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ABSTRACT

A null manifold (M, g) is a differentiable manifold M endowed with a degenerate metric tensor
g. In this work we provide sufficient conditions for a null manifold to be isometrically immersed
as a hypersurface into a simple connected semi-Riemannian manifold Qc,q of constant sectional
curvature c and index q .
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1. Introduction and main results

One of the most fundamental questions in Riemannian submanifold theory consists on determining the
existence and uniqueness of isometric immersions of a specific Riemannian manifold (M, g) into some ambient
space (M̄, ḡ). Its origins can be traced back to a celebrated theorem of Bonnet, that established the existence of
an immersed surface Φ : U ⊂ R2 ↪→ R3 that realizes any two triples (E,F,G), (e, f, g) of differentiable functions
as coefficients of its first and second fundamental forms, provided that the structure equations are satisfied.
Furthermore, any two such immersions are related by a rigid motion in R3 [4]. In fact, the equations of
Gauss, Codazzi and Ricci must hold on any submanifold of a given ambient space, thus they are necessary
conditions for the existence of isometric immersions. The standard formulation of the Fundamental Theorem
of Submanifolds states that these equations are sufficient conditions as well, up to isometries, for a Riemannian
n-manifold to admit a local isometric immersion into spaces of constant sectional curvature with dimension
greater than n. For example, refer to the classical results in [16, 19, 20, 29, 30], and [6, 9, 10] for recent
developments.

This problem has also been addressed in the semi-Riemannian setting [18, 28] and to this day is an active
area of research [7, 12, 23, 24, 25]. Furthermore, applications to general relativity theory arise naturally when
considering the Lorentzian scenario [21, 28]. Recall that when the ambient manifold is Lorentzian the causal
character of tangent spaces to a submanifold can be timelike, spacelike or null (lightlike). If all tangent spaces
share a common causal character, then the submanifold is called timelike, spacelike or null, accordingly, being
the latter case the main focus of our present work. Some authors have considered isometric immersions of
manifolds with indefinite metric [1, 17, 26], and the problem of reduction of the codimension for lightlike
isotropic submanifolds was studied in [5]. The problem of existence and uniqueness of isometric immersions
of lightlike (or null) k-manifolds M into a semi-Euclidean space Rk+1

q of arbitrary index q ≥ 1 was solved by
K. L. Duggal and A. Bejancu (see [14, Theorem 4.1]), assuming the existence of a semi-Riemannian metric on a
suitable vector bundle. In this paper, we strengthen the Fundamental Theorem of K. Duggal and A. Bejancu in
two different ways. First, by providing an explicit construction of the semi-Riemannian metric whose existence
is only assumed in the Fundamental Theorem in [14]. Furthermore, we generalize the Fundamental Theorem
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by proving the existence of isometric immersions of a null manifold Mk into a semi-Riemannian space form
Qk+1
c,q of arbitrary index q ≥ 1 and constant sectional curvature c.
In order to state our main result, let us note that ifM is a smooth submanifold of M̄ , then we can find suitable

null versions of the Gauss-Codazzi equations, (refer for instance to Section 2 or to equations (2.1.9)-(2.1.10) in
[15]). Conversely, it is natural to investigate, just as in the Euclidean setting, if such null structure equations
give necessary and sufficient conditions for the existence of an isometric immersion f : M → M̄ . Our main
result reads as follows.

Theorem A (See Theorem 5.2). Let (M, g, S(TM)) be a null simply connected manifold of dimension n+ 1, with a
screen distribution of dimension n and index q − 1. Let ϵ be a vector bundle over M of dimension 1 and let gγ be the
metric over γ = TM ⊕ ϵ given by (5.30). Further, let ∇γ be a connection over γ which satisfies (5.31) - (5.37). Moreover,
suppose that the Gauss-Codazzi-Ricci equations for c = σ/r2 given by (5.38)-(5.41) hold for γ, where σ = sign(c).

Then there exists an isometric immersion f :M → Qn+2
c,q , such that f = i ◦ f . Furthermore, there exist an isometry of

vector bundles ϕ : δ ⊕ ϵ→ trf (TM), such that

hf = ϕh,

∇t,fϕ = ϕ∇t.

Moreover, let f, g :M → Qn+2
c,q be two such isometric immersions of a null manifold and suppose there exists an

isometry of vector bundles ψ : f∗TQn+2
q → f∗TQn+2

q such that

ψ(f∗) = g∗

and ψ|trf (TM) = ψ satisfies

ψ(ϕf (N)) = ϕg(N),

ψ(ϕf (u)) = ϕg(u).

Then there exists an isometry τ : Qn+2
q → Qn+2

q , such that

τf = g and τ∗|trf (TM) = ψ

The paper is divided as follows: in Section 2 we discuss the basic structure equations for a null submanifold.
Then in Section 3 we establish the appropriate data and compatibility conditions which allows us to give a
proof in section 4 of the Fundamental Theorem for immersions in Lorentz-Minkowski spaces. Finally in section
5 we show our main result.

2. The null Gauss-Codazzi-Ricci equations

In this section we establish our notation; for a detailed account, refer to [11] and [15]. Let M̄n+2 be a
Lorentzian manifold with metric ḡ and M a (n+ 1)-dimensional manifold. If f : M → M̄ is an immersion,
the metric on M induced by f is defined by

g(X,Y ) = ḡ(f∗X, f∗Y )

for all X,Y ∈ Γ(TM) and we say that f is an isometric immersion.
M is a null manifold if g is a degenerate metric. Equivalently, M is null if there exists a 1-dimensional

distribution over M , the radical distribution Rad(TM) ⊂ TM , such that g(X,U) = 0 for any X ∈ Γ(TM) and
U ∈ Γ(Rad(TM)). We choose and fix hereafter a n-dimensional distribution over M , called a screen distribution
S(TM), which is complementary to the radical distribution at each point; that is,

TM = S(TM)⊕ Rad(TM). (2.1)

Let f∗TM̄ be the bundle over M such that the fiber at a point p is Tf(p)M̄ . In this context, there is a well-defined
1-dimensional distribution trf (TM) over M , called the transversal distribution, such that

f∗TM̄ = f∗TM ⊕ trf (TM) (2.2)
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and
ḡ(f∗X,V ) = 0, ḡ(V, V ) = 0, ḡ(f∗U, V

′) ̸= 0,

for any X ∈ Γ(TM), any V ∈ Γ(trf (TM)) and any nowhere vanishing sections U ∈ Γ(Rad(TM)) and V ′ ∈
Γ(trf (TM)).

The Levi-Civita connection ∇̄ of M̄ relative to ḡ induces naturally a connection ∇̄f on f∗TM̄ defined by
∇̄f
Xf∗Y = ∇̄f∗Xf∗Y . For X,Y ∈ Γ(TM), we use decomposition (2.2) to write the Gauss formula as

∇̄f
Xf∗Y = f∗∇XY + hf (X,Y ). (2.3)

where X,Y,∇XY ∈ Γ(TM) and hf (X,Y ) ∈ Γ(trf (TM)). ∇ is a torsion-free connection on TM , while hf is a
symmetric section of Hom2(TM, TM ; trf (TM)). Note that ∇ is not a metric connection: If X,Y, Z ∈ Γ(TM),
then

0 = (∇̄f
X ḡ)(f∗Y, f∗Z) = X(ḡ(f∗Y, f∗Z))− ḡ(∇̄f

Xf∗Y, f∗Z)− ḡ(f∗Y, ∇̄f
Xf∗Z)

= X(g(Y, Z))− ḡ(f∗∇XY + hf (X,Y ), f∗Z)− ḡ(f∗Y, f∗∇XZ + hf (X,Z))

= X(g(Y, Z))− ḡ(f∗∇XY, f∗Z)− ḡ(f∗Y, f∗∇XZ)

− ḡ(hf (X,Y ), f∗Z)− ḡ(f∗Y, h
f (X,Z))

= X(g(Y, Z))− g(∇XY,Z)− g(Y,∇XZ)

− ḡ(hf (X,Y ), f∗Z)− ḡ(f∗Y, h
f (X,Z))

therefore,
(∇Xg)(Y,Z) = ḡ(hf (X,Y ), f∗Z) + ḡ(f∗Y, h

f (X,Z)).

Given X ∈ Γ(TM) and V ∈ Γ(trf (TM)), we use again (2.2) to write the Weingarten formula

∇̄f
XV = −f∗AfVX +∇f,t

X V ; (2.4)

here AfV is the shape operator of M in M̄ , while ∇f,t is a connection on trf (TM).
Let P denote the projection of TM onto S(TM) relative to decomposition (2.1). We have the following Gauss-

Weingarten equations in TM :
∇XPY = ∇∗

XPY + h∗(X,PY ),

∇XU = −A∗
UX +∇∗t

XU,

where ∇∗ and ∇∗t are connections on S(TM) and Rad(TM), respectively. A∗
U is the screen shape operator and

h∗ ∈ Hom2(TM,S(TM),Rad(TM)). In fact, ∇∗ is a metric connection associated to g|S(TM).
Consider a vector field U ∈ Γ(Rad(TM)). Since ∇̄f is a metric connection, using (2.3) with Y = U and taking

the scalar product with U we obtain hf (X,U) = 0. Then,

ḡ(hf (X,Y ), f∗U) = ḡ(∇̄f
Xf∗Y, f∗U) = −ḡ(f∗Y, ∇̄f

Xf∗U)

= −ḡ(f∗Y, f∗∇XU + hf (X,U))

= −g(Y,∇XU) = g(Y,A∗
UX).

From (2.4) it is easy to see that ḡ(f∗AfVX,V ) = 0 for any V ∈ Γ(trf (TM)), which means that AfV is S(TM)-
valued; therefore to determine it we calculate its product with any vector field of the form PY , where
Y ∈ Γ(TM):

g(PY,AfVX) = ḡ(f∗PY, f∗A
f
VX) = −ḡ(f∗PY, ∇̄f

XV )

= ḡ(∇̄f
Xf∗PY, V ) = ḡ(f∗∇XPY + hf (X,Y ), V )

= ḡ(f∗(∇∗
XPY + h∗(X,PY )), V ) = ḡ(f∗h

∗(X,PY ), V ).

In short, we have the following relations between the shape operators and the second fundamental forms hf
and h∗:

ḡ(hf (X,Y ), f∗U) = g(Y,A∗
UX), g(PY,AfVX) = ḡ(f∗h

∗(X,PY ), V ). (2.5)

Remark 2.1. Since locally any immersion is an embedding, for the sake of clarity we will work locally, identify
M with f(M), consider f as the inclusion map and omit the reference to it. We will return to use f only in the
statement and proof of Theorem 4.1.
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Denote by R̄, R, R∗, Rt and R∗t the curvature tensors of ∇̄, ∇, ∇∗, ∇t and ∇∗t, respectively, with the sign
convention in [27]; for example,

R(X,Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X.Y ]Z.

Also, let
(∇Xh)(Y,Z) = ∇t

X(h(Y,Z))− h(∇XY,Z)− h(Y,∇XZ),

(∇Xh
∗)(Y, PZ) = ∇∗t

X(h∗(Y, PZ))− h∗(∇XY, PZ)− h∗(Y,∇∗
XPZ).

Proposition 2.1 (see [2] and [14]). Let (M̄n+2, ḡ) be a semi-Riemannian manifold and M a null hypersurface of M̄ .
For any X,Y, Z ∈ Γ(TM), U ∈ Γ(Rad(TM)) and V ∈ Γ(tr(TM)) we have

1. The Gauss-Codazzi equations

R̄(X,Y )Z = R(X,Y )Z +Ah(Y,Z)X −Ah(X,Z)Y

+ (∇Y h)(X,Z)− (∇Xh)(Y,Z),

R(X,Y )PZ = R∗(X,Y )PZ +A∗
h∗(Y,PZ)X −A∗

h∗(X,PZ)Y

+ (∇Y h
∗)(X,PZ)− (∇Xh

∗)(Y, PZ).

