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Abstract
The theory of convexity plays an important role in various branches of science and engineering. The main objective of
this work is to introduce the idea of a generalized convex function by unifying s–type m–convex function and Raina type
function. In addition, some beautiful algebraic properties and examples are discussed. Applying this new definition,
we explore a new sort of Hermite-Hadamard inequality. Furthermore, to enhance the paper we investigate several new
estimations of Hermite-Hadamard type inequality. The concepts and tools of this paper may invigorate and revitalize for
additional research in this mesmerizing and absorbing field of mathematics.
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1 Introduction

The expression "convexity" is the main, intriguing, regular, and principal documentations in mathematical analysis. For the first
time, it was utilized generally in a book by Hardy, Little, and Polya (see [1]). As of late, the hypothesis of convexity assumes an
exceptionally entrancing and astonishing part in the realm of science, hence anyone working, especially in the field of inequalities
cannot ignore its importance and significance. Numerous analysts consistently attempt to utilize novel thoughts for the pleasure
and beautification of convexity theory. This hypothesis gives us fascinating and amazing mathematical strategies to tackle and to
take care of a great deal of the issue which emerges in pure and applied sciences. During the last few decades, numerous scientists
specially mathematicians have added to the advancement of the theory of convex analysis in different directions. For the attention
of the readers, we encourage the references [2, 3, 4, 5, 6, 7] to see.
The theory of inequality is one of the most important aspects in many branches of mathematics such as functional analysis,
theory of differential and integral equations, probability theory, mechanics, and other sciences. In this manner, the hypothesis
of inequalities might be viewed as an autonomous field of mathematical analysis. As of late, the idea of convex analysis and the
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concept of inequality have been generalized, improved and extended in many directions. The relationship between these two fields
has roused numerous scientists specially mathematicians because of its broad applications. For some related papers on convexity,
see the references [8, 9, 10, 11].
As everybody knows, there exists a class of numerical models depicted by differential equations, for example, Malthus population
model. In any case, a great deal of a differential equation does not have a specific arrangement. Under this case, integral inequalities
are critical for researching the boundedness, stability, asymptotic behavior of solutions to differential equations.
Motivated by the ongoing research activities, the aim of this paper is to introduce a new class of a convex function, called a
generalized s–type m–convex function of Raina type. Next, we explore some of its algebraic properties and examples. As main
results, a new version of Hermite–Hadamard inequality and its refinements in support of the new definition are presented.
2 Preliminaries

Definition 1 [3] LetΥ : I → R be a real valued function. A functionΥ is said to be convex, if

Υ ([a1 + (1 – [) a2) ≤ [Υ (a1) + (1 – [)Υ (a2) (1)
holds for all a1, a2 ∈ I and [ ∈ [0, 1].
The most important inequality concerning convex functions is Hermite–Hadamard inequality [12] given as:
Theorem 1 IfΥ : [a1, a2] → R is a convex function, then

Υ
(a1 + a22

)
≤

1
a2 – a1

∫a2
a1

Υ(x)dx ≤ Υ(a1) +Υ(a2)
2 . (2)

Since its discovery, many researchers have presented various generalizations and improvements with reference to different types of
generalized convex functions like s- convex functions, m- convex functions, Harmonically convex functions, log-convex functions,
exponentially convex functions, and many more. This inequality along with inequalities such as Ostrowski inequality, Simpson
inequality, Bullen type inequality, Opial type inequality, and Mercer type inequality have accumulated a lot of attention among
mathematicians due to their widespread view and applications in the field of mathematical analysis.
In 2005, Raina [13] introduced a new class of function defined formally by

Fσρ,λ(z) = Fσ(0),σ(1),...
ρ,λ (z) = +∞∑

k=0
σ(k)

Γ(ρk + λ) zk, (3)

where σ = (σ(0), . . . ,σ(k), . . .) and ρ,λ > 0, |z| < R. The above class of functions is a generalization of the classical Mittag–Leffler
function and the Kummer function.
Cortez [14, 15] established a new class of set and function involving the Raina’s function, which is said to be a generalized convex
set and a convex function.

Definition 2 [15] Let σ = (σ(0), . . . ,σ(k), . . .) and ρ,λ > 0. A set X 6= ∅ is said to be generalized convex, if

a2 + [ Fσρ,λ(a1 – a2) ∈ X, (4)
for all a1, a2 ∈ X and [ ∈ [0, 1].
Definition 3 [15] Let σ denote a bounded sequence, then σ = (σ(0), . . . ,σ(k), . . .) and ρ,λ > 0. If Υ : X → R satisfies the following
inequality

Υ
(
a2 + [ Fσρ,λ(a1 – a2)) ≤ [Υ(a1) + (1 – [)Υ(a2), (5)

for all a1, a2 ∈ X, where a1 < a2 and [ ∈ [0, 1], thenΥ is called a generalized convex function.

Remark 1 We have Fσρ,λ(a1 – a2) = a1 – a2 > 0, and so we obtain Definition 1.

Condition A: Let X ⊆ R be an open generalized convex subset with respect to (w.r.t.) Fσρ,λ(·). For any a1, a2 ∈ X and [ ∈ [0, 1],

Fσρ,λ
(
a2 – (a2 + [ Fσρ,λ(a1 – a2))) = –[ Fσρ,λ(a1 – a2),

Fσρ,λ
(
a1 – (a2 + [ Fσρ,λ(a1 – a2))) = (1 – [) Fσρ,λ(a1 – a2).

