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Abstract
In this paper, a fractional-order generalization of the susceptible-infected-recovered (SIR) epidemic model for predicting
the spread of an infectious disease is presented. Also, an incommensurate fractional-order differential equations system
involving the Caputo meaning fractional derivative is used. The equilibria are calculated and their stability conditions are
investigated. Finally, numerical simulations are presented to illustrate the obtained theoretical results.
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1 Introduction

The topic of fractional calculus (FC) has gained considerable popularity and importance in the last three decades, mainly because
of its wide variety of applications in science and engineering. Also, it has been found that many systems can be described with
fractional differential equations in many interdisciplinary fields [1]. Fractional-order differential equation (FODE) models have
advantages over classical ordinary differential equation (ODE) and/or delayed differential equation models because integer deriva-
tives are used to obtain information about only local properties of a state, while fractional derivatives describe the entire space.
In other words, in FODE models, the next precise location for a physical phenomenon depends not only on the current situation,
but also on all historical situations. Thus, these models not only give more realistic biological models involving memory but also
expand the stability region of states [2]. Fractional-order systems (FOSs) are can be considered in two parts, as commensurate
FOS (CFOS) and incommensurate FOS (IFOS) according to the derivative orders in the system. CFOS can be considered as a special
case of derivative orders in IFOS [3]. Given the fact that the stability theorem of fractional differential equations favors stability
analysis and controller synthesis, this motivates us to adopt stability criteria for the field of incommensurate fractional-order
nonlinear systems and give sufficient conditions for determining stability [4]. Therefore, modeling of biological dynamics with
IFOS is more comprehensive in terms of predicting the behavior of the system [5]. Furthermore, theorems of existence, uniqueness
and dependence upon initial conditions according to some special conditions of IFOS are given in [6, 7].
There are many recent studies in the literature on the stability of IFOS [8, 9, 10, 11]. In addition, modeling and stability analysis
of biological systems by IFOS has been frequently discussed in the literature recently [12, 13, 5, 7, 14] and CFOS [15, 16, 17, 18, 19,
20, 21, 22, 23, 24] .
In the field of epidemiology, many schemes have been developed to mathematically model various infectious epidemics. Compart-
ment models such as SIR modeling, which divide communities into certain main classes, are the most widely used models. The
interactions between these classes are mainly determined by certain pre-mathematical formulas. The classical SIR epidemiological
model was first introduced by Kermack and McKendrick in 1927. This ordinary differential equation system (ODES) models the
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spread of an epidemic in a population. More recently, there has been increased interest in extending SIR models through the inclu-
sion of fractional derivatives [27]. Modified SIR mathematical modeling through CFOS are in recent years analyzed in [28, 29, 30].
In here, the time-dependent changes in sizes of susceptible, infected and recovered individuals in a population in case of an
infectious disease were investigated by mathematically modeling with IFOS. An innovation has been presented to the literature in
terms of the use of IFOS in the model. In addition, the results were supported by numerical studies.
The remainder of the article is arranged as follows:
• In Section 2, the existence of equilibrium points of the proposed model and their stabilities are analyzed.
• In Section 3, the mathematical formulation of the proposed SIR model is presented. Furthermore, the threshold parameter is

presented.
• Section 4 proposes the stability conditions of the mentioned biological system.
• Section 5 backs up the qualitative analysis results of the proposed IFOS. In this respect, numerical simulations are performed.
• The article ends in Section 6 with some concluding remarks.

2 Preliminaries and definitions

In here, it is given some basic definitions and notations with respect to follows: FODE with Caputo derivatives and locally asymp-
totically stability (LAS) of the equilibrium point of an n-dimensional FOS, respectively.
Definition 1 According to the definition of Caputo sense, the fractional derivative of the function f (t) is defined as

CDαt
(

f (t))= 1
Γ (n – α)

( d
dt

)n ∫ t

a
(t–x)n–α–1( d

dx

)n
f (x) dx, n – 1<α≤n, (1)

where Γ (.) is the Gamma function, which is described by Γ (x) = ∫∞0 tx–1e–tdt, f: (0, +∞)→R andα> 0 [31].

