − d1,

λ3 = β
1−p
2l β

p
2uk − d2. Therefore, E1 is stable if β

1−p
1l β

p
1uk < d1 and β

1−p
2l β

p
2uk < d2. ■

Theorem 5 The equilibrium point E2 is locally asymptotically stable if d2 > β
1−p
2l β

p
2uX2 − δ

1−p
2l δ

p
2uY2,

A1 > 0 and A2 > 0.

Proof The variational matrix of system (6) at E2 (X2, Y2, 0) is given by

V(E2) =

 m11 m12 m13
m21 m22 m23

0 0 m33

 ,

where m11 = r − 2rX2
k − β

1−p
1l β

p
1uY2, m12 = −β

1−p
1l β

p
1uX2, m13 = −β

1−p
2l β

p
2uX2, m21 = β

1−p
1l β

p
1uY2,

m22 = β
1−p
1l β

p
1uX2 − d1, m23 = −δ

1−p
1l δ

p
1uY2, m33 = β

1−p
2l β

p
2uX2 − d2 − δ

1−p
2l δ

p
2uY2.

Now the characteristic equation for V(E2) is (m33 − λ)
{

λ2 + A1λ + A2
}
= 0, where

A1 = − (m11 + m22) and A2 = m11m22 − m12m21.
Therefore, one eigenvalue of the characteristic equation above is m33, which is negative as
d2 > β

1−p
2l β

p
2uX2 − δ

1−p
2l δ

p
2uY2 and the other two eigenvalues are negative if A1 > 0 and A2 > 0.

Therefore, the second predator-free equilibrium point E2 (X2, Y2, 0) is locally asymptotically stable
if d2 > β

1−p
2l β

p
2uX2 − δ

1−p
2l δ

p
2uY2, A1 > 0, and A2 > 0, otherwise the system (6) will be unstable. ■

Theorem 6 The equilibrium point E3 is locally asymptotically stable if d1 > β
1−p
1l β

p
1uX3 − δ

1−p
1l δ

p
1uZ3,

B1 > 0 and B2 > 0.

Proof The variational matrix of system (6) at E3 (X3, 0, Z3) is given by

V(E3) =

 p11 p12 p13
0 p22 0

p31 p32 p33

 ,
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where p11 = r − 2rX3
k − β

1−p
2l β

p
2uZ3, p12 = −β

1−p
1l β

p
1uX3, p13 = −β

1−p
2l β

p
2uX3, p22 = β

1−p
1l β

p
1uX3 −

d1 − δ
1−p
1l δ

p
1uZ3, p31 = β

1−p
2l β

p
2uZ3, p32 = −δ

1−p
2l δ

p
2uZ3, p33 = β

1−p
2l β

p
2uX3 − d2.

The characteristic equation for V(E3) is (p22 − λ)
(
λ2 + B1λ + B2

)
= 0, where B1 = − (p11 + p33)

and B2 = p11 p33 − p13 p31.
Therefore, the eigenvalue of the characteristic equation above is p22, which is negative as
d1 > β

1−p
1l β

p
1uX3 − δ

1−p
1l δ

p
1uZ3, and the other two eigenvalues are negative if B1 > 0 and B2 > 0.

The first predator-free equilibrium point E3 (X3, 0, Z3) is locally asymptotically stable if
d1 > β

1−p
1l β

p
1uX3 − δ

1−p
1l δ

p
1uZ3, B1 > 0 and B2 > 0, otherwise the system (6) will be unstable. ■

Theorem 7 The equilibrium point E∗ is locally asymptotically stable if the inequalities A > 0, C > 0,
AB − C > 0 are satisfied.

Proof Variational matrix of system (6) at E∗(X∗, Y∗, Z∗) is given by,

V(E∗) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

where a11 = r − 2rX
k

∗
− β

1−p
1l β

p
1uY∗ − β

1−p
2l β

p
2uZ∗, a12 = −β

1−p
1l β

p
1uX∗, a13 = −β

1−p
2l β

p
2uX∗,

a21 = β
1−p
1l β

p
1uY∗, a22 = β

1−p
1l β

p
1uX∗ − δ

1−p
1l δ

p
1uZ∗ − d1, a23 = −δ

1−p
1l δ

p
1uY∗, a31 = β

1−p
2l β

p
2uZ∗,

a32 = −δ
1−p
2l δ

p
2uZ∗, a33 = β

1−p
2l β

p
2uX∗ − δ

1−p
2l δ

p
2uY∗ − d2.