Note that, for every a1, a2 ∈ X and for all [1, [2 ∈ [0, 1], using Condition A, we have
Fσρ,λ

(
a2 + [2 Fσρ,λ(a1 – a2) – (a2 + [1 Fσρ,λ(a1 – a2))) = ([2 – [1) Fσρ,λ(a1 – a2). (6)
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Definition 4 [16] A non-negative function Υ : A → R is said to be an s–type convex function if the following inequality for a1, a2 ∈ A,
s ∈ [0, 1] and [ ∈ [0, 1] holds true:

Υ ([a1 + (1 – [) a2) ≤ [1 – (s(1 – [))]Υ (a1) + [1 – s[]Υ (a2) . (7)
Definition 5 [3] An inequality of the form

(Υ(a1) –Υ(a2))(Ψ(a1) –Ψ(a2)) ≥ 0, ∀a1, a2 ∈ R, (8)
is said to be similarly ordered.

Inspired and excited by the ongoing research activities, the construction of this paper is marked as follows. First of all, in section 3,
we discuss the new definition of the generalized s–type (m)–convex function of Raina type and its algebraic properties. In section
4, on the basis of a new identity, we attain the refinements of Hermite–Hadamard type inequality employing the new definition.
3 Generalized Preinvex function and its algebraic properties

In this section, we present the definition of a new class of convex functions called generalized s–type m–convex function of Raina
type and also discuss its algebraic properties.
Definition 6 Let X be a nonempty generalized convex set w.r.t. Fσρ,λ : X × X → R.Then the nonnegative functionΥ : X → R is said to be a
generalized s–type m–convex function of Raina type for fixed mm ∈ (0, 1]× (0, 1], if

Υ(a2 + [ Fσρ,λ(a1 – a2)) ≤ (1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ(a1
m

) (9)
holds for every a1, a2 ∈ X, σ = (σ(0), . . . ,σ(k), . . .), ρ,λ > 0, s ∈ [0, 1], and [ ∈ [0, 1].

Remark 2 (i) Taking s = m = 1 in Definition 6, we attain the definition of a generalized convex function of Raina type which was explored by
Cortez [14, 15].
(ii) Taking m = 1 and Fσρ,λ(a1 – a2) = a1 – a2 in Definition 6, we attain the definition of s–type convex function which was given by İşcan et
al. [16].
(iii) Taking s = m = 1 and Fσρ,λ(a1 – a2) = a1 – a2 in Definition 6, we obtain the definition, namely a convex function which was investigated
by Niculescu et al. [3].

Lemma 1 The following inequalities

[ ≤ (1 – (s(1 – [))) and 1 – [ ≤ 1 – s[

hold, for all [ ∈ [0, 1], m ∈ (0, 1] and s ∈ [0, 1].

Proof The rest of the proof is clearly seen. �

Proposition 1 Every nonnegative generalized m–convex function of Raina type is a generalized s–type m–convex function of Raina type for
s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1].
Proof By using Lemma 1 and the definition of a generalized m–convex function of Raina type for s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1],
we have

Υ(a2 + [ Fσρ,λ(a1 – a2)) ≤ (1 – [)Υ (a2) + m[Υ
(a1
m

)

≤ (1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ(a1
m

) .

Proposition 2 Every non-negative generalized s–type m–convex function of Raina type for s ∈ [0, 1], m ∈ (0, 1], n ∈ N and [ ∈ [0, 1], is a
generalized (h,m)–convex function of Raina type with h([) = (1 – (s(1 – [))).
Proof Using the definition of a generalized s–type m–convex function of Raina type for s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1] and in
view of the condition h([) = (1 – (s(1 – [))), we have

Υ(a2 + [ Fσρ,λ(a1 – a2)) ≤ (1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ(a1
m

) ,

≤ h(1 – [)Υ(a2) + hm([)Υ(a1
m

).
�

Now, we will investigate some algebraic properties of the new definition.
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Theorem 2 LetΥ,Ψ : A = [a1, a2] → R. IfΥ, Ψ are two generalized s–type m–convex functions of Raina type w.r.t. the same Fσρ,λ, then
(i) The sum ofΥ andΨ is again a generalized s–type m–convex function of Raina type w.r.t. Fσρ,λ.
(ii) The scalar multiplication of the functionΥ is a generalized s–type m–convex function of Raina type w.r.t. Fσρ,λ.

Proof (i) Let Υ, Ψ be generalized s–type m–convex functions of Raina type w.r.t. the Fσρ,λ, then for all a1, a2 ∈ X, s ∈ [0, 1],
m ∈ (0, 1] and [ ∈ [0, 1], we have

(Υ +Ψ) (a2 + [ Fσρ,λ(a1 – a2))
= Υ(a2 + [ Fσρ,λ(a1 – a2)) +Ψ(a2 + [ Fσρ,λ(a1 – a2))
≤ (1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ

(a1
m

)
+ (1 – s[)Ψ (a2) + (1 – (s(1 – [)))mΨ(a1

m

)
= (1 – s[) [Υ (a2) +Ψ (a2)] + (1 – (s(1 – [))) [mΥ(a1

m

) + mΨ
(a1
m

)]
= (1 – s[) (Υ +Ψ)(a2) + (1 – (s(1 – [)))m(Υ +Ψ)(a1

m
).