The Caputo fractional order sense is used in this study.
Remark 1 The nonlinear FOS can be defined as following

dαX (t)
dtα

=F (t, X (t)) , (2)

where it is considered initial conditions by X (0) =X0, the state vectors by X (t) =[x1 (t) , x2 (t) , . . . , xn (t)]T∈Rn, the functions by
F=[f1, f2, . . . , fn

]T∈Rn, fi: [ 0, +∞) xRn→R, (i= 1, 2, . . . ,n) and the derivative-orders byα=[α1,α2, . . . ,αn]T such that
dαX(t)

dtα =[ dα1 x1(t)
dtα1 , dα2 x2(t)

dtα2 , . . . , dαn xn(t)
dtαn

]T
[32].

For the rest of the article, αi is in (0, 1| .
Definition 2 For system (2), autonomous IFOS can be presented as

dαX (t)
dtα

=F (X (t)) , X (0) =X0. (3)

Also, the equilibrium point of system (3) is found from F
(

X
)= 0 for X= (x1, x2, . . . ,xn) [6].

Lemma 1 Eigenvalues λi for i= 1, 2, . . . , m (α1+α2+ · · ·+αn) of system (3) are obtained from

det
(

diag
(
λmα1 , λmα2 , . . . ,λmαn

)– J
(

X
))= 0, (4)

where m is the smallest of the common multiples of the denominators of rational numbersα1,α2, . . . ,αn and J
(

X
)= ∂F

∂X

∣∣∣
X=X

. If all eigenvalues
λi obtained from equation (4) satisfy

∣∣arg
(
λi
)∣∣> π2m , (5)

then X is LAS for system (3) [33, 34].

As a result, Figure 1 shows the stability conditions of the incommensurate order SIR model given in (3), whereα1 6= α2 6= · · · 6= αn < 1
and λi for i= 1, 2, . . . , m (α1+ α2+ · · ·+αn).
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Figure 1. Regions of stability and instability of the equilibrium point in terms of the roots of the characteristic equation of the system (3) [5].

3 The SIR model through IFOS

We consider a SIR epidemic disease model. Define the following dependent-time t:

Table 1. State variables and their meanings
State Variable Meaning
S (t) The susceptible individuals at the t-time
I (t) The infected symptomatic individuals at the t-time
R (t) The recovered individuals at the t-time

Therefore, the dynamics is governed by a system of three FODE as follows:
dα1 S (t)

dtα1 = Λ + νR – ηIS – (µ + b) S,
dα2 I (t)

dtα2 = ηIS – (γ + d + b) I, (6)
dα3 R (t)

dtα3 = µS + γI – (ν + b) R,
where t ≥ 0, αi ∈ ( 0, 1] for i = 1, 2, 3. Also, the initial conditions are S (t0) = S0 > 0, I (t0) = I0 > 0 and R (t0) = R0 > 0 for t > t0.
Restrictions are imposed on the parameters to ensure that solutions are nonnegative. Therefore, the following conditions hold

Λ, ν, η, µ, b, γ, d > 0. (7)
In Table 2, it is illustrated parameters with their meaning.

Table 2. Parameters and their meanings in the proposed model
Parameter Meaning
Λ The constant birth number in the overall population
v The immunity loss rate of recovered individuals
η The contact number, the average number of successful contacts resulting

in infection and made by one infected individual
µ Rate of the vaccinated susceptible individuals
b The death rate due to the different conditions other than the disease for

the overall population.
γ Recovery rate of the infected individual
d Average fatality rate of the infected individual due to infectious disease

Therefore, Figure 2 is obtained from system (6).
Definition 3 The baseline reproduction number, often denoted as R0, describes the average number of secondary infections caused by an
infected individual in a fully susceptible population. This number indicates whether the infection will spread to the population or not [35].

For the proposed model, it is described this parameter as

R0 = η

(γ + d + b)
Λ

b
(b + ν)

(b + ν + µ) . (8)
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Figure 2. The movement of the individuals between compartments in the proposed model

It is clear that
R0 > 0, (9)

due to the inequalities in (7).