Therefore, the characteristic equation of V(E∗) is

λ3 + Aλ2 + Bλ + C = 0, (8)

where, A = −(a11 + a22 + a33), B = − (a12a21 + a13a31 + a23a32 − a11a22 − a11a33 − a22a33),
C = −(a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32).

According to the Routh-Hurwitz criterion, all eigenvalues of the characteristic equation (8) have
negative real parts, which means that the system (6) shows local asymptotic stability at E∗ if and
only if A > 0, C > 0, AB − C > 0. ■

Remark 1 When analyzing the stability of a model with exact biological parameters, the results are typically
the same as those for the model with the corresponding imprecise biological parameters. The key difference
between the two lies in the nature of the parameters used. While exact parameter models use precise
numerical values, imprecise biological parameter models employ uncertain parameters that are often in the
form of probability distributions or ranges of values. Despite this difference, the stability analysis techniques
used for both types of models are essentially the same.

Global stability analysis

In this section, we discuss the global stability behavior of the system (6) at interior equilibrium
point E∗(X∗, Y∗, Z∗). Studying the global stability of the equilibrium points using Lyapunov’s
direct method has gained popularity in recent years, but constructing suitable Lyapunov functions
can be challenging. In general, there are no systematic methods for constructing Lyapunov
functions for prey-predator models. However, the most commonly used types of Lyapunov
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functions are quadratic and Volterra-type functions. In this study, the global stability of the
equilibrium states was demonstrated using a Volterra-type Lyapunov function [23–28]. This
function was carefully chosen because of its effectiveness in analyzing the stability of dynamical
systems with more complex behavior.

Theorem 8 If E∗ is locally asymptotically stable, then E∗ is globally asymptotically stable in

G = {(X, Y, Z) : X > X∗, Y > Y∗ and Z > Z∗or X < X∗, Y < Y∗ and Z < Z∗} . (9)

Proof Let

L (X, Y, Z) = α1

(
X − X∗ − X∗ ln

X
X∗

)
+ α2

(
Y −Y∗ −Y∗ ln

Y
Y∗

)
+α3

(
Z − Z∗ − Z∗ ln

Z
Z∗

)
,

where α1, α2 and α3 are positive constants that will be chosen later.
Define L1 (X) =

(
X − X∗ − X∗ ln

(
X
X∗

))
, L2 (Y) =

(
Y −Y∗ −Y∗ ln

(
Y
Y∗

))
,

and L3 (Z) =
(

Z − Z∗ − Z∗ ln
(

Z
Z∗

))
, therefore, L (X, Y, Z) = α1L1 (X) + α2L2 (Y) + α3L3 (Z) .

Differentiating L(X, Y, Z) along the solution of the system (6) with respect to t, we get

dL
dt

= α1

(
1 −

X∗

X

)
dX
dt

+ α2

(
1 −

Y∗

Y

)
dY
dt

+ α3

(
1 −

Z∗

Z

)
dZ
dt

. (10)

Linear approximations X − X∗ ∼= X, Y −Y∗ ∼= Y and Z − Z∗ ∼= Z are used to compute dL1(X(t))
dt ,

dL2(Y(t))
dt and dL3(Z(t))

dt as follows:

dL1

dt
=

(
1 −

X∗

X

) [
r
(

1 −
X
k

)
− β

1−p
1l β

p
1uY − β

1−p
2l β

p
2uZ

]
X

= −
r
k
(X − X∗)2 − β

1−p
1l β

p
1u (X − X∗) (Y −Y∗)− β

1−p
2l β

p
2u (Z − Z∗) (X − X∗) ,

dL2

dt
=

(
1 −

Y∗

Y

) [
β

1−p
1l β

p
1uX − d1 − δ

1−p
1l δ

p
1uZ

]
Y

= β
1−p
1l β

p
1u (X − X∗) (Y −Y∗)− δ

1−p
1l δ

p
1u (Z − Z∗) (X − X∗) ,

and

dL3

dt
=

(
1 −

Z∗

Z

) [
β

1−p
2l β

p
2uX − d2 − δ2Y

]
Z

= β
1−p
2l β

p
2u (Z − Z∗) (X − X∗)− δ

1−p
2l δ

p
2u (Y −Y∗) (Z − Z∗) .
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Now,

dL
dt

= −α1
r
k
(X − X∗)2 −

[
α1β

1−p
2l β

p
2u + α2δ

1−p
1l δ

p
1u − α3β

1−p
2l β

p
2u

]
(Z − Z∗) (X − X∗)

+ (α2 − α1) β
1−p
1l β

p
1u (X − X∗) (Y −Y∗)− α3δ

1−p
2l δ

p
2u (Y −Y∗) (Z − Z∗) .