(2.6)

2. The Ricci equations
R̄(X,Y )U = ∇∗

XA
∗
UY −∇∗

YA
∗
UX +A∗

∇∗t
Y U

X −A∗
∇∗t

XU
Y

+ h∗(X,A∗
UY )− h∗(Y,A∗

UX) +R∗t(X,Y )U

+ h(X,A∗
UY )− h(Y,A∗

UX),

R̄(X,Y )V = ∇∗
XAV Y −∇∗

YAVX +A∇t
Y V
X −A∇t

XV
Y

+ h∗(X,AV Y )− h∗(Y,AVX)

+ h(X,AV Y )− h(Y,AVX) +Rt(X,Y )V.

(2.7)

We arranged the above Gauss-Codazzi-Ricci equations so that each line is a component in S(TM), Rad(TM)
or tr(TM), depending on the case. In particular, if M̄ has zero constant curvature, each line in the right hand
side of (2.6) and (2.7) vanishes, implying

R(X,Y )Z = Ah(X,Z)Y −Ah(Y,Z)X,

(∇Xh)(Y, Z) = (∇Y h)(X,Z),

∇∗
XA

∗
UY −∇∗

YA
∗
UX = A∗

∇∗t
XU

Y −A∗
∇∗t

Y U
X,

h∗(X,A∗
UY ) = h∗(Y,A∗

UX)−R∗t(X,Y )U,

h(X,A∗
UY ) = h(Y,A∗

UX),

∇∗
XAV Y −∇∗

YAVX = A∇t
XV

Y −A∇t
Y V
X,

h∗(X,AV Y ) = h∗(Y,AVX),

h(X,AV Y ) = h(Y,AVX)−Rt(X,Y )V.

(2.8)

3. Compatibility conditions

In order to set up the general framework for our constructions, we consider the following data:

• M is a null (n+ 1)-dimensional manifold with metric g.
• S(TM) is an n-dimensional screen distribution on M ; note that g restricted to S(TM) is a Riemannian

metric.
• Rad(TM) is the 1-dimensional radical distribution, with

TM = S(TM)⊕ Rad(TM). (3.1)

• ∇ is a torsion-free connection on M , such that restricted to S(TM) is a metric connection relative to g.
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• Decomposition (3.1) gives rise to the following Gauss-Weingarten equations on M :

∇XPY = ∇∗
XPY + h∗(X,PY ),

∇XU = −A∗
UX +∇∗t

XU,

where P is the projection of TM onto S(TM), X,Y ∈ Γ(TM) and U ∈ Γ(Rad(TM)).
• E is a 1-dimensional vector bundle over M , playing the role of tr(TM).

Following [11, p. 37] we define the bundle

Ē = TM ⊕ E = S(TM)⊕ Rad(TM)⊕ E .

We will define a metric ḡĒ on this bundle as follows. Let P , PR and PE denote the projections of Ē onto S(TM),
Rad(TM) and E , respectively; also, let gR, gE be Riemannian metrics on Rad(TM) and E , respectively, and
consider the product metric

ḡ = P ∗g + P ∗
RgR + P ∗

E gE

on Ē . Take {ξ,N} a ḡ-orthonormal 2-frame with respect to this metric, such that span(ξ) = Rad(TM) and
span(N) = E , respectively.

Definition 3.1. Let X,Y ∈ Γ(Ē). Then

ḡĒ(X,Y ) = ḡ(X,Y )− (ḡ(X, ξ)− ḡ(X,N))(ḡ(Y, ξ)− ḡ(Y,N)). (3.2)

Proposition 3.1. ḡĒ is a Lorentzian metric on Ē . Moreover, if X,Y ∈ Γ(S(TM)), then

1. ḡĒ(X,Y ) = g(X,Y );

2. ḡĒ(X, ξ) = ḡĒ(X,N) = 0;

3. ḡĒ(ξ, ξ) = ḡĒ(N,N) = 0;

4. ḡĒ(ξ,N) = 1.

Proof. Straightforward calculations give the enumerated properties of ḡĒ . It is clear from the definition that
ḡĒ(X,Y ) is bilinear and symmetric in X,Y . Since ḡĒ |S(TM)= g |S(TM), ḡĒ is Riemannian on S(TM). On the
other hand, properties 3 and 4 imply ḡĒ restricted to Rad(TM)⊕ E is Lorentzian; therefore it is also a Lorentzian
metric on Ē .

We define a symmetric operator hE ∈ Hom2(TM, TM, E) playing the role of the second fundamental form h,
by

ḡĒ(hE(X,Y ), U) = g(Y,A∗
UX), (3.3)

for any X,Y ∈ Γ(TM) and U ∈ Γ(Rad(TM)).
Given a connection ∇E : Γ(TM)× Γ(E) → Γ(E) on E , we define a connection on Ē , analogous to (2.3) and

(2.4):
∇̄Ē
XY = ∇XY + hE(X,Y ),

∇̄Ē
XV = −AVX +∇E

XV.

where X,Y ∈ Γ(TM) and V ∈ Γ(E); we define the S(TM)-valued operator AV by

g(PY,AVX) = ḡĒ(h∗(X,PY ), V ). (3.4)

Our next result establishes necessary and sufficient conditions for the metric compatibility of the connection
∇̄Ē .

Proposition 3.2. ∇̄Ē is a metric connection on Ē relative to ḡĒ if and only if

ḡĒ(h∗(X,Y ), V ) = ḡĒ(Y,AVX),

X(ḡĒ(U, V )) = ḡĒ(∇∗t
XU, V ) + ḡĒ(U,∇E

XV ),
(3.5)

for any X ∈ Γ(TM), Y ∈ Γ(S(TM)), U ∈ Γ(Rad(TM)), V ∈ Γ(E).
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Proof. We have to prove that

(∇̄Ē
X ḡ

Ē)(Y,Z) = X(ḡĒ(Y,Z))− ḡĒ(∇̄Ē
XY, Z)− ḡĒ(Y, ∇̄Ē

XZ)

vanishes for any X ∈ Γ(TM) and Y,Z ∈ Γ(Ē). Let us separate in several cases:

1. Let Y, Z ∈ Γ(S(TM)). Then

(∇̄Ē
X ḡ

Ē)(Y, Z) = X(ḡĒ(Y, Z))− ḡĒ(∇̄Ē
XY,Z)− ḡĒ(Y, ∇̄Ē

XZ)

= X(g(Y, Z))− g(∇∗
XY,Z)− g(Y,∇∗

XZ),

which vanishes since ∇∗ is a metric connection relative to g.

2. Let Y ∈ Γ(S(TM)) and U ∈ Γ(Rad(TM)). Then

(∇̄Ē
X ḡ

Ē)(Y, U) = X(ḡĒ(Y, U))− ḡĒ(∇̄Ē
XY,U)− ḡĒ(Y, ∇̄Ē

XU)

= −ḡĒ(hE(X,Y ), U) + g(Y,A∗
UX),

which vanishes because of definition (3.3).

3. Take Y ∈ Γ(S(TM)) and V ∈ Γ(E). Now,

(∇̄Ē
X ḡ

Ē)(Y, V ) = X(ḡĒ(Y, V ))− ḡĒ(∇̄Ē
XY, V )− ḡĒ(Y, ∇̄Ē

XV )

= −ḡĒ(h∗(X,Y ), V ) + ḡĒ(Y,AVX),

which vanishes because of our hypothesis.

4. If U,U ′ ∈ Γ(Rad(TM)), then

(∇̄Ē
X ḡ

Ē)(U,U ′) = X(ḡĒ(U,U ′))− ḡĒ(∇̄Ē
XU,U

′)− ḡĒ(U, ∇̄Ē
XU

′)

= −ḡĒ(∇XU + hE(X,U), U ′)− ḡĒ(U,∇XU
′ + hE(X,U ′))

= −ḡĒ(∇XU,U
′)− ḡĒ(U,∇XU

′) = 0,

where we used (3.3) in the form

ḡĒ(hE(X,U), U ′) = g(U,A∗
U ′X) = 0.

5. If V, V ′ ∈ Γ(E), then

(∇̄Ē
X ḡ

Ē)(V, V ′) = X(ḡĒ(V, V ′))− ḡĒ(∇̄Ē
XV, V

′)− ḡĒ(V, ∇̄Ē
XV

′)

= −ḡĒ(−AVX +∇E
XV, V

′)− ḡĒ(V,−AV ′X +∇E
XV

′)

= ḡĒ(∇E
XV, V

′) + ḡĒ(V,∇E
XV

′) = 0;

recall that the operators AV , AV ′ are required to take values in S(TM).

6. Finally, if U ∈ Γ(Rad(TM)) and V ∈ Γ(E),

(∇̄Ē
X ḡ

Ē)(U, V ) = X(ḡĒ(U, V ))− ḡĒ(∇̄Ē
XU, V )− ḡĒ(U, ∇̄Ē

XV )

= X(ḡĒ(U, V ))− ḡĒ(∇∗t
XU, V )− ḡĒ(U,∇E

XV ).

The claim follows.

The proof of the following result is an straightforward calculation but we include it for completeness.

Proposition 3.3. The curvature tensor R̄Ē of ∇̄Ē is identically zero if and only if equations (2.8) hold.
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Proof. As usual, we may suppose that all Lie brackets vanish identically. First we calculate R̄Ē(X,Y )Z for
X,Y, Z ∈ Γ(TM). Note that

∇̄Ē
Y ∇̄Ē

XZ = ∇Y∇XZ + hE(Y,∇XZ)−AhE(X,Z)Y +∇E
Y (h

E(X,Z))

and analogously for ∇̄Ē
X∇̄Ē

Y Z. Therefore,

R̄Ē(X,Y )Z = R(X,Y )Z +AhE(Y,Z)X −AhE(X,Z)Y

− hE(X,∇Y Z)−∇E
X(hE(Y, Z))

+ hE(Y,∇XZ) +∇E
Y (h

E(X,Z))

+ hE(∇XY,Z)− hE(∇YX,Z)

= R(X,Y )Z +AhE(Y,Z)X −AhE(X,Z)Y

+ (∇E
Y h

E)(X,Z)− (∇E
Xh

E)(Y, Z)

= 0;

note we added two terms in order to obtain ∇EhE .
Analogously, if U ∈ Γ(Rad(TM)),

R̄Ē(X,Y )U = ∇∗
XA

∗
UY −∇∗

YA
∗
UX +A∇∗t

Y U
X −A∇∗t

XU
Y

− h∗(X,A∗
UY ) + h∗(Y,A∗

UX) +R∗t(X,Y )U

+ hE(X,A∗
UY )− hE(Y,A∗

UX)

= 0.

Finally, if V ∈ Γ(tr(TM)),

R̄Ē(X,Y )V = ∇∗
XAV Y −∇∗

YAVX +A∇E
Y V
X −A∇E

XV
Y

+ h∗(X,AV Y )− h∗(Y,AVX)

+ hE(X,AV Y )− hE(Y,AVX) +RE(X,Y )V

= 0,

which proves our claim.

4. Isometric immersions into Rn+2
1

We now prove a stronger version of the Fundamental Theorem for null hypersurfaces isometrically
immersed into Lorentz-Minkowski space (cfr. [14, Theorem 4.1]). In the next section we extend this result
for isometric immersions of a null manifold Mk into a simply connected semi-Riemannian manifold Qk+1

c,q with
constant sectional curvature c and index q ≥ 1.

Theorem 4.1. Let (M, g, S(TM)) be a null, simply connected (n+ 1)-dimensional manifold with an n-dimensional
screen distribution S(TM). Let E be a 1-dimensional vector bundle over M , ḡĒ a metric on Ē = TM ⊕ E defined by (3.2)
and a connection ∇̄Ē on Ē satisfying (3.5). Suppose further the Gauss-Codazzi-Ricci equations (2.8) hold on Ē . Then there
exists an isometric immersion f : M → Rn+2

1 and a vector bundle isometry ϕ : E → tr(TM) such that

hf = ϕhE and ∇tϕ = ϕ∇E . (4.1)

Moreover, let f, g : Mn+1 → Rn+2
1 be isometric immersions of a null manifold. Suppose there is a vector bundle

isometry ψ : trf (TM) → trg(TM) such that

ψhf = hg and ψ∇f,t = ∇g,tψ.