(ii) Let Υ be a generalized s–type m–convex function of Raina type w.r.t. Fσρ,λ, then for all a1, a2 ∈ A, s ∈ [0, 1], c ∈ R(c ≥ 0),
m ∈ (0, 1] and [ ∈ [0, 1], we have

(cΥ) (a2 + [ Fσρ,λ(a1 – a2))
≤ c
[

(1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ(a1
m

) ]
= (1 – s[) cΥ (a2) + (1 – (s(1 – [))) cmΥ

(a1
m

)
= (1 – s[) (cΥ) (a2) + (1 – (s(1 – [)))m (cΥ)(a1

m

) .
It is the required proof. �

Theorem 3 LetΥ : A → Y be a generalized s–type m–convex function of Raina type w.r.t. Fσρ,λ andΨ : Y → R be a non-decreasing function.
Then the functionΨ ◦Υ is a generalized s–type m–convex function of Raina type w.r.t. Fσρ,λ for s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1].

Proof For all a1, a2 ∈ A, s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1], we have
(Ψ ◦Υ) (a2 + [ Fσρ,λ(a1 – a2))
= Ψ(Υ(a2 + [ Fσρ,λ(a1 – a2)))
≤ Ψ

[
(1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ(a1

m

) ]
≤ (1 – s[)Ψ(Υ (a2)) + (1 – (s(1 – [)))mΨ(mΥ(a1

m

))
= (1 – s[) (Ψ ◦Υ) (a2) + (1 – (s(1 – [)))m2(Ψ ◦Υ)(a1

m

) .
It is the required proof. �

Remark 3 (i) If n = s = 1 in Theorem 3, then

(Ψ ◦Υ) (ma2 + [η(a1, a2,m)) ≤ (1 – [)(Ψ ◦Υ) (a2) + [m2(Ψ ◦Υ)(a1
m

) .
(i) If s = m = 1 in Theorem 3, then

(Ψ ◦Υ) (a2 + [ Fσρ,λ(a1 – a2)) ≤ (1 – [)(Ψ ◦Υ) (a2) + [(Ψ ◦Υ) (a1) .
(ii) If we put m = 1 and η(a1, a2,m) = a1 – ma2 in Theorem 3, then

(Ψ ◦Υ) ([a1 + (1 – [)a2) ≤ (1 – s[)(Ψ ◦Υ) (a2) + (1 – (s(1 – [))(Ψ ◦Υ) (a1) .

Theorem 4 Let 0 < a1 < a2, Υj : A = [a1, a2] → [0, +∞) be a class of generalized s–type m–convex functions of Raina type w.r.t. Fσρ,λ
and Υ(u) = supjΥj(u). Then Υ is a generalized s–type m–convex function of Raina type for s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1], and
U = {τ ∈ [a1, a2] : Υ(τi) < ∞} is an interval.
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Proof Let a1, a2 ∈ U, s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1], then
Υ(a2 + [ Fσρ,λ(a1 – a2))
= sup

j
Υj(a2 + [ Fσρ,λ(a1 – a2))

≤ (1 – s[) sup
j
Υj (a2) + (1 – (s(1 – [)))m sup

j
Υj
(a1
m

)
= (1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ(a1

m

) < ∞.
This is the required proof. �

Theorem 5 IfΥi : Rn → R is a generalized s–type m–convex function of Raina type w.r.t. Fσρ,λ for s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1], then
the set M = {τ ∈ R : Υi(τ) ≤ 0, i = 1, 2, 3, ..., n} is a generalized m–convex set.

Proof Since Υi(τ), (i = 1, 2, 3, ..., n) are generalized s–type m–convex functions of Raina type for s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1],
then for all a1, a2 ∈ Rn

Υi(a2 + [ Fσρ,λ(a1 – a2)) ≤ (1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ(a1
m

) ,
holds, where i = 1, 2, 3, ..., n
When a1, a2 ∈ M, we know Υi(a1) ≤ 0 and Υi(a2) ≤ 0, from the above inequality, it yields that

Υi(a2 + [ Fσρ,λ(a1 – a2)) ≤ 0, i = 1, 2, 3, ..., n.
That is a2 + [ Fσρ,λ(a1 – a2) ∈ M. Hence, M is a generalized m–convex set. �

Theorem 6 IfΥ : A ⊆ Rn → R is a generalized s–type m–convex function of Raina type w.r.t. Fσρ,λ for s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1],
then the functionΥ is also a generalized quasi m–convex function of Raina type on a generalized m–convex set of Raina type A w.r.t. Fσρ,λ.