4 Stability analysis

Proposition 1 Let us consider the equations, dα1 S(t)
dtα1 = 0, dα2 I(t)

dtα2 = 0, dα3 R(t)
dtα3 = 0, for equilibrium points. The proposed model has two

types of the equilibrium points. These are disease free equilibrium point E0
(
Λ
b

(b+ν)(b+ν+µ) , 0, Λb µ(b+ν+µ)
)

and the endemic equilibrium E1 (S∗, I∗, R∗)
when

R0 > 1. (10)
In here, it is



S∗ = (γ+d+b)
η ,

I∗ = S∗(R0–1)(b+ν+µ)(
γ+d+b+ν d

b +ν) ,

R∗ =
(

S∗(R0–1)(b+ν+µ)(
γ+d+b+ν d

b +ν) + S∗
γ µ

)
γ(b+ν) .

(11)

Proposition 2 Considering the proposed model in (6), there are follows.

i. Letα1 = α2 = α3 ≤ 1. For CFOS, it is satisfied the followings:

a) IfR0 < 1, the equilibrium point E0, namely trivial disease-free equilibrium, is LAS.
b) If

((
ηI∗ + (µ + b)) + (ν + b)) (ηI∗

((ν + b) + ηS∗
) + b (µ + ν + b)) – ηI∗

((ν + b)ηS∗ + γν) > 0, (12)
then the equilibrium point E1, existing biologically meaning whenR0 > 1, is LAS.

ii. For IFOS in system (6), whereα1 6= α2 6= α3 < 1, it is satisfied the followings:

a) IfR0 < 1 and all roots λi for i = 1, 2, . . . , m
(
α1 + α3) founded from the equation

λm(α1+α3) + λmα1 (ν + b) + λmα3 (µ + b) + b (µ + ν + b) = 0
satisfy Routh-Hurwitz stability criteria [36] or the condition

∣∣arg
(
λi
)∣∣ > 1

m
π2 [37] as seen inequalities (5), then the equilibrium point E0 is

LAS.
b) LetR0 > 1. If all roots λi for i = 1, 2, . . . , m

(
α1 + α2 + α3) founded from the equation

λm(α1+α2+α3) + λm(α1+α2) (ν + b) + λm(α2+α3) (ηI∗ + (µ + b)) + λmα2 (ηI∗ (ν + b) + b (µ + ν + b))
+ λmα3 (γ + d + b)ηI∗ + ηI∗ ((γ + d + b) (ν + b) + γν) = 0 satisfy Routh-Hurwitz stability criteria or the condition

∣∣arg
(
λi
)∣∣ > 1

m
π2 , then

the equilibrium point E1 is LAS.
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Proof By the equations in (6), the Jacobian matrix evaluated at the equilibrium point Ei
(

S, I, R
) for i = 0, 1 is

J
(

Ei
) =


–(ηI + (µ + b)) –ηS ν

ηI
(
ηS – (γ + d + b)) 0

µ γ – (ν + b)

 . (13)

i. The system in (6) translates to CFOS, when 0 < α1 = α2 = α3 ≤ 1.

a) For E0, the eigenvalues are obtained by considering the equation Det
(

J(S,I, R)=E0
(

Λ
b

(b+ν)(b+ν+µ) ,0, Λb µ(b+ν+µ)
) – λI3x3

)
= 0. Ac-

cordingly, it is
(λ – (γ + d + b) (R0 – 1))(λ2 + λ ((ν + b) + (µ + b)) + (µ + ν + b)) = 0. (14)

Therefore, the eigenvalues obtained from equation in (14) are determined as followings:
λ1 = (γ + d + b) (R0 – 1) , (15)

and λ2 and λ3 are found by solving the equation
λ2 + λ ((ν + b) + (µ + b)) + (µ + ν + b) . (16)

It can be observed that ((ν + b) + (µ + b)) > 0 and (µ + ν + b) > 0, due to inequalities in (7). The LAS conditions for E0 are
provided for the eigenvalues λ2 and λ3. Thus, it is sufficient to examine the sign of λ1. If

R0 < 1, (17)
then λ1 is a negative real number due to inequalities (7). Routh-Hurwitz stability conditions are satisfied. In this case, E0 is
LAS.
b) Let R0 > 1. There is positive equilibrium point. Charasteristic equation obtained from Det

(
J(S,I, R)=E1(S∗,I∗,R∗) – λI3x3

)= 0
for the equilibrium point E1 is founded as

λ3 + a1λ2 + a2λ + a3= 0, (18)
where

a1 = (ηI∗ + (µ + b) + (ν + b)) , a2 = (ηI∗
((ν + b) + ηS∗

) + b (µ + ν + b)) , a3 = ηI∗
((ν + b)ηS∗ + γIν

) . (19)
Let us consider that Routh-Hurwitz stability criteria. It is already clear that a1, a3>0 due to inequalities in (7) and (9). In
addition, we have

a1a2 – a3 = ((ηI∗ + (µ + b)) + (ν + b)) (ηI∗
((ν + b) + ηS∗

) + b (µ + ν + b)) – ηI∗
((ν + b)ηS∗ + γν) .