Let α2 = 1 and α3 = 1, then α1 = α2 = 1. Hence,

dL
dt

= −
r
k
(X − X∗)2 − δ

1−p
1l δ

p
1u (Z − Z∗) (X − X∗)− δ

1−p
2l δ

p
2u (Y −Y∗) (Z − Z∗) .

Now, we see that dL
dt is negative definite in the region:

G = {(X, Y, Z) : X > X∗, Y > Y∗ and Z > Z∗or X < X∗, Y < Y∗ and Z < Z∗} .

Therefore, the theorem follows. ■

5 Numerical simulation

To validate our analytical studies, we performed numerical simulations using hypothetical pa-
rameter data. Obtaining real data for this purpose can be complex, and therefore, we chose to use
hypothetical parameters for our simulations. This approach allows us to assess the precision of
our analytical studies and provides us with a reliable means of testing the effectiveness of our
models. In this study, we meticulously examine the influence of four significant parameters on the

Table 2. Value of the parameters for various simulations.

Parameter Simulation 1 Simulation 2 Simulation 3 Simulation 4
r 0.8 0.8 0.8 0.8
k 5.0 5.0 5.0 5.0

β̂1 [0.3, 0.5] [0.4, 0.6] [0.3, 0.5] [0.3, 0.5]
β̂2 [0.3, 0.5] [0.3, 0.5] [0.3, 0.5] [0.3, 0.5]
δ̂1 [0.04, 0.06] [0.04, 0.06] [0.05, 0.07] [0.04, 0.06]
δ̂2 [0.04, 0.06] [0.04, 0.06] [0.04, 0.06] [0.04, 0.06]
d1 0.1 0.1 0.1 0.1
d2 0.1 0.1 0.1 0.1
p 0.5 0.5 0.5 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

model system by using the four-parameter state approach, while simultaneously exploring the
potential benefits of incorporating interval numbers into our analysis. In doing so, our objective is
to expand our understanding of the model system and to provide valuable insight into its behavior
under varying conditions.
For the parameter set of simulation 1, we find that equilibrium points of the model are E0 (0, 0, 0),
E1 (5, 0, 0), E2 (0.2582, 1.9589, 0), E3 (0.2582, 0, 1.9589) and E∗ (0.3789, 0.9545, 0.9545) .
And corresponding eigenvalues are −0.1000,−0.1000, 0.8000; −0.8000, 1.8365, 1.8365; −0.0207 ±
0.2747i,
− 0.0960; −0.0207± 0.2747i,−0.0960 and −0.0297± 0.3313i,−0.0012. Among these points, E2, E3
and E∗ are stable. Fig. 1 supports our results.
To study the effect of the transmission coefficient (β̂1 and β̂2) on the model, we change the value of
the parameter β̂1 in simulation 2 compared to simulation 1. For the parameter set of simulation 2,
E0 (0, 0, 0), E1 (5, 0, 0), E2 (0.2041, 1.5663, 0), E3 (0.2582, 0, 1.9589) and E∗ (0.3277, 0.5492, 1.2355)
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Figure 1. Dynamical behaviour for the equilibrium points.
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Figure 2. Effect of consumption parameter on the system.

are equilibrium points of our model system. The corresponding eigenvalues are −0.1000,−0.1000,
0.8000; −0.8000, 2.3495, 1.8365; −0.0163 ± 0.2765i,−0.0977; −0.0205 ± 0.2746i,−0.0694 and
−0.0258 ± 0.3238i,−0.0008. Out of these points E2, E3 and E∗ are stable. Fig. 2 and Fig. 3 are
the graphical representation of our analysis based on the set of parameters of simulation 2. We
found that the initial value and the transmission coefficient (β̂1, and β̂2) are sensitive issues in this
system. Due to the change in β̂1, Fig. 2 shows a change compared to Fig. 1 for the same initial
condition. We notice another change in Fig. 3 compared to Fig. 2 for different initial conditions
and the same parameter values.