Proof Since Υ is a generalized s–type m–convex function of Raina type w.r.t. Fσρ,λ for s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1], and we
assume that mΥ( a1m ) ≤ Υ(a2), then for all a1, a2 ∈ A, we have

Υ(a2 + [ Fσρ,λ(a1 – a2))
≤ (1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ(a1

m

)
≤
[(1 – (s(1 – [))) + (1 – s[)]Υ (a2)

≤ Υ (a2) .
In the same manner, let Υ(a2) ≤ mΥ( a1m ), for all a1, a2 ∈ A. We can also get

Υ(a2 + [ Fσρ,λ(a1 – a2)) ≤ mΥ
(a1
m

) .
Consequently,

Υ(a2 + [ Fσρ,λ(a1 – a2)) ≤ max{Υ(a1),Υ(a2)}.
That is, Υ : A ⊆ Rn → R is a generalized quasi m–convex function of Raina type on a generalized m–convex set of Raina type A
w.r.t. Fσρ,λ. �

Theorem 7 If Υ : R◦ → R◦ is a generalized s–type m–convex function of Raina type w.r.t. Fσρ,λ : R◦ × R◦ × (0, 1] → R◦ for s ∈ [0, 1],
m ∈ (0, 1] and [ ∈ [0, 1]. Assume that Υ is monotone decreasing, Fσρ,λ is monotone increasing regarding m for fixed a1, a2 ∈ R◦ and
m1 ≤ m2 (m1,m2 ∈ (0, 1]). IfΥ is an s–type m1–preinvex function on R◦ w.r.t. Fσρ,λ, thenΥ is an s–type m2–preinvex function on R◦ w.r.t.
Fσρ,λ.

Proof Since Υ is a generalized s–type m1–convex function of Raina type, for all a1, a2 ∈ R◦

Υ(a2 + [ Fσρ,λ(a1 – a2)) ≤ (1 – s[)Υ (a2) + (1 – (s(1 – [)))m1Υ
(

a1

m1
)

.

Combining the monotone decreasing of the function Υ with the monotone increasing of the mapping Fσρ,λ regarding m for fixed
a1, a2 ∈ R◦ and m1 ≤ m2, it follows that

(1 – s[)Υ (a2) + (1 – (s(1 – [)))m1Υ
(

a1

m1
)

≤ (1 – s[)Υ (a2) + (1 – (s(1 – [)))m2Υ
(

a1

m2
)

.
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Finally, we have
Υ(a2 + [ Fσρ,λ(a1 – a2)) ≤ (1 – s[)Υ (a2) + (1 – (s(1 – [)))m2Υ

(
a1

m2
)

.

Hence, Υ is a generalized s–type m2–convex function of Raina type on R◦ w.r.t. η for fixed s ∈ [0, 1] and m ∈ [0, 1], which ends
the proof. �

Theorem 8 Let Υ,Ψ : A = [a1, a2] → R. If Υ, Ψ are two generalized s–type m–convex functions of Raina type w.r.t. Fσρ,λ and Υ, Ψ are
similarly ordered functions and

[1 – (s(1 – [))] + [1 – s[] ≤ 1, then the product ΥΨ is a generalized s–type m–convex function of Raina type
w.r.t. Fσρ,λ for s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1].

Proof Let Υ, Ψ be a generalized s–type m–convex function of Raina type w.r.t. same Fσρ,λ, s ∈ [0, 1], m ∈ (0, 1] and [ ∈ [0, 1], then
Υ(a2 + [ Fσρ,λ(a1 – a2))Ψ(a2 + [ Fσρ,λ(a1 – a2))
≤
[

(1 – s[)Υ (a2) + (1 – (s(1 – [)))mΥ(a1
m

) ]
×
[

(1 – s[)Ψ (a2) + (1 – (s(1 – [)))mΨ(a1
m

) ]
≤ (1 – s[)2Υ(a2)Ψ(a2) + (1 – (s(1 – [)))2 m2Υ(a1

m
)Ψ(a1

m
)

+ 1
n2
(1 – (s(1 – [))) (1 – s[) [mΥ(a1

m
)Ψ(a2) +Υ(a2)mΨ(a1

m
)]

≤ (1 – s[)2Υ(a2)Ψ(a2) + [1 – (s(1 – [))]2m2Υ(a1
m

)Ψ(a1
m

)
+ (1 – (s(1 – [))) (1 – (s[)) [m2Υ(a1

m
)Ψ(a1

m
) +Υ(a2)Ψ(a2)]

=
[

(1 – s[)Υ(a2)Ψ(a2) + (1 – (s(1 – [)))m2Υ(a1
m

)Ψ(a1
m

)
]

×
((1 – (s(1 – [))) + (1 – s[)

)
≤ (1 – s[)Υ(a2)Ψ(a2) + (1 – (s(1 – [)))m2Υ(a1

m
)Ψ(a1

m
).

This completes the proof. �

Remark 4 Taking m = 1 and Fσρ,λ(a1, a2,m) = a1 – ma2 in Theorem 8, then

Υ([a1 + (1 – [)a2)Ψ([a1 + (1 – [)a2) ≤ [1 – (s(1 – [))]Υ (a1)Ψ(a1) + [1 – s[]Υ (a2)Ψ(a2).

4 Hermite–Hadamard type inequality via a generalized convex function of Raina type

The principal intention of this section is to establish a novel version of Hermite–Hadamard type inequality in the mode of the
newly discussed concept.

Theorem 9 LetΥ : [a1, a2] ∈ R be a generalized s–type m–convex function of Raina type, if a1 < a2 andΥ ∈ L[a1, a2], then the following
Hermite–Hadamard type inequalities hold:

Υ(a2 + 1
2 Fσρ,λ(a1 – a2)) ≤ (1 – s2 )

Fσ
ρ,λ(a1 – a2)

[ ∫a2+ Fσ
ρ,λ(a1–a2)

a2

mΥ( x
m

)dx +
∫a2
ma2+ Fσ

ρ,λ(a1–ma2)
m

Υ(x)dx
]

≤ (2 – s)[Υ(a2) + mΥ(a1
m

)].
Proof Since a1, a2 ∈ X◦ and X◦ is a generalized convex set with respect to Fσρ,λ for every m ∈ (0, 1] and [ ∈ [0, 1], we have
a2 + [ Fσρ,λ(a1 –a2) ∈ X◦. For the first inequality, using the Definition of generalized s-type m-convex function of Raina type, and
condition C for Fσρ,λ and integrating over [0, 1],

Υ(y + [ Fσρ,λ(x – y)) ≤ (1 – (s[))Υ(y) + (1 – (s(1 – [)))mΥ( x
m

)
Υ(y + 1

2 Fσρ,λ(x – y)) ≤
(

1 – s
2
)[

mΥ( x
m

) +Υ(y)
]
.