If
((
ηI∗ + (µ + b)) + (ν + b)) (ηI∗

((ν + b) + ηS∗
) + b (µ + ν + b)) – ηI∗

((ν + b)ηS∗ + γν) > 0, (20)
then a1a2 – a3 > 0. Hence, E1 is LAS when inequality in (20) is satisfied.

ii. In case of 0 < α1 6= α2 6= α3 < 1, we have IFOS of (6). In this sense, the determinant found by the equation
det
(

diag
(
λmα1 , λmα2 ,λmα3) – J(x1, x2,..., xn)=(x1,x2,...,xn)

) = 0 (21)
is

∣∣∣∣∣∣∣∣
λmα1 + (ηI + (µ + b)) –ηS ν

ηI λmα2 – (ηS – (γ + d + b)) 0
µ γI λmα3 + (ν + b)

∣∣∣∣∣∣∣∣ = 0. (22)

a) Firstly, if the determinant in (22) evaluates in the point E0
(
Λ
b

(b+ν)(b+ν+µ) , 0, µ(ν+b) Λb (b+ν)(b+ν+µ)
) or

E0
( (γ+d+b)

η R0, 0, µ(ν+b) (γ+d+b)
η R0

) with respect to (8), then it is achieved the equations:

λmα2 – (γ + d + b) (R0 – 1) = 0, (23)
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and (
λmα1 + (µ + b))(λmα3 + (ν + b)) – µν = 0. (24)

These equations are examined as the followings: Taking into consideration the equation in (23), it is found that
λmα2 = (γ + d + b) (R0 – 1). If

R0 < 1, (25)
then λmα2 is a negative real number due to inequalities in (7). Otherwise, at least one root of (23) would be a positive real num-
ber, in which case the equilibrium point E0 would be unstable. By De-Moivre formulas, we have λmα2 =

>0 due to (7),(25)︷ ︸︸ ︷(γ + d + b) (1 –R0) cisπ,
and so, λk = [(γ + d + b) (1 –R0)] 1

mα2 cis
(
π+2kπ

mα2
) for k = 0, 1, 2, . . . , (mα2 – 1), such that cisπ = cosπ + isinπ , i = √–1. Also, we

have


|arg (λ0)| = π

mα2 ,

|arg (λ1)| = 3π
mα2 ,

...
∣∣∣arg

(
λ(mα2–1)

)∣∣∣ = (2mα2 – 1)π
mα2 .

(26)

Considering the conditions |arg (λ)| > π2m for the stability of the equilibrium point, the stability condition for E0 is given as
π

mα2 , 3π
mα2 , . . . , (2mα2–1)π

mα2 > π2m , and so,


α2 < 2,
α2 < 6,
...
α2 < 2 (2mα2 – 1) .

(27)

Inequalities in (27) have been always provided since the derivative-orders 0 < α1,α2,α3 ≤ 1 in (6) are already satisfied.
On the other hand, we have considered the equation (24)). If this equation is arranged, then

λm(α1+α3) + λmα1 (ν + b) + λmα3 (µ + b) + b (µ + ν + b) = 0 (28)
is obtained. If the eigenvalues, which are the roots of equation (28), satisfy Routh-Hurwitz stability condition or the conditions∣∣arg

(
λi
)∣∣ > π2m for i = 1, 2, . . . , m

(
α1 + α3), then E0 is LAS.

b) Let R0 > 1. In this case, the equilibrium point E1 emerges as positive definite. By calculating the determinant (22) at this
equilibrium point, it is obtained the following characteristic equation

λm(α1+α2+α3) + λm(α1+α2) (ν + b) + λm(α2+α3) (ηI∗ + (µ + b)) +
λmα2 (ηI∗ (ν + b) + b (µ + ν + b)) +
λmα3 (γ + d + b)ηI∗ + ηI∗ ((γ + d + b) (ν + b) + γν) = 0.