Then there is an isometry τ : Rn+2
1 → Rn+2

1 such that

τf = g and τ∗|trf (TM) = ψ.
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Proof. The argument follows closely [11, p. 37] and [8]. By our previous work, the curvature tensor R̄Ē of Ē
vanishes identically. Since the connection is flat, by standard results (see [11, Corollary A.5]) there exists a
global parallel orthonormal frame {Ei}, i = 1, . . . , n+ 2, relative to ∇̄Ē . Let (x1, . . . , xn+1) be local coordinates
in a simply connected neighborhood U of p ∈M ; we write

∂

∂xi
=

n+2∑
k=1

aikEk

for some functions aik. Since {Ei} is an orthonormal frame, the coefficients of the metric ḡĒ are given by

gij = ḡĒ
(

∂

∂xi
,
∂

∂xj

)
=

n+2∑
k=1

aikajk;

since Ei is parallel, we have

∇̄Ē
∂

∂xi

∂

∂xj
=

n+2∑
k=1

∂ajk
∂xi

Ek and ∇̄Ē
∂

∂xj

∂

∂xi
=

n+2∑
k=1

∂aik
∂xj

Ek,

which gives
∂ajk
∂xi

=
∂aik
∂xj

,

implying that the forms
ωk = a1kdx1 + · · ·+ an+1,kdxn+1, k,= 1, . . . , n+ 2,

are closed; since U is simply connected, for each k there is a function fk such that

∂fk
∂xi

= aik.

Let f : U → Rn+2
1 given by f = (f1, . . . , fn+2), so that

f∗

(
∂

∂xi

)
=

(
∂f1
∂xi

, . . . ,
∂fn+2

∂xi

)
= (ai1, . . . , ai,n+2),

and therefore

g0
(
f∗

(
∂

∂xi

)
, f∗

(
∂

∂xj

))
=

n+2∑
k=1

aikajk = g

(
∂

∂xi
,
∂

∂xj

)
,

where ∇0 is the canonical flat connection in Rn+2
1 . This means that f is an isometric immersion. In particular,

f(U) is a null hypersurface in Rn+2
1 and f∗(S(TM)|U ) is an screen distribution defined in f(U). We have also

a well defined transversal distribution T (f(U))t. Since the tangent bundle TRn+2
1 is trivial, in the remaining of

the proof we use the standard identification of the pullback bundle f∗TRn+2
1 with M ×Rn+2

1 (refer to [31, Prop.
20.5]).

We define a vector bundle morphism ϕ̄ : TU ⊕ E → U ×Rn+2
1 by

ϕ̄(Ek) = ek,

ϕ̄

(
∂

∂xi

)
=

n+1∑
k=1

aikϕ̄(Ek) =

n+1∑
k=1

aikek = f∗

(
∂

∂xi

)
.

In particular, ϕ̄|TU = f∗ is an isomorphism onto T (f(U)). Since ϕ̄ is an isometry on the fibers, it sends E
isomorphically onto T (f(U))t. Also, since ϕ̄ maps the parallel orthonormal frame {Ei} into the parallel
orthonormal frame {ei}, we have for any Y ∈ Γ(TM) and V ∈ Γ(E),

ϕ̄(∇̄Ē
XY ) = ∇0

f∗X ϕ̄Y,

ϕ̄(∇̄Ē
XV ) = ∇0

f∗X ϕ̄V ;
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in short, ϕ̄ is a parallel vector bundle isometry.
Let ϕ = ϕ̄|E . For X,Y ∈ Γ(TM) we have

ϕ̄∇̄Ē
XY = ϕ̄(∇XY + hE(X,Y )) = f∗∇XY + ϕhE(X,Y )

∇0
X ϕ̄Y = ∇0

Xf∗Y = f∗∇XY + hf (X,Y ).

Taking the transversal components, we have hf = ϕhE , the first claim in (4.1).
From (2.5) and (3.4), for V ∈ Γ(tr(TM)) we have

g(PY,AVX) = ḡĒ(h∗(X,PY ), V ) = g0(ϕ̄h∗(X,PY ), ϕ̄V )

= g0(f∗h
∗(X,PY ), ϕV ) = g(PY,AfϕVX);

that is, AV = AfϕV . Therefore,

ϕ̄∇̄Ē
XV = ϕ̄(−AVX +∇E

XV ) = −f∗AVX + ϕ∇E
XV

= −f∗AfϕVX + ϕ∇E
XV,

while (2.4) implies
∇0
X ϕ̄V = ∇0

XϕV = −f∗AfϕVX +∇t
XϕV ;

implying in turn ∇tϕ = ϕ∇E , the second claim in (4.1).
Since M is simply connected, the vector bundle morphism ϕ̄ may be extended globally. For simplicity we

will denote this extension again by ϕ̄.
To prove the uniqueness part, following again [11], we define

ψ̄ : f∗TRn+2
1 → g∗TRn+2

1

by
ψ̄f∗ = g∗ and ψ̄|trf (TM) = ψ.

We prove that ψ̄ is parallel relative to the pullbacks ∇̄f,0 and ∇̄g,0 of the standard connection ∇0 of Rn+2
1 on

f∗TRn+2
1 and g∗TRn+2

1 , respectively. For X,Y ∈ Γ(TM) we have

∇̄g,0
X ψ̄f∗Y = ∇̄g,0

X g∗Y

= g∗∇XY + hg(X,Y )

= ψ̄f∗∇XY + ψhf (X,Y )

= ψ̄(f∗∇XY + hf (X,Y ))

= ψ̄∇̄f,0
X f∗Y.

On the other hand, if V ∈ Γ(trf (TM)),

∇̄g,0
X ψ̄V = ∇̄g,0

X ψV = −g∗AgψVX +∇g,t
X ψV

= −ψ̄f∗AfVX + ψ∇f,t
X V

= ψ̄(−f∗AfVX +∇f,t
X V )

= ψ̄∇̄f,0
X V ;

here we used the fact that AgψV = AfV , which is proved using (2.5):

g(PY,AgψVX) = ḡ(g∗h
∗(X,PY ), ψV ) = ḡ(ψ̄f∗h

∗(X,PY ), ψ̄V )

= ḡ(f∗h
∗(X,PY ), V ) = g(PY,AfVX).

Then ψ̄ is parallel. Since TRn+2
1 ≃ R2n+4 is flat, its transition functions are locally constant (see Theorem 5.5

in [3] and Corollary 9.2 in [22]). Thus ψ̄ defines an orthogonal transformationB on Rn+2
1 . SinceBf∗ = ψ̄f∗ = g∗,

there is an isometry τ on Rn+2
1 such that τ∗ = B and τf = g. Therefore,

τ∗|trf (TM) = B|trf (TM) = ψ̄|trf (TM) = ψ.
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5. Isometric immersions into Qn+2
c,q

We prove in this section a Fundamental Theorem for isometric immersions for null manifolds in a simple
connected semi-Riemannian space form Qn+2

c,q of constant sectional curvature c and arbitrary index q ≥ 1. We
take advantage of the fact that manifolds Qn+2

c,q can be isometrically immersed as hypersurfaces of a semi-
Euclidean space and follow an approach inspired in [11]. To accomplish this, we rely on certain codimension
two null submanifolds, named half-lightlike submanifolds in [13]. As a first step, we prove an immersion result
for this kind of submanifolds in semi-Euclidean spaces.

Let (M̄, ḡ) be an (m+ 2)-dimensional semi-Riemannian manifold of index q ≥ 1 and (M, g) a lightlike
submanifold of codimension two of M̄ . If dim(Rad(TM)) = 1 thenM is called half-lightlike submanifold. Observe
that TxM⊥ of TxM in TxM̄ for each x ∈M is a degenerate 2-dimensional subspace of TxM̄ and there exists a
complementary non-degenerate distribution S(TM) to Rad(TM) in TM , called a screen distribution of M , with
the orthogonal decomposition

TM = Rad(TM) ⊥ S(TM). (5.1)

In this case, (TM)⊥ is also half-lightlike since Rad(TM) is a 1-dimensional vector sub-bundle of (TM)⊥. Thus
there exists a complementary distribution D to Rad(TM), which is called a screen transversal bundle of M . Thus
there exists a rank 2 distribution D⊥ such that

S(TM)⊥ = D ⊥ D⊥

and a unique null rank 1 vector bundle ltr(TM) complementary to Rad(TM) in D⊥, called lightlike transversal
bundle of M . Finally, the transversal vector bundle is defined as (see [15, p. 158]):

tr(TM) = D ⊥ ltr(TM),

Following the approach given in [15] we can write the decomposition

TM̄ = S(TM) ⊥ D ⊥ (Rad(TM)⊕ ltr(TM)),

which gives us the following Gauss-Weingarten formulae. If ∇̄ is the metric connection on M̄ , N ∈ ltr(TM) and
u ∈ D,

∇̄XY = ∇XY + h(X,Y ),

∇̄XN = −ANX +∇XN,

∇̄Xu = −ANX +∇Xu,

(5.2)

for any X,Y ∈ Γ(TM), where ∇XY , ANX and AuX are in Γ(TM), while h(X,Y ), ∇XN and ∇Xu are in
Γ(tr(TM)). The connection ∇ is torsion-free on M and h(X,Y ) is a symmetric C∞-bilinear form with values in
Γ(tr(TM)). Now, let {ξ,N} be a pair of locally lightlike sections on a neighborhood U ⊂M with ξ ∈ Rad(TM)
and N ∈ ltr(TM). Then we can define symmetric smooth bilinear forms D1, D2 and 1-forms ρ1, ρ2, ε1, ε2 on
U by

D1(X,Y ) = ḡ(h(X,Y ), ξ),

D2(X,Y ) = µḡ(h(X,Y ), u),

ρ1(X) = ḡ(∇XN, ξ), ρ2(X) = µḡ(∇XN, u),

ε1(X) = ḡ(∇Xu, ξ), ε2(X) = µḡ(∇Xu, u),

where µ = ḡ(u, u) = ±1, depending on the causal character of the unit vector field u and X,Y ∈ Γ(TM).
Consequently, we have the relations

h(X,Y ) = D1(X,Y )N +D2(X,Y )u,

∇XN = ρ1(X)N + ρ2(X)u,

∇Xu = ε1(X)N + ε2(X)u,

which imply corresponding modifications in the Gauss-Weingarten formulae (5.2). The curvature tensors R̄
of ∇̄ and R of ∇ satisfy corresponding structure equations in terms of all the objects previously defined. For
details, see section 4.1 of [15]. The geometry of half-lightlike submanifolds was developed by K. L. Duggal and
A. Bejancu in [13], which we use here to establish the following setting, generalizing the previous section with
a similar approach.
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• M is a null (n+ 1)-manifold with metric g.
• S(TM) is a screen distribution in M of dimension n and index q − 1. Observe that the restriction of g to
S(TM) is semi-Riemannian.

• ∇ is a torsion-free connection of M , which restricted to S(TM) is a g-metric connection.
• The decomposition (5.1) gives rise to the following Gauss-Weingarten equations of M :

∇XPY = ∇∗
XPY + h∗(X,PY ), (5.3)

∇XU = −A∗
UX +∇⊥

XU,

where P is the projection of TM over S(TM), X,Y ∈ Γ(TM) and U ∈ Γ(Rad(TM)), with
∇∗
XPY,A

∗
UX ∈ Γ(S(TM)), h∗(X,PY ),∇⊥

XU ∈ Γ(Rad(TM)). Besides, ∇∗ is a metric connection on
S(TM), ∇⊥ is a linear connection, while A∗ and h∗ are C∞(M)-bilinear forms.