Put x = a2 + [ Fσρ,λ(a1 – a2) and my = ma2 + (1 – [) Fσρ,λ(a1 – ma2) in above inequality, the L.H.S of above inequality becomes

Υ(y + 1
2 Fσρ,λ(x – y)) = Υ(a2 + 1

2 Fσρ,λ(a1 – a2)).
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Now,
Υ(a2 + 1

2 Fσρ,λ(a1 – a2))
≤
(

1 – s
2
)[ ∫ 1

0 mΥ(a2 + [ Fσρ,λ(a1 – a2)
m

)d[ +
∫ 1
0Υ(a2 + (1 – [)

m
Fσρ,λ(a1 – ma2))d[

]
≤
(

1 – s
2
) 1
Fσ
ρ,λ(a1 – a2)

[ ∫a2+ Fσ
ρ,λ(a1–a2)

a2

mΥ( x
m

)dx +
∫a2
ma2+ Fσ

ρ,λ(a1–ma2)
m

Υ(x)dx
]
.

For the proof of the second inequality, using the definition of generalized s–type m convex function, as a result we attain
1

Fσ
ρ,λ(a1 – a2)

[ ∫a2+ Fσ
ρ,λ(a1–a2)

a2

mΥ( x
m

)dx +
∫a2

ma2+ Fσ
ρ,λ(a1–ma2)

m

Υ(x)dx
]

≤
[ ∫ 1

0Υ(a2 + [ Fσρ,λ(a1 – a2))d[ +
∫ 1
0Υ(a2 + (1 – [)

m
Fσρ,λ(a1 – ma2))d[

]
≤

∫ 1
0(1 – (s[))Υ(a2)d[ +

∫ 1
0(1 – (s(1 – [)))mΥ(a1

m
)d[

+
∫ 1
0(1 – (s(1 – [)))Υ(a2)d[ +

∫ 1
0(1 – s[)mΥ(a1

m
)d[

≤
(2 – s

2
)[
Υ(a2) +Υ(a2) + mΥ(a1

m
) + mΥ(a1

m
)]

≤ (2 – s)[Υ(a2) + mΥ(a1
m

)].
This completes the proof. �

Corollary 1 If s = m = 1 and Fσρ,λ(a1–a2) = a1–a2 in Theorem 9, then as a result, we attain the classical Hermite-Hadamard type inequality
in [12].

5 Estimations of Hermite–Hadamard type inequality

The subjective aim of this section is to derive the estimations of (H–H) type inequality for a generalized s–type m–convex function
of Raina type.
Lemma 2 Let X ⊆ R be a generalized convex subset w.r.t. Fσρ,λ : X×X → R and a1, a2 ∈ X with Fσρ,λ(a1 –a2) 6= 0. Suppose thatΥ : X → R
is a differentiable function. IfΥ is integrable on the Fσρ,λ, then the following equality holds:

–Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 + 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx

= Fσρ,λ(a1 – a2)
2

∫ 1
0(1 – 2[)Υ′(a2 + [ Fσρ,λ(a1 – a2))d[.

Proof Suppose that a1, a2 ∈ X. Since X is a generalized convex set w.r.t. Fσρ,λ , for every [ ∈ [0, 1], we have a2 + [ Fσρ,λ(a1 – a2) ∈ X.
Integrating by parts

∫ 1
0(1 – 2[)Υ′(a2 + [ Fσρ,λ(a1 – a2))d[

=
[ (1 – 2[)Υ(a2 + [ Fσρ,λ(a1 – a2))

Fσ
ρ,λ(a1 – a2)

]1
0 + 2

Fσ
ρ,λ(a1 – a2)

∫ 1
0Υ(a2 + [ Fσρ,λ(a1 – a2))d[

= –Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 + 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx.

This completes the proof. �

Theorem 10 Suppose I◦ is a generalized convex set w.r.t. Fσρ,λ andΥ : I◦ ⊆ R → R is a differentiable mapping on I◦, a1, a2 ∈ I◦ with a1 < a2

and suppose that Υ′ ∈ L[a1, a2]. If |Υ′| is a generalized s–type m–convex function of Raina type on L[a1, a2] for [ ∈ [0, 1], m ∈ (0, 1] and
s ∈ [0, 1], then

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤ | Fσρ,λ(a1 – a2)|
(2 – s

4
)

A
(
m|Υ′(a1

m
)|, |Υ′(a2)|

)
,

where A is the arithmetic mean.
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Proof Assume that a1, a2 ∈ I◦. Since I◦ is a generalized convex set w.r.t. Fσρ,λ, for any [ ∈ [0, 1], we have a2 + [ Fσρ,λ(a1 – a2) ∈ I◦.
Using Lemma 2, generalized s–type m–convex function of Raina type of |Υ′| and properties of modulus, we have