(29)

When the signs of the terms of the last equation are examined according to Descartes’ sign rule [38], it is clear that the equation
does not have a positive real root. This does not disturb the stability of the equilibrium point. Therefore, if the eigenvalues
λi for i = 1, 2, . . . , m

(
α1 + α2 + α3), which are the roots of the equation (29), satisfy Routh-Hurwitz stability condition or the

conditions ∣∣arg
(
λi
)∣∣ > 1

m
π2 , the equilibrium point E1 is LAS.

Therefore, the proof is completed. �

As a result, it can be reached to Table 3.
Corollary 1 Let us consider Table 3. IfR0 < 1 and some additional conditions are satisfied, then the equilibrium point E0, always existing, is
LAS. However, the equilibrium point E1 biologically exists whenR0 > 1. In this context, it can be said the followings:

i. In case the unexistence of E1, E0 can be a stable equilibrium point,
ii. In case the unstability of E0, whereR0 > 1, E1 exists.

Therefore, these two points cannot be stable under the same conditions.
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Table 3. The existence conditions for the equilibrium points of system (6) and the stability conditions of these points according todifferent states of its derivative orders
Equilibrium Point The exis-

tence con-
dition

Derivative-orders Stability conditions

E0
(

Λ
b

(b+ν)(b+ν+µ) , 0,
Λ
b

µ(b+ν+µ)

)
Always α1=α2=α3≤1 If R0 < 1

E0
(

Λ
b

(b+ν)(b+ν+µ) , 0,
Λ
b

µ(b+ν+µ)

)
Always α1 6=α2 6=α3,

α1,α2,α3 ∈ (0, 1)
If R0 < 1 and all roots λi for i = 1, 2, . . . , m (α1 + α3) founded
from the equation λm(α1+α3) + λmα1 (ν + b) + λmα3 (µ + b) +
b (µ + ν + b) = 0 satisfy Routh-Hurwitz stability criteria or the
condition |arg (λi)| > 1

m
π2 .

E1 (S∗, I∗, R∗) R0 > 1 α1=α2=α3≤1 ((ηI∗ + (µ + b)) + (ν + b)) (ηI∗ ((ν + b) + ηS∗) + b (µ + ν + b)) –
ηI∗ ((ν + b)ηS∗ + γν) > 0,

E1 (S∗, I∗, R∗) R0 > 1 α1 6=α2 6=α3,
α1,α2,α3 ∈ (0, 1)

If all roots λi for i = 1, 2, . . . , m (α1 + α2 + α3) founded
from the equation λm(α1+α2+α3) + λm(α1+α2) (ν + b) +
λm(α2+α3) (ηI∗ + (µ + b)) + λmα2 (ηI∗ (ν + b) + b (µ + ν + b)) +
λmα3 (γ + d + b)ηI∗ + ηI∗ ((γ + d + b) (ν + b) + γν) = 0
satisfy Routh-Hurwitz stability criteria or the condition
|arg (λi)| > 1

m
π2 ,

where R0 is in (8) and the components S∗, I∗ and R∗ of E1 are in (11).

5 Numerical results

To highlight the stability analysis results of this work using the proposed model for both CFOS and IFOS, two numerical examples
are investigated. To do this, it is examined the behavior of the solutions of the model by valuing the parameters. It has been used
Matlab R2012b. The parameter values are given in Table 4.

Table 4. The considered values of the parameters
Parameter Value1 Value2 Unit
Λ 100 1000 individuals
v 0.001 0.01 day –1
η 0.0001 0.0001 day –1
µ 0.045 0.05 day –1
b 0.0032 0.15 day –1
γ 0.25 0.25 day –1
d 0.022 0.022 day –1
α1 0.9 0.8 Rational

number
α2 0.9 0.6 Rational

number
α3 0.9 0.4 Rational

number
Value1 is used in numerical study 1.
Value2 is used in numerical study 2.

Numerical study 1

Consider Value1 in Table 4. It is found as R0 ≈ 0.969. This only means the existence of the equilibrium point E0 (2668, 0, 28582).
In addition, since R0 < 1, it is seen that the equilibrium point E0 for CFOS (α1 = α2 = α3 = 0.9) is stable according to Table 3 . This
situation with initial conditions [S0 I0 R0] = [1000 1000 10000] can be seen in Figures 3 and 4.