• δ is another rank-1 vector bundle over M , playing the role of the screen transversal bundle D.
• ϵ is a rank 1 vector bundle over M , playing the role of the lightlike transversal bundle ltr(TM).

Now, let ϵ the vector bundle over M defined by

ϵ = TM ⊕ ϵ⊕ δ = S(TM)⊕ Rad(TM)⊕ ϵ⊕ δ,

and define a Riemannian metric over ϵ in the following way: let gR, gϵ Riemannian metrics over Rad(TM) and
ϵ, respectively, and let gδ a semi-Riemannian metric over δ. Consider the product metric

g = P ∗g + P ∗
Rad(TM)gR + P ∗

ϵ gϵ ++P ∗
δ gδ

over ϵ and let {ξ,N, u} an orthonormal frame such that

span(ξ) = Rad(TM), span(N) = ϵ, span(u) = δ.

Finally, let
λ = gδ(u, u).

Definition 5.1. Let X,Y ∈ Γ(ϵ). We define

gϵ(X,Y ) = g(X,Y )− (g(X, ξ)− g(X,N))(g(Y, ξ)− g(Y,N)). (5.4)

Proposition 5.1. gϵ is a Lorentzian metric over ϵ. Moreover, if X,Y ∈ Γ(S(TM))), then

1. gϵ(X,Y ) = g(X,Y );

2. gϵ(X, ξ) = gϵ; (X,N) = gϵ(X,u) = 0;

3. gϵ(u, u) = λ, gϵ(N,N) = 0, gϵ(ξ, ξ) = 0;

4. gϵ(u, ξ) = 0, gϵ(u,N) = 0, gϵ(ξ,N) = 1.

Corollary 5.1. With respect to the metric gϵ, we have the following decomposition

ϵ = S(TM) ⊥ δ ⊥ (Rad(TM)⊕ ϵ). (5.5)

Proposition 5.2. If the index of δ is d respect to the metric gϵ, then ϵ has index q + d.

Proof. Let ζ = (Rad(TM)⊕ ϵ). It is a rank two vector bundle with 0 ̸= ξ ∈ Rad(TM) and 0 ̸= N ∈ ϵ independent
non null elements in ζ. Consequently, ζ is timelike and therefore have index 1.

The decomposition (5.5) together with the fact that ϵ is a semi-Riemannian bundle with respect to gϵ,
imply that

ind(ϵ) = ind(S(TM)) + ind(δ) + ind(γ) = q − 1 + d+ 1 = q + d.
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Now we define the connection ∇ϵ
on ϵ by the following equations (compare to [15, Eqs. 4.1.7-4.1.9]):

∇ϵ

XY = ∇XY +D1(X,Y )N +D2(X,Y )u, (5.6)

∇ϵ

XN = −ANX + ρ1(X)N + ρ2(X)u,

and
∇Xu = −AuX + ϵ1(X)N,

for all X ∈ Γ(TM), where D1, D2 are bilinear C∞(M) forms, ρ1, ρ2 and ϵ1 are 1-forms and Au y AN are C∞(M)
linear operators on Γ(TM).

Proposition 5.3. ∇ϵ
is a metric connection over ϵ with respect to gϵ if and only if the following equations hold (compare

to [15, Eqs. 4.1.10-4.1.21]).
gϵ(h∗(X,PY ), N) = gϵ(ANX,PY ), (5.7)

D1(X,PY ) = g(A∗
ξX,PY ), (5.8)

D1(X, ξ) = 0, (5.9)

gϵ(ANX,N) = 0, (5.10)

ρ1(X) = −gϵ(∇⊥
Xξ,N), (5.11)

ρ2(X) = λgϵ(AuX,N), (5.12)

ϵ1(X) = −λD2(X, ξ), (5.13)

gϵ(AuX,Y ) = λD2(X,Y ) + ϵ1(X)gϵ(Y,N). (5.14)

Proof. We must prove that

(∇ϵ

Xg
ϵ)(Y, Z) = X(gϵ(Y, Z))− gϵ(∇ϵ

XY, Z)− gϵ(Y,∇ϵ

XZ)

vanishes for all X ∈ Γ(TM) and Y,Z ∈ Γ(ϵ). We are going to consider each of the ten possible cases.

(1) Let Y,Z ∈ Γ(S(TM)). The decompositions (5.3), (5.6) together with the fact that ∇∗ is a metric connection
on S(TM), give us

(∇ϵ

Xg
ϵ)(Y, Z) =X(g(Y,Z))− gϵ(∇XY +D1(X,Y )N +D2(X,Y )u, Z),

− gϵ(∇XZ +D1(X,Z)N +D2(X,Z)u, Y ),

=X(g(Y, Z))− g(∇XY,Z)− g(∇XZ, Y ),

=X(g(Y,Z))− g(∇∗
XY + h∗(X,Y ), Z)− g(∇∗

XZ + h∗(X,Z), Y ),

=X(g(Y,Z))− g(∇∗
XY,Z)− g(∇∗

XZ, Y ) = 0.

(2) Let Y ∈ Γ(S(TM)), rξ ∈ Γ(Rad(TM)). By decomposition (5.6) we have

(∇ϵ

Xg
ϵ)(Y, rξ) =X(gϵ(Y, rξ))− gϵ(∇ϵ

XY, rξ)− gϵ(Y,∇ϵ

Xrξ),

=− gϵ(∇XY +D1(X,Y )N +D2(X,Y )u, rξ)

− gϵ(∇Xrξ +D1(X, rξ)N +D2(X, rξ)u, Y ),

=− gϵ(D1(X,Y )N, rξ)− g(∇Xrξ, Y ),

=− rD1(X,Y )− g(−A∗
rξX +∇⊥

Xrξ, Y ),

=− r[D1(X,Y )− g(A∗
ξX,Y )],

which vanishes if and only if (5.8) holds.
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(3) Let Y ∈ Γ(S(TM)) and vN ∈ Γ(ϵ). By the structure equations,

(∇ϵ

Xg
ϵ)(Y, vN) =X(gϵ(Y, vN))− gϵ(∇ϵ

XY, vN)− gϵ(Y,∇ϵ

XvN),

=− gϵ(∇ϵ

XY, vN)− gϵ(Y,X(v)N + v∇ϵ

XN),

=− gϵ(∇XY +D1(X,Y )N +D2(X,Y )u, vN)

− vgϵ(−ANX + ρ1(X)N + ρ2(X)u, Y ),

=− v[gϵ(∇XY,N)− gϵ(ANX,Y )],

=− v[gϵ(h∗(X,Y ), N)− gϵ(ANX,Y )],

which vanishes if and only if (5.7) holds.
(4) Let Y ∈ Γ(S(TM)), wu ∈ Γ(δ). Using the structure equations again,

(∇ϵ

Xg
ϵ)(Y,wu) =X(gϵ(Y,wu))− gϵ(∇ϵ

XY,wu)− gϵ(Y,∇ϵ

Xwu),

=− gϵ(∇ϵ

XY,wu)− gϵ(Y,X(w)u+ w∇ϵ

Xu),

=− gϵ(∇XY +D1(X,Y )N +D2(X,Y )u,wu)

− wgϵ(−AuX + ϵ1(X)N,Y ),

=− w[λD2(X,Y )− g(AuX,Y )],

=− w[λD2(X,Y )− λD2(X,Y )− ϵ1(X)gϵ(Y,N)],

which vanishes if and only if (5.14) holds.
(5) Now let rξ, r′ξ ∈ Γ(Rad(TM)). Using again the structure equations, we have

(∇ϵ

Xg
ϵ)(rξ, r′ξ) =X(gϵ(rξ, r′ξ))− gϵ(∇ϵ

Xrξ, r
′ξ)− gϵ(rξ,∇ϵ

Xr
′ξ),

=− gϵ(∇Xrξ +D1(X, rξ)N +D2(X, rξ)u, r
′ξ)

− gϵ(∇Xr
′ξ +D1(X, r

′ξ)N +D2(X, r
′ξ)u, rξ),

=− 2rr′D1(X, ξ),

which vanishes if and only if (5.9) holds.
(6) For rξ ∈ Γ(Rad(TM) and vN ∈ Γ(ϵ), the structure equations imply that

(∇ϵ

Xg
ϵ)(rξ, vN) =X(gϵ(rξ, vN))− gϵ(∇ϵ

Xrξ, vN)− gϵ(rξ,∇ϵ

XvN),

=X(rv)− gϵ(∇Xrξ +D1(X, rξ)N +D2(X, rξ)u, vN)

− gϵ(X(v)N + v∇ϵ

XN, rξ),

=vX(r) + rX(v)− gϵ(X(r)ξ + r∇Xξ, vN)− rX(v)

− rvgϵ(−ANX + ρ1(X)N + ρ2(X)u, ξ),

=vX(r)− vX(r)− rvgϵ(−A∗
ξX +∇⊥

Xξ,N)− rvρ1(X),

=− rv[gϵ(∇⊥
Xξ,N) + ρ1(X)],

and it vanishes if and only if (5.11) holds.
(7) Now, letting rξ ∈ Γ(Rad(TM)), wu ∈ Γ(δ) we have

(∇ϵ

Xg
ϵ)(rξ, wu) =X(gϵ(rξ, wu))− gϵ(∇ϵ

Xrξ, wu)− gϵ(rξ,∇ϵ

Xwu),

=− gϵ(X(r)ξ + r∇ϵ

Xξ, wu)− gϵ(rξ,X(w)u+ w∇ϵ

Xu),

=− rwgϵ(∇ϵ

Xξ, u)− rwgϵ(ξ,∇ϵ

Xu),

=− rwgϵ(∇Xξ +D1(X, ξ)N +D2(X, ξ)u, u)

− rwgϵ(ξ,−Au(X) + ϵ1(X)N),

=− rw[λD2(X, ξ) + ϵ1(X)],

which vanishes if and only if (5.13) holds.
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(8) For vN, v′N ∈ Γ(ϵ) we have

(∇ϵ

Xg
ϵ)(vN, v′N) =X(gϵ(vN, v′N))− gϵ(∇ϵ

XvN, v
′N)− gϵ(vN,∇ϵ

Xv
′N),

=− gϵ(X(v)N + v∇ϵ

XN, v
′N)

− gϵ(X(v′)N + v′∇ϵ

XN, vN),

=− 2vv′gϵ(−ANX + ρ1(X)N + ρ2(X)u,N),

=2vv′gϵ(ANX,N),

which vanishes if and only if (5.10) holds.
(9) For vN ∈ Γ(ϵ), wu ∈ Γ(δ),

(∇ϵ

Xg
ϵ)(vN,wu) =X(gϵ(vN,wu))− gϵ(∇ϵ

XvN,wu)− gϵ(vN,∇ϵ

Xwu),

=− gϵ(X(v)N + v∇ϵ

XN,wu)

− gϵ(X(w)u+ w∇ϵ

Xu, vN),

=− vwgϵ(−ANX + ρ1(X)N + ρ2(X)u, u)

− vwgϵ(−AuX + ϵ1(X)N,N),

=− vw[λρ2(X)− gϵ(AuX,N)],

which vanishes if and only if (5.12) holds.
(10) Finally, for wu,w′u ∈ Γ(δ),

(∇ϵ

Xg
ϵ)(wu,w′u) =X(gϵ(wu,w′u))− gϵ(∇ϵ

Xwu,w
′u)− gϵ(wu,∇ϵ

Xw
′u),

=X(σww′)− gϵ(X(w)u+ w∇ϵ

Xu,w
′u)

− gϵ(X(w′)u+ w′∇ϵ

Xu,wu),

=σwX(w′) + σw′X(w)− w′gϵ(X(w)u− wAuX

+ wϵ1(X)N, u)− wgϵ(X(w′)u− w′AuX + w′ϵ1(X)N, u)

=σwX(w′) + σw′X(w)− σw′X(w)− σwX(w′) = 0.