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
∣∣∣∣ Fσρ,λ(a1 – a2)

2
∫ 1
0(1 – 2[)Υ′(a2 + [ Fσρ,λ(a1 – a2))d[

∣∣∣∣
≤

| Fσρ,λ(a1 – a2)|
2

∫ 1
0 |1 – 2[|

(
(1 – (s[))|Υ′(a2)| + (1 – (s(1 – [)))m|Υ′(a1

m
)|
)

d[

≤
| Fσρ,λ(a1 – a2)|

2
(

|Υ′(a2)|
∫ 1
0 |1 – 2[|(1 – (s[))d[ + m|Υ′(a1

m
)|

∫ 1
0 |1 – 2[|(1 – (s(1 – [)))d[

)

≤
| Fσρ,λ(a1 – a2)|

2
(

|Υ′(a2)|
(2 – s

4
)

+ |mΥ′(a1
m

)|
(2 – s

4
))

≤ | Fσρ,λ(a1 – a2)|
(2 – s

4
)

A
(
m|Υ′(a1

m
)|, |Υ′(a2)|

)
.

This is the required proof. �

Corollary 2 If we put m = 1 and s = 1 in Theorem 10, then we obtain Theorem (2.1) in [17].

Corollary 3 If we put s = m = 1 and Fσρ,λ(a1 – a2) = a1 – a2 in Theorem 10, we get inequality (4.1) in [18].

Theorem 11 Suppose I◦ is a generalized convex set w.r.t. Fσρ,λ and Υ : I◦ ⊆ R → R be a differentiable mapping on I◦, a1, a2 ∈ I◦ with
a1 < a2, q > 1, 1

p + 1
q = 1 and suppose thatΥ′ ∈ L[a1, a2]. If |Υ′|q is a generalized s–type m–convex function of Raina type on L[a1, a2] for

[ ∈ [0, 1], m ∈ (0, 1] and s ∈ [0, 1], then

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
| Fσρ,λ(a1 – a2)|

2
( 1

p + 1
) 1

p
(2 – s

2
) 1

q
A

1
q
(
m|Υ′(a1

m
)|q, |Υ′(a2)|q

)
,

where A is the arithmetic mean.

Proof Assume that a1, a2 ∈ I◦. Since I◦ is a generalized convex set w.r.t. Fσρ,λ, for any [ ∈ [0, 1], we have a2 + [ Fσρ,λ(a1 – a2) ∈ I◦.
Using Lemma 2, Hölder’s integral inequality and generalized s–type m–convex function of Raina type of |Υ′|q and properties of
modulus, we have

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
∣∣∣∣ Fσρ,λ(a1 – a2)

2
∫ 1
0(1 – 2[)Υ′(a2 + [ Fσρ,λ(a1 – a2))d[

∣∣∣∣
≤

| Fσρ,λ(a1 – a2)|
2

( ∫ 1
0 |1 – 2[|p

) 1
p
( ∫ 1

0 |Υ′(a2 + [ Fσρ,λ(a1 – a2))|qd[
) 1

q

≤
| Fσρ,λ(a1 – a2)|

2
( 1

p + 1
) 1

p
(

|Υ′(a2)|q
∫ 1
0(1 – (s[))d[ +

∫ 1
0 m|Υ′(a1

m
)|q(1 – (s(1 – [)))d[

) 1
q

≤
| Fσρ,λ(a1 – a2)|

2
( 1

p + 1
) 1

p
(2 – s

2
) 1

q
A

1
q
(
m|Υ′(a1

m
)|q, |Υ′(a2)|q

)
,

which is the required proof. �

Corollary 4 If m = 1 and s = 1 in Theorem 11, then we attain Theorem (2.2) in [17]

Corollary 5 If we put m = s = 1 and Fσρ,λ(a1 – a2) = a1 – a2 in Theorem 11, then we get inequality (4.2) [18]

Theorem 12 Suppose I◦ is a generalized convex set w.r.t. Fσρ,λ and Υ : I◦ ⊆ R → R is a differentiable mapping on I◦, a1, a2 ∈ I◦ with
a1 < a2, q ≥ 1, and suppose thatΥ′ ∈ L[a1, a2]. If |Υ′|q is a generalized s–type m–convex function of Raina type on L[a1, a2] for for [ ∈ [0, 1],
m ∈ (0, 1] and s ∈ [0, 1], then

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
| Fσρ,λ(a1 – a2)|

2
( 1

2
)1– 2

q
(2 – s

4
) 1

q
A

1
q
(
m|Υ′(a1

m
)|q, |Υ′(a2)|q

)
,

where A is the arithmetic mean.
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Proof Assume that a1, a2 ∈ I◦. Since I◦ is a generalized convex set w.r.t. Fσρ,λ, for any [ ∈ [0, 1], we have a2 + [ Fσρ,λ(a1 – a2) ∈ I◦.
Suppose that q > 1. Using Lemma 2, power-mean inequality and generalized s–type m–convex function of Raina type of |Υ′|q and
properties of modulus, we have

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
∣∣∣∣ Fσρ,λ(a1 – a2)