To study the effect of the competition coefficient (δ̂1 and δ̂2) on the model, we change the value of
the parameter δ̂1 in simulation 3 compared to simulation 1. For the parameter set of simulation 3
E0 (0, 0, 0), E1 (5, 0, 0), E2 (0.2582, 1.9589, 0), E3 (0.2582, 0, 1.9589) and E∗ (0.3899, 1.0418, 0.8627)
are the equilibrium points of our model.
And the corresponding eigenvalues are −0.1000,−0.1000, 0.8000; −0.8000, 1.8365, 1.8365; −0.0207±
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Figure 4. Effect of the competition parameter on the model.

0.2747i,−0.0960; −0.0207 ± 0.2747i,−0.1159 and −0.0281 ± 0.3360i, −0.0061.

Among these points, we identify three equilibrium points, namely E2, E3, and E∗, with stable
dynamics. The graphical representation of our findings based on the set of parameters used
in simulation 3 is presented in Figs. 4 and 5. Our analysis reveals that the initial values of
the competition coefficients (δ̂1 and δ̂2) are critical determinants of the behavior of the system.
Specifically, even slight changes in δ̂1 can significantly alter the system’s dynamics, as evident from
the comparison between Figs. 1 and 4 for the same initial conditions. Furthermore, we observe
another significant change in Fig. 5 compared to Fig. 4 when there is a change in the initial state.
These findings highlight the importance of carefully selecting and monitoring initial conditions and
competition coefficients in ecological systems to ensure their long-term sustainability. Here, we
explore the impact of varying the values of the parameter p on the equilibrium points of the model
system. The interior equilibrium points, the corresponding eigenvalues, and the equilibrium
characteristics for different values of p are presented in Table 3, based on the parameters used in
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simulation 4. The results reveal that as p increases, the equilibrium population levels of both the
prey and predator species exhibit a gradual decline. This finding suggests that changes in the
parameter p have a significant impact on the stability and behavior of the model system.



Ghosh et al. | 13

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2
0

0.5

1

1.5

2

 

X
Y

 

Z

p=0.0

p=0.2

p=0.4

p=0.6

p=0.8

p=1.0

(0.8,0.6,0.6)

Figure 7. Phase portrait for different value of p.

Table 3. Equilibrium points, eigenvalues, and their nature for different p values.

p Equilibrium Eigenvalue Nature
0 (0.49356, 1.2017, 1.20172) −0.0386 ± 0.3278i,−0.0017 Stable

0.2 (0.44416, 1.09690, 1.09690) −0.0348 ± 0.3294i,−0.0015 Stable
0.4 (0.39957, 1.00006, 1.00006) −0.0313 ± 0.3307i,−0.0013 Stable
0.6 (0.35934, 0.91083, 0.91083) −0.0282 ± 0.3317i,−0.0011 Stable
0.8 (0.32309, 0.82880, 0.82880) −0.0254 ± 0.3325i,−0.0010 Stable
1 (0.29042, 0.75353, 0.75353) −0.0228 ± 0.3330i,−0.0009 Stable

In this study, we analyze the population dynamics of prey and predator species over time,
starting with initial population values of X = 0.8 (prey), Y = 0.6 (first predator), and Z = 0.6
(second predator), for various values of p ∈ [0, 1]. The results are presented in Fig. 6, while the
corresponding phase portrait is depicted in Fig. 7. From these figures, it is evident that an increase
in the value of p is associated with a gradual decrease in population density. These findings
provide valuable information on the sensitivity of the model system to changes in parameter
values and highlight the importance of understanding the underlying mechanisms that govern
predator-prey interactions.

6 Conclusion

In this article, we have presented a three-species prey-predator model that incorporates imprecise
biological parameters using the concept of interval numbers. Through the analysis of the model,
we have demonstrated that the interval number method is a simple and effective tool for examining
the impact of imprecise parameters on the behavior of the system.
Our analysis included checking the positivity and boundedness of the model, as well as performing
a stability analysis of the five equilibrium points. The results of our analysis provide valuable
insights into the dynamics of the prey-predator system and the effects of imprecision in the
parameters.
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In conclusion, our work highlights the importance of considering imprecision in biological pa-
rameters when modeling ecological systems. The interval number method provides a powerful
approach to this challenge, enabling researchers to better capture the complexity of ecological sys-
tems and make more accurate predictions about their behavior. We believe that our findings will
be of significant value to researchers working in the field of ecological modeling and contribute to
the development of more accurate and reliable models of complex ecological systems.
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