Proposition 5.4. The curvature tensor R
ϵ

vanishes identically if and only the following relations hold (compare to [15,
Eqs. 4.1.24-4.1.26]).

0 =R(X,Y )Z +D1(X,Z)ANY −D1(Y, Z)ANX +D2(X,Z)AuY −D2(Y,Z)AuX

+ [(∇XD1)(Y, Z)− (∇YD1)(X,Z) + ρ1(X)D1(Y,Z)− ρ1(Y )D1(X,Z)

+ ϵ1(X)D2(Y,Z)− ϵ1(Y )D2(X,Z)]N

+ [(∇XD2)(Y,Z)− (∇YD2)(X,Z) + ρ2(X)D1(Y,Z)− ρ2(Y )D1(X,Z)]u,

(5.15)

0 =−∇X(ANY ) +∇Y (ANX) +AN [X,Y ]

+ ρ1(X)ANY − ρ1(Y )ANX + ρ2(X)AuY − ρ2(Y )AuX

+ [D1(Y,ANX)−D1(X,ANY ) + 2dρ1(X,Y ) + ϵ1(X)ρ2(Y )− ϵ1(Y )ρ2(X)]N

+ [D2(Y,ANX)−D2(X,ANY ) + 2dρ2(X,Y ) + ρ1(Y )ρ2(X)− ρ1(X)ρ2(Y )]u,

(5.16)

and

0 =−∇X(AuY ) +∇Y (AuX) +Au[X,Y ] + ϵ1(X)ANY − ϵ1(Y )ANX

+ [D1(Y,AuX)−D1(X,AuY ) + 2dϵ1(X,Y ) + ρ1(X)ϵ1(Y )− ρ1(Y )ϵ1(X)]N

+ [D2(Y,AuX)−D2(X,AuY ) + ϵ1(Y )ρ2(X)− ϵ1(X)ρ2(Y )]u.

(5.17)
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Proof. Let X,Y ∈ Γ(TM) and assume, as usual, that the Lie bracket [X,Y ] is identically zero. We make the
calculations for each of the three cases.

(a) Let Z ∈ Γ(TM) and observe that

∇ϵ

X∇ϵ

Y Z =∇ϵ

X [∇Y Z +D1(Y,Z)N +D2(Y,Z)u]

=∇ϵ

X∇Y Z +X(D1(Y,Z))N +D1(Y,Z)∇
ϵ

XN

+X(D2(Y, Z))u+D2(Y, Z)∇
ϵ

Xu

=∇X∇Y Z +D1(X,∇Y Z)N +D2(X,∇Y Z)u

+X(D1(Y, Z))N +D1(Y,Z)[−ANX + ρ1(X)N + ρ2(X)u]

+X(D2(Y, Z))u+D2(Y, Z)[−AuX + ϵ1(X)N ]

=∇X∇Y Z −ANXD1(Y, Z)−D2(Y,Z)AuX

+ [X(D1(Y,Z)) +D1(X,∇Y Z) + ρ1(X)D1(Y,Z)

+ ϵ1(X)D2(Y,Z)]N

+ [X(D2(Y,Z)) +D2(X,∇Y Z) + ρ2(X)D1(Y,Z)]u.

Therefore,

R
ϵ
(X,Y )Z =∇ϵ

X∇ϵ

Y Z −∇ϵ

Y∇
ϵ

XZ

=∇ϵ

X∇ϵ

Y Z −∇ϵ

Y∇
ϵ

XZ −D1(Z, [X,Y ])N −D2(Z, [X,Y ])u

=∇X∇Y Z −ANXD1(Y, Z)−D2(Y,Z)AuX

+ [X(D1(Y,Z)) +D1(X,∇Y Z) + ρ1(X)D1(Y,Z)

+ ϵ1(X)D2(Y, Z)]N

+ [X(D2(Y,Z)) +D2(X,∇Y Z) + ρ2(X)D1(Y,Z)]u

−∇Y∇XZ −ANY D1(X,Z)−D2(X,Z)AuY

− [Y (D1(X,Z)) +D1(Y,∇XZ) + ρ1(Y )D1(X,Z)

+ ϵ1(Y )D2(X,Z)]N

− [Y (D2(X,Z)) +D2(Y,∇XZ) + ρ2(Y )D1(X,Z)]u

−D1(Z,∇XY )N +D1(Z,∇YX)N

−D2(Z,∇XY )N +D2(Z,∇YX)u

=R(X,Y )Z +D1(X,Z)ANY −D1(Y, Z)ANX

+D2(X,Z)AuY −D2(Y, Z)AuX

+ [(∇XD1)(Y,Z)− (∇YD1)(X,Z) + ρ1(X)D1(Y,Z)

− ρ1(Y )D1(X,Z) + ϵ1(X)D2(Y, Z)− ϵ1(Y )D2(X,Z)]N

+ [(∇XD2)(Y,Z)− (∇YD2)(X,Z)

+ ρ2(X)D1(Y, Z)− ρ2(Y )D1(X,Z)]u,

which vanishes if and only if (5.15) holds.
(b) Letting vN ∈ Γ(ϵ), v ̸= 0 we have

∇ϵ

X∇ϵ

YN =∇ϵ

X [−ANY + ρ1(Y )N + ρ2(Y )u]

=−∇ϵ

X(ANY ) +X(ρ1(Y ))N + ρ1(Y )∇ϵ

XN

+X(ρ2(Y ))u+ ρ2(Y )∇ϵ

Xu

=−∇X(ANY )−D1(X,ANY )N −D2(X,ANY )u

+X(ρ1(Y ))N − ρ1(Y )ANX + ρ1(Y )ρ1(X)N + ρ1(Y )ρ2(X)u

+X(ρ2(Y ))u− ρ2(Y )AuX + ρ2(Y )ϵ1(X)N

=−∇X(ANY )− ρ1(Y )ANX − ρ2(Y )AuX

+ [−D1(X,ANY ) +X(ρ1(Y )) + ρ1(Y )ρ1(X) + ϵ1(X)ρ2(Y )]N

+ [−D2(X,ANY ) +X(ρ2(Y )) + ρ1(Y )ρ2(X)]u.
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Consequently,

R
ϵ
(X,Y )vN =∇ϵ

X∇ϵ

Y vN −∇ϵ

Y∇
ϵ

XvN

=∇ϵ

X [Y (v)N + v∇ϵ

YN ]−∇ϵ

Y [X(v)N + v∇ϵ

XN ]

=X(Y (v))N + Y (v)∇ϵ

XN +X(v)∇ϵ

YN + v∇ϵ

X∇ϵ

YN

− Y (X(v))N −X(v)∇ϵ

YN − Y (v)∇ϵ

XN − v∇ϵ

Y∇
ϵ

XN

=[X,Y ](v)N + v[∇ϵ

X∇ϵ

YN −∇ϵ

Y∇
ϵ

XN ]

=v[∇ϵ

X∇ϵ

YN −∇ϵ

Y∇
ϵ

XN ]

=v{−∇X(ANY )− ρ1(Y )ANX − ρ2(Y )AuX

+ [−D1(X,ANY ) +X(ρ1(Y )) + ρ1(Y )ρ1(X) + ϵ1(X)ρ2(Y )]N

+ [−D2(X,ANY ) +X(ρ2(Y )) + ρ1(Y )ρ2(X)]u

+∇Y (ANX) + ρ1(X)ANY + ρ2(X)AuY

− [−D1(Y,ANX) + Y (ρ1(X)) + ρ1(X)ρ1(Y ) + ϵ1(Y )ρ2(X)]N

− [−D2(Y,ANX) + Y (ρ2(X)) + ρ1(X)ρ2(Y )]u}
=v{−∇X(ANY ) +∇Y (ANX)

+ ρ1(X)ANY − ρ1(Y )ANX + ρ2(X)AuY − ρ2(Y )AuX

+ [D1(Y,ANX)−D1(X,ANY ) + 2dρ1(X,Y )

+ ϵ1(X)ρ2(Y )− ϵ1(Y )ρ2(X)]N

+ [D2(Y,ANX)−D2(X,ANY ) + 2dρ2(X,Y )

+ ρ1(Y )ρ2(X)− ρ1(X)ρ2(Y )]u},

which vanishes if and only if (5.16) holds.
(c) For wu ∈ Γ(δ) and u ̸= 0 we obtain

∇ϵ

X∇ϵ

Y u =∇ϵ

X [−AuY + ϵ1(Y )N ]

=−∇ϵ

X(AuY ) +X(ϵ1(Y ))N + ϵ1(Y )∇ϵ

XN

=−∇X(AuY )−D1(X,AuY )N −D2(X,AuY )u

+X(ϵ1(Y ))N − ϵ1(Y )ANX + ϵ1(Y )ρ1(X)N + ϵ1(Y )ρ2(X)u

=−∇X(AuY )− ϵ1(Y )ANX

+ [−D1(X,AuY ) +X(ϵ1(Y )) + ϵ1(Y )ρ1(X)]N

+ [−D2(X,AuY ) + ϵ1(Y )ρ2(X)]u.
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In this way,

R
ϵ
(X,Y )wu =∇ϵ

X∇ϵ

Y wu−∇ϵ

Y∇
ϵ

Xwu

=∇ϵ

X [Y (w)u+ w∇ϵ

Y u]−∇ϵ

Y [X(w)u+ w∇ϵ

Xu]

=X(Y (w))u+ Y (w)∇ϵ

Xu+X(w)∇ϵ

Y u+ w∇ϵ

X∇ϵ

Y u

− Y (X(w))u−X(w)∇ϵ

Y u− Y (w)∇ϵ

Xu− w∇ϵ

Y∇
ϵ

Xu

=[X,Y ](w)u+ w[∇ϵ

X∇ϵ

Y u−∇ϵ

Y∇
ϵ

Xu]

=w[∇ϵ

X∇ϵ

Y u−∇ϵ

Y∇
ϵ

Xu]

=w{−∇X(AuY )− ϵ1(Y )ANX

+ [−D1(X,AuY ) +X(ϵ1(Y )) + ϵ1(Y )ρ1(X)]N

+ [−D2(X,AuY ) + ϵ1(Y )ρ2(X)]u

+∇Y (AuX) + ϵ1(X)ANY

− [−D1(Y,AuX) + Y (ϵ1(X)) + ϵ1(X)ρ1(Y )]N

− [−D2(Y,AuX) + ϵ1(X)ρ2(Y )]u}
=w{−∇X(AuY ) +∇Y (AuX) + ϵ1(X)ANY − ϵ1(Y )ANX

+ [D1(Y,AuX)−D1(X,AuY ) + 2dϵ1(X,Y )

+ ρ1(X)ϵ1(Y )− ρ1(Y )ϵ1(X)]N

+ [D2(Y,AuX)−D2(X,AuY )

+ ϵ1(Y )ρ2(X)− ϵ1(X)ρ2(Y )]u},

which vanishes if and only if (5.17) holds.

Now we can state and prove the following Fundamental Theorem.

Theorem 5.1. Let (M, g, S(TM)) a simply connected null (n+ 1)-manifold, with a screen distribution of dimension n
and index q − 1. Let ϵ and δ rank 1 vector bundles over M . Let gϵ the metric over ϵ = TM ⊕ δ ⊕ ϵ defined by (5.4). Let
us denote by d the index of δ in this metric and let ∇ϵ

a connection over ϵ satisfying (5.7)-(5.14). Moreover, suppose the
Gauss-Codazzi-Ricci equations (5.15)-(5.17) are satisfied for ϵ. Then there exists an isometric immersion f :M → Rn+3

q+d ,
and a vector bundle isometry ϕ : ϵ⊕ δ → tr(TM) such that D1 = D0

1 , D2 = D0
2 , ρ1 = ρ01, ρ2 = ρ02 and ϵ1 = ϵ01.