2
∫ 1
0(1 – 2[)Υ′(a2 + [ Fσρ,λ(a1 – a2))d[

∣∣∣∣
≤

| Fσρ,λ(a1 – a2)|
2

( ∫ 1
0 |1 – 2[|d[

)1– 1
q
( ∫ 1

0 |1 – 2[||Υ′(a2 + [ Fσρ,λ(a1 – a2))|qd[
) 1

q

≤
| Fσρ,λ(a1 – a2)|

2
( 1

2
)1– 1

q
( ∫ 1

0 |1 – 2[|
[
(1 – (s[))|Υ′(a2)|q + (1 – (s(1 – [)))|Υ′(a1)|q

]
d[
) 1

q

≤
| Fσρ,λ(a1 – a2)|

2
( 1

2
)1– 1

q

× (|Υ′(a2)|q
∫ 1
0 |1 – 2[|(1 – (s[))d[ +

∫ 1
0 |1 – 2[|m|Υ′(a1

m
)|q(1 – (s(1 – [)))d[

) 1
q

= | Fσρ,λ(a1 – a2)|
2

( 1
2
)1– 2

q
(2 – s

4
) 1

q
A

1
q
(
m|Υ′(a1

m
)|q, |Υ′(a2)|q

)
.

For the case q = 1, we apply the same technique step by step as used in the Theorem 10. This completes the proof. �

Corollary 6 If we put n = m = 1 and s = 1 in Theorem 12, then

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
Fσρ,λ(a1 – a2)

4 A
1
q
[
|Υ′(a1)|q, |Υ′(a2)|q

]
.

Corollary 7 If s = m = 1 and Fσρ,λ(a1 – a2) = a1 – a2 in Theorem 12, we get inequality (4.3) in [18].

Theorem 13 Suppose I◦ is a generalized convex set w.r.t. Fσρ,λ and Υ : I◦ ⊆ R → R is a differentiable mapping on I◦, a1, a2 ∈ I◦ with
a1 < a2, q > 1, 1

p + 1
q = 1 and suppose thatΥ′ ∈ L[a1, a2]. If |Υ′|q is a generalized s–type m–convex function of Raina type on L[a1, a2], then

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
| Fσρ,λ(a1 – a2)|

2
( 1

2(p + 1)
) 1

p

×
{(

m|Υ′(a1
m

)|q 3 – 2s
6 + |Υ′(a2)|q 3 – s

6
) 1

q +
(
m|Υ′(a1

m
)|q 3 – s

6 + |Υ′(a2)|q 3 – 2s
6

) 1
q
}

,

holds for [ ∈ [0, 1], m ∈ (0, 1] and s ∈ [0, 1].

Proof Suppose that a1, a2 ∈ I◦. Since I◦ is a generalized convex set w.r.t. Fσρ,λ, for any [ ∈ [0, 1], we have a2 + [ Fσρ,λ(a1 – a2) ∈ I◦.
Using Lemma 2, Hölder-İscan integral inequality and generalized s–type m–convex function of Raina type of |Υ′|q and properties
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of modulus, we have
∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))

2 – 1
Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
| Fσρ,λ(a1 – a2)|

2
∫ 1
0 |1 – 2[||Υ′(a2 + [ Fσρ,λ(a1 – a2))|d[

≤
| Fσρ,λ(a1 – a2)|

2
( ∫ 1

0(1 – [)|1 – 2[|pd[
) 1

p
( ∫ 1

0(1 – [)|Υ′(a2 + [ Fσρ,λ(a1 – a2))|qd[
) 1

q

+ | Fσρ,λ(a1 – a2)|
2

( ∫ 1
0 [|1 – 2[|pd[

) 1
p
( ∫ 1

0 [|Υ′(a2 + [ Fσρ,λ(a1 – a2))|qd[
) 1

q

≤
| Fσρ,λ(a1 – a2)|

2
( 1

2(p + 1)
) 1

p

×
(

|Υ′(a2)|q
∫ 1
0(1 – [)(1 – (s[))d[ +

∫ 1
0(1 – [)m|Υ′(a1

m
)|q(1 – (s(1 – [)))d[

) 1
q

+ | Fσρ,λ(a1 – a2)|
2

( 1
2(p + 1)

) 1
p
(

|Υ′(a2)|q
∫ 1
0 [(1 – (s[))d[ +

∫ 1
0 m|Υ′(a1

m
)|q

[(1 – (s(1 – [)))d[
) 1

q

≤
| Fσρ,λ(a1 – a2)|

2
( 1

2(p + 1)
) 1

p

×
{(

m|Υ′(a1
m

)|q 3 – 2s
6 + |Υ′(a2)|q 3 – s

6
) 1

q +
(
m|Υ′(a1

m
)|q 3 – s

6 + |Υ′(a2)|q 3 – 2s
6

) 1
q
}

,

which is the required proof. �

Corollary 8 If m = 1 and s = 1 in Theorem 13, then

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
| Fσρ,λ(a1 – a2)|

4
( 1

p + 1
) 1

p
[( |Υ′(a1)|q

3 + 2|Υ′(a2)|q

3
) 1

q +
(2|Υ′(a1)|q

3 + |Υ′(a2)|q

3
) 1

q
]
.

Corollary 9 If we put s = m = 1 and Fσρ,λ(a1 – a2) = a1 – a2 in Theorem 13, we get inequality (4.4) in [18].