Numerical study 2

When the values in Table 4 are used, the threshold parameter is found as R0 ≈ 1.2. Also, the trivial equilibrium point is
E0 (5079, 0, 1587). Since R0 > 1, the positive equilibrium point E1 (4220, 409, 1958) exists and E0 is an unstable point according to
Table 3. Only the stability of E1 can be examined.
Derivatives-orders are given as [α1 α2 α3] = [0.8 0.6 0.4]. Since m is the least common multiple of the denominators of derivative-
orders, it is 5. Equation (29) translates to

λ9 + 0.16λ7 + 0.2409λ5 + 0.038044λ3 + 0.0172598λ2 + 0.002863818 = 0. (30)
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Figure 3. Time-dependent variation of susceptible and infectious populations for CFOS in (6)

Figure 4. Time-dependent variation of the recovered population for CFOS in (6)

Roots of (30) are
λ1 = –0.4990 + 0.5267i,

λ2 = –0.4990 – 0.5267i,

λ3 = 0.5039 + 0.4542i,

λ4 = 0.5039 – 0.4542i,

λ5 = –0.4042,

λ6 = 0.2018 + 0.3738i,

λ7 = 0.2018 – 0.3738i,

λ8 = –0.0047 + 0.4025i,

λ9 = –0.0047 – 0.4025i.
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Also, we have
argλ1 = 133.4530°,

argλ2 = 226.5470°,

argλ3 = 42.0305°,

argλ4 = 317.9695°,

argλ5 = 180°,

argλ6 = 61.6371°,

argλ7 = 298.3629°,

argλ8 = 90.6690°,

λ9 = 269.3310°.
Eigenvalues λi for i = 1, 2, . . . , 9 are greater than π2m = 18°. Therefore E1 is LAS.
Let the initial conditions by [S0 I0 R0] = [10000 100 100]. In this case, the numerical simulation is obtained along the following
Figures 5, 6 and 7.

Figure 5. Time-dependent variation of susceptible population for IFOS in (6)

6 Conclusions

In this study, it is suggested the newly IFOS SIR model including the three time-dependent variables: susceptible, infected and
recovered individuals in a population. This model proposed in system (6) is the form of nonlinear IFOS with the Caputo fractional
derivative, accepted as rational numbers in the interval (0, 1]. In this context, the general situation regarding the stability of
proposed model was investigated. Considering the derivative-orders, a new perspective was presented to the literature.
The model has an infection-free equilibrium point E0

(
Λ
b

(b+ν)(b+ν+µ) , 0, Λb µ(b+ν+µ)
) and a positive equilibrium point

E1
(

S∗ = (γ+d+b)
η , I∗ = S∗(R0–1)(b+ν+µ)(

γ+d+b+ν d
b +ν) , R∗ =

(
S∗(R0–1)(b+ν+µ)(
γ+d+b+ν d

b +ν) + S∗
γ µ

)
γ(b+ν)
)

. For these equilibrium points, their existence were
analyzed according to the threshold parameterR0 and their stability were examined according to bothR0 and eigenvalues obtained
from characteristic equation roots. These results about the stability analysis are summarized in Table 3. In general, the SIR models
in literature trying to explain the infection progress in a population with respect to the only parameter R0. According to qualitative
analysis of our model, it was found followings:
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Figure 6. Time-dependent variation of infected population for IFOS in (6)

Figure 7. Time-dependent variation of recovered population for IFOS in (6)

i. Disease-free equilibrium point always exists and is LAS,{ If R0 < 1 in case of α1=α2=α3≤1.
If R0 < 1 and (28) meet conditions ∣∣arg

(
λi
)∣∣ > π2m in other cases.

ii. Positive equilibrium point exists when R0>1. This point is LAS,{ If R0>1 (also the existence condition) in case of α1=α2=α3≤1.
If (29) meet conditions ∣∣arg

(
λi
)∣∣ > π2m in other cases.

In numerical studies, the results of the qualitative analysis given in Table 3 are supported by graphics for the proposed SIR model.
For this, the stability of E0 for CFOS is shown in the first numerical study, while the stability of E1 for IFOS is shown in the second
numerical study.
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