Moreover, let f, g :Mn+1 → Rn+3
q+d two isometric immersions and suppose there exists a vector bundle isometry

ψ : f∗TRn+3
q+d → g∗TRn+3

q+d such that
ψf∗ = g∗,

and ψ|trf (TM) = ψ satisfy
ψ(ϕf (N)) = ϕg(N), ψ(ϕf (u)) = ϕg(u).

Then there exists an isometry τ : Rn+3
q+d → Rn+3

q+d such that

τf = g and τ∗|trf (TM) = ψ.

Proof. Proposition 5.3 implies that the connection ∇ϵ
is compatible with the metric gϵ. Then, Proposition 5.4

establishes that the curvature tensor R
ϵ

vanishes identically over ϵ. As in Theorem 4.1, let us consider a global
parallel frame {Ei} with respect to ∇ϵ

. Besides, by Proposition 5.2 we know that ϵ have index q + d. Thus,
without loss of generality,

gϵ(Ei, Ei) =

{
−1 if i ∈ {1, ..., q + d}
1 if i ∈ {q + d+ 1, ..., n+ 3}

Now, let (x1, ..., xn+1) be local coordinates in a simply connected neighbourhood U of the point p. We write

∂

∂xi
=

n+3∑
k=1

aikEk
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for some functions aik. Because {Ei} is an orthonormal frame, the metric coefficients satisfy

gϵij =g
ϵ

(
∂

∂xi
,
∂

∂xj

)
= gϵ

(
n+3∑
l=1

ajlEl,

n+3∑
k=1

ajkEk

)
=

n+3∑
l=1

n+3∑
k=1

ajlaikg
ϵ(El, Ek)

=−
q+d∑
k=1

aikajk +

n+3∑
k=q+d+1

aikajk

On the other hand, since {Ei} is a parallel frame,

∇ϵ
∂

∂xi

(
∂

∂xj

)
=∇ϵ

n+3∑
k=1

aikEk

n+3∑
l=1

ajlEl =

n+3∑
l=1

n+3∑
k=1

aik∇
ϵ

Ek
ajlEl

=

n+3∑
l=1

n+3∑
k=1

aik

(
Ek(ajl)El + ajl∇

ϵ

Ek
El

)
=

n+3∑
l=1

n+3∑
k=1

aikEk(ajl)El

=

n+3∑
l=1

∂ajl
∂xi

El

Analogously,

∇ϵ
∂

∂xj

(
∂

∂xi

)
=

n+3∑
l=1

∂ail
∂xj

El

In this way, because ∇ is a torsion-free connection,

∇ϵ
∂

∂xi

(
∂

∂xj

)
= ∇ϵ

∂

∂xj

(
∂

∂xi

)
Consequently,

∂ajk
∂xi

=
∂aik
∂xj

∀i, j, k

Therefore, the 1-forms given by
wk = a1kdx1 + ...+ a(n+1)kdxn+1

are closed for all k ∈ {1, ..., n+ 3}. By Poincaré Lemma,wk is exact for all k ∈ {1, ..., n+ 3}. Therefore, there exist
functions fk such that

∂fk
∂xi

= aik ∀i ∈ {1, ..., n+ 1}

Now, let f : U → Rn+3
q+d given by f = (f1, ..., fn+3) and note that

f∗

(
∂

∂xi

)
=

(
∂f1
∂xi

, ...,
∂fn+3

∂xi

)
= (ai1, ..., ai(n+3)).

Consequently,

g0
(
f∗

(
∂

∂xi

)
, f∗

(
∂

∂xj

))
= −

q+d∑
k=1

aikajk +

n+3∑
k=q+d+1

aikajk

where g0 is the standard flat metric of Rn+3
q+d . Therefore, f is an isometric immersion. In particular, f(U) is a

null submanifold of Rn+3
q+d .

Since the vector bundle TRn+3
q+d is trivial, for the remaining of the proof we use the standard identification of

the pullback bundle f∗Rn+3
q+d with M ×Rn+3

q+d .
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We define now the vector bundle morphism

ϕ : TU ⊕ ϵ|U ⊕ δ|U → U ×Rn+3
q+d

given by
ϕ(Ek) = e0k.

In particular,

ϕ

(
∂

∂xi

)
=

n+3∑
k=1

aikϕ(Ek) =

n+3∑
k=1

aike
0
k = f∗

(
∂

∂xi

)
,

which implies that ϕ|TU = f∗ is an isomorphism over T (f(U)).

Note that given X,Y ∈ Γ(ϵ) we have the following:

gϵ(X,Y ) =gϵ

(
n+3∑
k=1

xkEk,

n+3∑
l=1

ylEl

)
=

n+3∑
k=1

n+3∑
l=1

xkylg
ϵ(Ek, El)

=

n+3∑
k=1

n+3∑
l=1

xkylg
0(e0k, e

0
l ) = g0

(
n+3∑
k=1

xke
0
k,

n+3∑
l=1

yle
0
l

)
=g0(ϕ(X), ϕ(Y )).

(5.18)

Consequently,
Rad(Tf(U)) = ϕ(Rad(TU)),

and thus Rad(Tf(U)) is generated by ϕ(ξ).

Note that ϕ(S(TU)) is a screen distribution on Tf(U) because it is a distribution on Tf(U), and equation (5.18)
implies that it is orthogonal to Rad(Tf(U)). Given Z ∈ Γ(Tf(U)) there exists Z ′ ∈ Γ(TU) such that ϕ(Z ′) = Z,
but Z ′ = Z1 + Z2 with Z1 ∈ Γ(Rad(TU)) and Z2 ∈ Γ(S(TU)). Therefore,

Z = ϕ(Z1) + ϕ(Z2),

where ϕ(Z1) ∈ Γ(Rad(Tf(U))) and ϕ(Z2) ∈ Γ(ϕ(S(TU))). Consequently ϕ(S(TU)) is a screen distribution of
TU .

Because ϕ(u) ∈ Γ(Tf(U)⊥) and g0(ϕ(u), ϕ(u)) = gϵ(u, u) = λ ̸= 0, we have that ϕ(u) /∈ Γ(Rad(Tf(U))) and it is
linearly independent with ϕ(ξ). Therefore, ϕ(u) span a complementary vector bundle to Rad(Tf(U)) in Tf(U)⊥.
Then ϕ(δ|U ) is a screen transversal distribution. Further, ϕ(δ|U ) is a subbundle of ϕ(S(TU))⊥ and both are
semi-Riemannian bundles. Then we have

ϕ(S(TU))⊥ = ϕ(δ|U ) ⊥ ⊕ϕ(δ|U )⊥.

Since ϕ(N), ϕ(ξ) ∈ ϕ(δ|U )⊥ are linearly independent,

ϕ(N) =
1

g0(ϕ(ξ), V )

(
V − g0(V, V )

2g0(ϕ(ξ), V )
ϕ(ξ)

)
, V ∈ Γ(F )

where F is a complementary distribution of Rad(Tf(U)) in ϕ(δ|U )⊥, therefore ϕ(ϵ|U ) is a lightlike transversal
bundle.

Then (f(U), g0, ϕ(S(TU))) is a half-lightlike submanifold of Rn+3
q+d with a lightlike transversal distribution

ϕ(ϵ|U ) and a screen distribution ϕ(δ|U ), generated by ϕ(N) and ϕ(U), respectively.
Letting ϕ = ϕ|ϵ|U⊕δ|U the connection ∇0

takes on f(U) the following form:

∇0

Xf∗Y = ∇0
Xf∗Y +D0

1(X,Y )ϕ(N) +D0
2(X,Y )ϕ(u), X, Y ∈ Γ(TU) (5.19)
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∇0

Xϕ(N) = −A0
NX + ρ01(X)ϕ(N) + ρ02(X)ϕ(u), X ∈ Γ(TU) (5.20)

∇0

Xϕ(u) = −A0
uX + ϵ01(X)ϕ(N), X ∈ Γ(TU) (5.21)

Now, because ϕ transforms the parallel orthonormal frame {Ei} on the parallel orthonormal frame {e0i }, we
have that for all Y ∈ Γ(ϵ|U ).

ϕ(∇ϵ

XY ) =ϕ

(
∇ϵ

X

n+3∑
k=1

ylEl

)
= ϕ

(
n+3∑
k=1

X(yk)Ek + yk∇
ϵ

XEk

)
= ϕ

(
n+3∑
k=1

X(yk)Ek

)

=

n+3∑
k=1

X(yk)ϕ(Ek) =

n+3∑
k=1

X(yk)e
0
k =

n+3∑
k=1

X(yk)e
0
k + yk∇

0

Xe
0
l = ∇0

X

n+3∑
k=1

yle
0
l

=∇0

Xϕ(Y ).

Consequently, ∀X,Y ∈ Γ(TU)

ϕ(∇ϵ

XY ) = ∇0

Xf∗Y, (5.22)

ϕ(∇ϵ

XN) = ∇0

Xϕ(N), (5.23)

ϕ(∇ϵ

Xu) = ∇0

Xϕ(u). (5.24)

The equation

ϕ(∇ϵ

XY ) =ϕ(∇XY +D1(X,Y )N +D2(X,Y )u)

=f∗(∇XY ) +D1(X,Y )ϕ(N) +D2(X,Y )ϕ(u)

together with (5.19) and (5.22) imply that ϕ(∇XY ) = ∇0
Xf∗Y , D1 = D0

1 and D2 = D0
2 .

On the other hand,

ϕ(∇ϵ

XN) =ϕ(−ANX + ρ1(X)N + ρ2(X)u)

=− f∗(ANX) + ρ1(X)ϕ(N) + ρ2(X)ϕ(u)

together with (5.20) and (5.23) yields f∗AN = A0
N , ρ1 = ρ01 and ρ2 = ρ02.

Now, the equation

ϕ(∇ϵ

Xu) =ϕ(−AuX + ϵ(X)N)

=− f∗(AuX) + ϵ1(X)ϕ(N)

together with (5.21) and (5.24) imply that f∗Au = A0
u and ϵ1 = ϵ01.

Because M is simply connected, the vector bundle morphism ϕ can be globally extended. We denote this
global extension by ϕ.

Now we focus on the uniqueness part of the proof. We thus proceed to show that ψ is parallel respect to the
pullbacks ∇f,0

and ∇g,0
of the standard flat connection ∇0

of Rn+3
q+d over f∗TRn+3

q+d and g∗TRn+3
q+d , respectively.

First we note that
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Df,0
1 = Dg,0

1 ,

Df,0
2 = Dg,0

2 ,

ρf,01 = ρg,01 ,

ρf,02 = ρg,02 ,

ϵf,01 = ϵg,01 ,

ψ(Af,0N X) = Ag,0N X,

ψ(Af,0u X) = Ag,0u X.

Then, for every X,Y ∈ Γ(TM) we have

∇g,0

X ψf∗Y =∇g,0

X g∗Y

=g∗∇XY +Dg,0
1 (X,Y )ϕg(N) +Dg,0

2 (X,Y )ϕg(u)

=ψf∗∇XY +Df,0
1 (X,Y )ψ(ϕf (N)) +Df,0

2 (X,Y )ψ(ϕf (u))

=ψ(f∗∇XY +Df,0
1 (X,Y )ϕf (N) +Df,0

2 (X,Y )ϕf (u))

=ψ∇f,0

X f∗Y

Consequently,

∇g,0

X ψϕf (N) =∇g,0

X ϕg(N)

=−Ag,0N X + ρg,01 (X)ϕg(N) + ρg,02 (X)ϕg(u)

=− ψ(Af,0N X) + ρf,01 (X)ψ(ϕf (N)) + ρf,02 (X)ψ(ϕf (u))

=ψ(−Af,0N X + ρf,01 (X)ϕf (N) + ρf,02 (X)ϕf (u))

=ψ∇f,0

X ϕfN,

and

∇g,0

X ψϕf (u) =∇g,0

X ϕg(u)

=−Ag,0u X + ϵg,01 (X)ϕg(N)

=− ψ(Af,0u X) + (ϵf,01 (X)ψ(ϕf (N))

=ψ(−Af,0u X + ϵf,01 (X)ϕf (N))

=ψ∇f,0

X ϕfu.