Theorem 14 Suppose I◦ is a generalized convex set w.r.t. Fσρ,λ and Υ : I◦ ⊆ R → R is a differentiable mapping on I◦, a1, a2 ∈ I◦ with
a1 < a2, q ≥ 1 and suppose thatΥ′ ∈ L[a1, a2]. If |Υ′|q is a generalized s–type m–convex function of Raina type on L[a1, a2], then

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
| Fσρ,λ(a1 – a2)|

2
( 1

2
)2– 2

q

×
{(

m|Υ′(a1
m

)|qk1(s) + |Υ′(a2)|qk2(s)
) 1

q +
(
m|Υ′(a1

m
)|qk2(s) + |Υ′(a2)|qk1(s)

) 1
q
}

,

holds for [ ∈ [0, 1], m ∈ (0, 1] and s ∈ [0, 1]. Where

k1(s) =
∫ 1
0(1 – [)|1 – 2[|(1 – (s(1 – [)))d[ =

∫ 1
0 [|1 – 2[|(1 – (s[)))d[,

k2(s) =
∫ 1
0 [|1 – 2[|(1 – (s(1 – [)))d[ =

∫ 1
0(1 – [)|1 – 2[|(1 – (s[))d[.

Proof Suppose that a1, a2 ∈ I◦. Since I◦ is a generalized convex set w.r.t. Fσρ,λ, for any [ ∈ [0, 1], we have a2 + [ Fσρ,λ(a1 – a2) ∈ I◦.
Suppose that q > 1. Using Lemma 2, improved power-mean integral inequality and generalized s–type m–convex function of Raina
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type of |Υ′|q and properties of modulus, we have
∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))

2 – 1
Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
| Fσρ,λ(a1 – a2)|

2
∫ 1
0 |1 – 2[||Υ′(a2 + [ Fσρ,λ(a1 – a2))|d[

≤
| Fσρ,λ(a1 – a2)|

2
( ∫ 1

0(1 – [)|1 – 2[|d[
)1– 1

q
( ∫ 1

0(1 – [)|1 – 2[||Υ′(a2 + [ Fσρ,λ(a1 – a2))|qd[
) 1

q

+ | Fσρ,λ(a1 – a2)|
2

( ∫ 1
0([|1 – 2[|d[

)1– 1
q
( ∫ 1

0 [|1 – 2[||Υ′(a2 + [ Fσρ,λ(a1 – a2))|qd[
) 1

q

≤
| Fσρ,λ(a1 – a2)|

2
( 1

2
)2– 2

q

×
{(

|Υ′(a2)|q
∫ 1
0(1 – [)|1 – 2[|(1 – (s[))d[ +

∫ 1
0(1 – [)|1 – 2[|m|Υ′(a1

m
)|q(1 – (s(1 – [)))d[

) 1
q

+
(

|Υ′(a2)|q
∫ 1
0 [|1 – 2[|(1 – (s[)))d[ +

∫ 1
0 [|1 – 2[|m|Υ′(a1

m
)|q(1 – (s(1 – [)))d[

) 1
q
}

≤
| Fσρ,λ(a1 – a2)|

2
( 1

2
)2– 2

q

×
{(

m|Υ′(a1
m

)|qk1(s) + |Υ′(a2)|qk2(s)
) 1

q +
(
m|Υ′(a1

m
)|qk2(s) + |Υ′(a2)|qk1(s)

) 1
q
}

.

For the case q = 1, we apply the same technique step by step as used in the Theorem 10. This completes the proof. �

Corollary 10 If we put m = 1 and s = 1 in Theorem 14, then

∣∣∣∣Υ(a2) +Υ(a2 + Fσρ,λ(a1 – a2))
2 – 1

Fσ
ρ,λ(a1 – a2)

∫a2+ Fσ
ρ,λ(a1–a2)

a2

Υ(x)dx
∣∣∣∣

≤
| Fσρ,λ(a1 – a2)|

8
[( |Υ′(a1)|q

4 + 3|Υ′(a2)|q

4
) 1

q +
(3|Υ′(a1)|q

4 + |Υ′(a2)|q

4
) 1

q
]
.

Corollary 11 If we put s = m = 1 and Fσρ,λ(a1 – a2) = a1 – a2 in Theorem 14, we get inequality (4.5) in [18].

Note: We pass the some comments regarding comparison on the above estimations of the mentioned lemma. On Lemma 2, we
examined Theorem 11 and Theorem 13, in which we used the Hölder and Hölder-İscan inequality. On the comparison, Theorem
13 gives a better result as compared to Theorem 11. Similarly, on Lemma 2, we examined Theorem 12 and Theorem 14, in which
we used power mean and improved power mean inequality. On the comparison, Theorem 14 gives a better result as compare to
Theorem 12.
6 Conclusion

In the development of this paper, some results have been established that generalize, from the definition of Raina integral operator
and the use of s–type m–convex function. In particular, those concerning the integral inequality of Hermite–Hadamard. Some
algebraic properties are attained in relation to the newly introduced definition. In addition, we described the novel variant of
Hermite–Hadamard type inequality in the manner of a generalized s–type m–convex function of Raina type. Our attaining results
in the order of lemma can be considered as refinements and remarkable extensions to the new family of generalized convex
functions of Raina type. In the future, we hope the results of this paper and the new idea can be extended in different directions
like fractional calculus, quantum calculus, time scale calculus, etc. We hope the consequences and techniques of this article will
energize and inspire the researcher to explore a more interesting sequel in this area.
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