Therefore ψ is parallel. The fact that TRn+3
q+d

∼= R2n+6 is flat implies that its transition functions are locally
constant. Hence ψ defines an orthogonal transformation B over Rn+2

q+d . Further, since Bf∗ = ψf∗ = g∗, there
exists an isometry τ on Rn+3

q+d such that τ∗ = B y τf = g. Then

τ∗|trf (TM) = B|trf (TM) = ψ|trf (TM) = ψ.

Our next goal is to prove a Fundamental Theorem for isometric immersions of 1-lightlike manifolds in
semi-Riemannian space forms of constant sectional curvature c ̸= 0. To achieve this goal, we construct a vector
bundle that satisfies the assumptions of Theorem 5.1 from a vector bundle that satisfies the conditions of
Theorem 5.2. Throughout the process we will denote the analogous objects between both vector bundles
without distinction.

The following will be assumed:
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• M is a null manifold with metric g and dimension n+ 1.
• S(TM) is a screen distribution over M of dimension n and index q − 1. Note that the restriction of g to

the screen S(TM) is a semi-Riemannian metric.
• Rad(TM) is the radical distribution of M with dimension 1 which satisfies:

TM = S(TM) ⊥ Rad(TM). (5.25)

• ∇ is a torsion-free connection over M which restricted to the screen S(TM) becomes metric respect to g.
• The decomposition (5.25) imply the following Gauss-Weingarten formulae for M (compare to [13, Eqs.

2.12-2.13]):

∇XPY = ∇∗
XPY + h∗(X,PY ), (5.26)

and
∇XU = −A∗

UX +∇⊥
XU, (5.27)

where P is the projection of TM over the screen S(TM), X,Y ∈ Γ(TM) and U ∈ Γ(Rad(TM)).
With ∇∗

XPY,A
∗
UX ∈ Γ(S(TM)) and h∗(X,PY ),∇⊥

XU ∈ Γ(Rad(TM)).
Besides, ∇∗ is a metric connection over the screen S(TM) and ∇⊥ is a linear connection, while A∗ and h∗

are C∞(M) bilinear forms.

• ϵ is a rank 1 vector bundle over M which plays the role of tr(TM).

Now let γ the vector bundle over M given by

γ = TM ⊕ ϵ = S(TM)⊕ Rad(TM)⊕ ϵ. (5.28)

We define a Riemannian metric on this bundle as follows. First let gR and gϵ Riemannian metrics over the one
dimensional Rad(TM) and ϵ, respectively. Now consider the product metric

g′ = P ∗g + P ∗
Rad(TM)gR + P ∗

ϵ gϵ (5.29)

over ϵ. Let {ξ,N} an orthonormal frame such that span(ξ) = Rad(TM) and span(N) = ϵ.

Definition 5.2. For X,Y ∈ Γ(γ) we define

gγ(X,Y ) = g′(X,Y )− (g′(X, ξ)− g′(X,N))(g′(Y, ξ)− g′(Y,N)). (5.30)

As before, a straightforward computation based on (5.28) and (5.29) yields the following result.

Proposition 5.5. gϵ is a Lorentzian metric over ϵ. Moreover, for X,Y ∈ Γ(S(TM)) we have:

1. gγ(X,Y ) = g(X,Y );

2. gγ(X, ξ) = gγ(X,N) = 0;

3. gγ(N,N) = 0, gγ(ξ, ξ) = 0;

4. gγ(ξ,N) = 1.

Corollary 5.2. With the metric gγ the bundle γ can be written in the following decomposition:

γ = S(TM) ⊥ (Rad(TM)⊕ ϵ).

We define next a new connection ∇γ over γ by

∇γ
XY = ∇XY + h(X,Y ),

and
∇XV = −AγVX +∇t

XV,

for all X,Y ∈ Γ(TM) and V ∈ Γ(ϵ), where ∇XY,A
γ
VX ∈ Γ(TM) and h(X,Y ),∇t

XV ∈ Γ(ϵ). h(X,Y ) is a
symmetric bilinear C∞(M) form and A is a C∞(M) linear operator, ∇t is a linear connection over ϵ.
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To extend the bundle γ to a semi-Riemannian bundle of dimension (n+ 3), which satisfies the hypothesis of
Theorem 5.7, we make the following assumptions between some of the objects previously defined.

B(X,Y )N = h(X,Y ), (5.31)

∇t
XN = gγ(∇t

XN, ξ)N = −gγ(∇⊥
Xξ,N)N (5.32)

and
B(X, ξ) = 0, (5.33)

gγ(h∗(X,PY ), N) = g(AγNX,PY ), (5.34)

gγ(AγNX,N) = 0 (5.35)

g(A∗
ξX,PY ) = B(X,PY ), (5.36)

(∇Xg)(Y,Z)− gγ(Y,N)B(X,Z)− gγ(Z,N)B(X,Y ) = 0 (5.37)

for all X,Y, Z ∈ Γ(TM), where B is a C∞(M) bilinear form.

We assume also the following structure equations for constant sectional curvature c = σ
r2 ̸= 0.

0 = R(X,Y )Z +Aγh(X,Z)Y −Aγh(Y,Z)X − σ

r2
(g(Y,Z)X − g(X,Z)Y ), (5.38)

0 = (∇Xh)(Y, Z)− (∇Y h)(X,Z), (5.39)

0 =−∇X(AγV Y )−Aγ∇t
Y V
X +∇Y (A

γ
VX) +Aγ∇t

XV
V +AγV [X,Y ]

− σ

r2
(gγ(Y, V )X − gγ(X,V )Y ),

(5.40)

0 = −h(X,AγV Y ) +∇t
X∇t

Y V + h(Y,AγVX)−∇t
Y∇t

XV −∇t
[X,Y ]V. (5.41)

Let δ a semi-Riemannian rank 1 bundle with metric gδ and index d and let u ∈ Γ(δ) unit which satisfies

gδ(u, u) = σ.

Define a metric gϵ over ϵ = δ ⊕ γ such that γ ⊥ δ and restricted to δ and γ coincides with gδ and gγ , respectively.
The following results are immediate consequences:

Proposition 5.6. The metric gϵ coincides with the metric defined in (5.4).

Corollary 5.3. The metric gϵ defined on the bundle ϵ has index q + d.

Now, we define the connection ∇ϵ
over ϵ by the equations

∇ϵ

XY = ∇XY +B(X,Y )N +
σ

r
g(X,Y )u, (5.42)

∇ϵ

XN = −AγNX + gγ(∇t
XN, ξ)N +

σ

r
gγ(X,N)u, (5.43)

and
∇Xu = −1

r
X. (5.44)

Next we show that this connection on ϵ satisfies the hypotheses of Theorem 5.7.
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Proposition 5.7. Suppose conditions (5.31)-(5.37) are satisfied. Then equations (5.7)-(5.14) hold.

Proof. (i) gϵ(h∗(X,PY ), N) = gϵ(ANX,PY ). Using (5.34), we have

gϵ(h∗(X,PY ), N) = gγ(h∗(X,PY ), N) = gγ(AγNX,PY ) = gϵ(ANX,PY ).

(ii) D1(X,PY ) = g(A∗
ξX,PY ). By (5.36) it follows that

D1(X,PY ) = B(X,Y ) = g(A∗
ξX,PY ).

(iii) ϵ2(X) = 0. This is immediate from the definition of ∇ϵ
.

(iv) D1(X, ξ) = 0. From (5.33) we obtain
D1(X, ξ) = B(X, ξ) = 0.

(v) gϵ(ANX,N) = 0. The equation (5.35) implies that

gϵ(ANX,N) = gγ(AγNX,N) = 0.

(vi) ρ1(X) = −gϵ(∇⊥
Xξ,N). Using (5.32),

ρ1(X) = gγ(∇t
XN, ξ) = −gγ(∇⊥

Xξ,N) = −gϵ(∇⊥
Xξ,N).

(vii) ρ2(X) = σgϵ(AuX,N). This follows from the definitions of ρ2 and AuX :

ρ2(X) =
σ

r
g(X,N),= σgϵ(AuX,N).

(viii) ϵ1(X) = −σD2(X, ξ). By the item (iv) above, we have

ϵ1 = −σD1(X, ξ)

(ix) gϵ(AuX,Y ) = σD2(X,Y ) + ϵ1(X)gϵ(Y,N). It follows from definitions of AuX , ϵ2 and D2:

gϵ(AuX,Y ) = gϵ
(
1

r
X, Y

)
= σ

σ

r
g (X,Y ) + 0 = σD2(X,Y ) + ϵ1(X)gϵ(Y,N).

We now verify the validity of the structure equations for half-lightlike manifolds when c = 0.

Proposition 5.8. Assume the hypotheses of Proposition 5.7, and that equations (5.38)-(5.41) hold. Then equations (5.15)
- (5.17) are satisfied.

Proof. (i)
R(X,Y )Z +D1(X,Z)ANY −D1(Y, Z)ANX +D2(X,Z)AuY −D2(Y, Z)AuX = 0

Denote by C1 the left hand side of the previous equation. Applying (5.31), (5.38) and the linearity of Aγ .

C1 =R(X,Y )Z +B(X,Z)AγNY −B(Y,Z)AγNX +
σ

r2
g(X,Z)Y − σ

r2
g(Y, Z)X

=R(X,Y )Z +AγB(X,Z)NY −AγB(Y,Z)NX − σ

r2
(g(Y, Z)X − g(X,Z)Y )

=R(X,Y )Z +Aγh(X,Z)Y −Aγh(Y,Z)X − σ

r2
(g(Y,Z)X − g(X,Z)Y )

=0.

(ii)

0 ={(∇XD1)(Y,Z)− (∇YD1)(X,Z) + ρ1(X)D1(Y,Z)− ρ1(Y )D1(X,Z)

+ ϵ1(X)D2(Y,Z)− ϵ1(Y )D2(X,Z)}N

Let C2 be the right hand side of the previous equation. Applying (5.31), (5.32), the fact that ∇t is a linear
connection and (5.38),
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C2 ={X(B(Y, Z))−B(∇XY,Z)−B(Y,∇XZ)− Y (B(X,Z)) +B(∇YX,Z)

+B(X,∇Y Z)}+ gγ(∇t
XN, ξ)B(Y, Z)− gγ(∇t

YN, ξ)B(X,Z)}N
=X(B(Y,Z))N − h(∇XY,Z)− h(Y,∇XZ)− Y (B(X,Z))N

+ h(∇YX,Z) + h(X,∇Y Z) +B(Y, Z)∇t
XN −B(X,Z)∇t

YN

=X(B(Y,Z))N +B(Y,Z)∇t
XN − h(∇XY, Z)− h(Y,∇XZ)

− Y (B(X,Z))N −B(X,Z)∇t
YN + h(∇YX,Z) + h(X,∇Y Z)

=[∇t
Xh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ)]

− [∇t
Y h(X,Z)− h(∇YX,Z)− h(X,∇Y Z)]

=(∇Xh)(Y, Z)− (∇Y h)(X,Z)

=0.

(iii)
{(∇XD2)(Y,Z)− (∇YD2)(X,Z) + ρ2(X)D1(Y, Z)− ρ2(Y )D1(X,Z)}u = 0,

Let C3 be the right hand side of the previous equation. Applying (5.37) yields

C3 =
{
X
(σ
r
g(Y,Z)

)
− σ

r
g(∇XY,Z)−

σ

r
g(Y,∇XZ)− Y

(σ
r
g(X,Z)

)
+
σ

r
g(∇YX,Z) +

σ

r
g(X,∇XZ)Y +

σ

r
gγ(X,N)B(Y,Z)

−σ
r
gγ(Y,N)B(X,Z)

}
u

=
σ

r
{(∇Xg)(Y,Z)− (∇Y g)(X,Z) + gγ(X,N)B(Y,Z)

− gγ(Y,N)B(X,Z)}u

=
σ

r
{(∇Xg)(Y,Z)− gγ(Y,N)B(X,Z)− gγ(Z,N)B(X,Y )

− (∇Y g)(X,Z) + gγ(X,N)B(Y,Z) + gγ(Z,N)B(X,Y )}u
=0.

(iv)

0 =−∇X(ANY ) +∇Y (ANX) +AN [X,Y ]

+ ρ1(X)ANY − ρ1(Y )ANX + ρ2(X)AuY − ρ2(Y )AuX

Denote by C4 the right hand side of the previous equation. Using (5.40), (5.32) and the linearity of Aγ we
have

C4 =−∇X(AγNY ) +∇Y (A
γ
NX) +AγN [X,Y ]

+ gγ(∇t
XN, ξ)A

γ
NY − gγ(∇t

YN, ξ)A
γ
NX − σ

r2
(gγ(Y,N)X − gγ(X,N)Y )

=−∇X(AγNY ) +∇Y (A
γ
NX) +AγN [X,Y ] + gγ(∇t

XN, ξ)A
γ
NY − gγ(∇t

YN, ξ)A
γ
NX

+∇X(AγNY ) +Aγ∇t
YN

X −∇Y (A
γ
NX)−Aγ∇t

XN
N −AγN [X,Y ]

=gγ(∇t
XN, ξ)A

γ
NY − gγ(∇t

YN, ξ)A
γ
NX +Aγ∇t

YN
X −Aγ∇t

XN
N

=Aγ
gγ(∇t

XN,ξ)N
Y −Aγ

gγ(∇t
YN,ξ)N

X +Aγ∇t
YN

X −Aγ∇t
XN

N

=Aγ∇t
XN

N −Aγ∇t
YN

X +Aγ∇t
YN

X −Aγ∇t
XN

N

=0.

(v)

0 ={D1(Y,ANX)−D1(X,ANY ) + 2dρ1(X,Y )

+ ϵ1(X)ρ2(Y )− ϵ1(Y )ρ2(X)}N
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Let C5 be the right hand side of the previous equation. Using (5.31), (5.41), (5.32) and that ∇t is linear
connection, it follows that

C5 ={B(Y,AγNX)−B(X,AγNY ) + [X(ρ1(Y ))− Y (ρ1(X))− ρ1([X,Y ])]}N
=h(Y,AγNX)− h(X,AγNY ) +X(gγ(∇t

YN, ξ))N − Y (gγ(∇t
XN, ξ))N

− gγ(∇t
[X,Y ]N, ξ)N

=−∇t
X∇t

YN +∇t
Y∇t

XN +∇t
[X,Y ]N +X(gγ(∇t

YN, ξ))N

− Y (gγ(∇t
XN, ξ))N − gγ(∇t

[X,Y ]N, ξ)N

=−∇t
Xg

γ(∇t
YN, ξ)N +∇t

Y g
γ(∇t

XN, ξ)N + gγ(∇t
[X,Y ]N, ξ)N

+X(gγ(∇t
YN, ξ))N − Y (gγ(∇t

XN, ξ))N − gγ(∇t
[X,Y ]N, ξ)N

=−X(gγ(∇t
YN, ξ))N − gγ(∇t

YN, ξ)∇t
XN

+ Y (gγ(∇t
XN, ξ)) + gγ(∇t

XN, ξ)∇t
YN

+X(gγ(∇t
YN, ξ))N − Y (gγ(∇t

XN, ξ))N

=− gγ(∇t
YN, ξ)∇t

XN + gγ(∇t
XN, ξ)∇t

YN

=− gγ(∇t
YN, ξ)g

γ(∇t
XN, ξ) + gγ(∇t

XN, ξ)g
γ(∇t

YN, ξ)

=0.

(vi)

0 ={D2(Y,ANX)−D2(X,ANY ) + 2dρ2(X,Y )

+ ρ1(Y )ρ2(X)− ρ1(X)ρ2(Y )}u.

Let C6 be the right hand side of the previous equation. If we write X = pX + aξ and Y = PY + bξ, the
fact that ∇ is a torsion-free connection, decompositions (5.26) and (5.27); and equations (5.34), (5.32) yield

C6 ={σ
r
gγ(Y,AγNX)− σ

r
gγ(X,AγNY ) + [X(ρ2(Y ))− Y (ρ2(X))− ρ2([X,Y ])]

+
σ

r
gγ(∇t

YN, ξ)g
γ(X,N)− σ

r
gγ(∇t

XN, ξ)g
γ(Y,N)}u

=
σ

r
{gγ(Y,AγNX)− gγ(X,AγNY ) +X(gγ(Y,N))− Y (gγ(X,N))

− gγ([X,Y ], N) + gγ(∇t
YN, ξ)g

γ(X,N)− gγ(∇t
XN, ξ)g

γ(Y,N)}u

=
σ

r
{gγ(PY,AγNX)− gγ(PX,AγNY ) +X(gγ(bξ,N))− Y (gγ(aξ,N))

− gγ(∇XY −∇YX,N) + gγ(∇t
YN, ξ)g

γ(aξ,N)− gγ(∇t
XN, ξ)g

γ(bξ,N)}u

=
σ

r
{gγ(PY,AγNX)− gγ(PX,AγNY ) +X(b)− Y (a)

− gγ(∇XPY,N)− gγ(∇Xbξ,N) + gγ(∇Y PX,N) + gγ(∇Y aξ,N)

+ agγ(∇t
YN, ξ)− bgγ(∇t

XN, ξ)}u

=
σ

r
{gγ(PY,AγNX)− gγ(PX,AγNY ) +X(b)− Y (a)

− gγ(h∗(X,PY ), N)− gγ(X(b)ξ + b∇Xξ,N) + gγ(h∗(Y, PX), N)

+ gγ(Y (a)ξ + a∇Y ξ,N) + agγ(∇t
YN, ξ)− bgγ(∇t

XN, ξ)}u

=
σ

r
{X(b)− Y (a)−X(b) + Y (a)− bgγ(∇Xξ,N)

+ agγ(∇Y ξ,N) + agγ(∇t
YN, ξ)− bgγ(∇t

XN, ξ)}u

=
σ

r
{−bgγ(∇⊥

Xξ,N)− agγ(∇⊥
Y ξ,N) + agγ(∇t

YN, ξ)− bgγ(∇t
XN, ξ)}u

=0.

(vii)
−∇X(AuY ) +∇Y (AuX) +Au[X,Y ] + ϵ1(X)ANY − ϵ1(Y )ANX = 0.

Denote by C7 the left hand side of the previous equation. Because ∇ is a torsion-free connection, we have
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C7 =−∇X

(
1

r
Y

)
+∇Y

(
1

r
X

)
+

1

r
[X,Y ]

=
1

R
(−∇XY +∇YX + [X,Y ])

=0.

(viii)
{D1(Y,AuX)−D1(X,AuY ) + 2dϵ1(X,Y ) + ρ1(X)ϵ1(Y )− ρ1(Y )ϵ1(X)}N = 0.

Let C8 be the left hand side of the previous equation. Because B is smooth, symmetric and bilinear, we
obtain

C8 =

{
B

(
Y,

1

r
X

)
−B

(
X,

1

r
Y

)}
N

=
1

r
{B(Y,X)−B(X,Y )}N

= 0.

(ix)
{D2(Y,AuX)−D2(X,AuY ) + ϵ1(Y )ρ2(X)− ϵ1(X)ρ2(Y )}u = 0.

Taking C9 as the left hand side of the previous equation, and applying bilinearity of g, give us

C9 ={D2(Y,AuX)−D2(X,AuY )}u

=

{
σ

r
g

(
Y,

1

r
X

)
− σ

r
g

(
X,

1

r
Y

)}
u

=
σ

r2
{g (Y,X)− g (X,Y )}u

=0.

Finally, we prove the Fundamental Theorem for isometric immersions of null hypersurfaces in semi-
Riemannian space forms with constant sectional curvature different from zero.

Theorem 5.2. Let (M, g, S(TM)) a null simply connected manifold of dimension n+ 1, with a screen distribution of
dimension n and index q − 1. Let ϵ be a vector bundle over M of dimension 1 and let gγ be the metric over γ = TM ⊕ ϵ
given by (5.30). Further, let ∇γ be a connection over γ which satisfies (5.31) - (5.37). Moreover, suppose that the
Gauss-Codazzi-Ricci equations for c = σ/r2 given by (5.38)-(5.41) hold for γ, where σ = sign(c).

Then there exists an isometric immersion f :M → Qn+2
c,q , such that f = i ◦ f . Furthermore, there exist an isometry of

vector bundles ϕ : δ ⊕ ϵ→ trf (TM), such that

hf = ϕh,

∇t,fϕ = ϕ∇t.

Moreover, let f, g :M → Qn+2
c,q be two such isometric immersions of a null manifold and suppose there exists an

isometry of vector bundles ψ : f∗TQn+2
q → f∗TQn+2

q such that

ψ(f∗) = g∗

and ψ|trf (TM) = ψ satisfies

ψ(ϕf (N)) = ϕg(N),

ψ(ϕf (u)) = ϕg(u).

Then there exists an isometry τ : Qn+2
q → Qn+2

q , such that

τf = g and τ∗|trf (TM) = ψ
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Proof. Let δ be a semi-Riemannian bundle of dimension 1 over M , with index d and let u a unit element respect
to δ.

We define the metric gϵ on the bundle ϵ = γ ⊕ δ, as in Proposition 5.6 and the connection ∇ϵ
over ϵ as in

(5.42), (5.43) and (5.44). In this way, by Proposition 5.7 the properties (5.7)-(5.14) hold.

Now, since we are assuming (5.38), (5.40) and (5.41), Proposition 5.8 implies that (5.15) - (5.17) are satisfied.

Therefore, by Theorem 5.1, there exists an isometric immersion f :M → Rn+3
q+d and a vector bundle isometry

ϕ : ϵ⊕ δ → tr(TM) such that D1 = D0
1 , D2 = D0

2 , ρ1 = ρ01, ρ2 = ρ02 and ϵ1 = ϵ01.

From the election of D1 and ρ1, and properties (5.31), (5.32) it follows that

h0 = ϕ ◦ h,
∇t,0ϕ = ϕ∇t.

On the other hand, we consider the canonical isometry i : Qn+2
c,q → Rn+3

c,q+λ(c), whose image is the hyperquadric

Qn+2
c,q = {X ∈ Rn+3

q+λ(c) : g
0(X,X) = 1/c},

where λ(c) = 1 if c < 0 and λ(c) = 0 if c > 0. Observe that λ(c) = d.

We affirm that f(M) ⊂ Qn+2
c,q , modulo a translation on Rn+3

q+d if necessary. For that, we notice

ϕ(∇ϵ

Xu) = ϕ(−AuX) = ϕ

(
−1

r
X

)
= −1

r
ϕ(X) = −1

r
f∗X,

from which it follows that
f + rϕ(u) = K,

where K is some constant vector in Rn+3
q+d . Then

g0(f −K, f −K) = g0(−rϕ(u),−rϕ(u)) = r2g0(ϕ(u), ϕ(u)) = σr2 =
1

c

In this way, there exists an isometric immersion f :M → Qn+2
c,q , such that f = i ◦ f . Moreover, there exists a

vector bundle isometry ϕ : δ ⊕ ϵ→ trf (TM), such that

hf = ϕh,

∇t,fϕ = ϕ∇t.

Now we tackle the uniqueness part of the proof. For that, let f , g be two such isometric immersions and
let i : Qn+2

c,q → Rn+3
q+d the canonical inclusion. Consider the functions f = i ◦ f , g = i ◦ g, which are isometric

inmersions of M in Rn+3
q+d .

Because ϕf (δ) and ϕg(δ) are orthogonal to ϕ
f
(γ) and ϕ

g
(γ), respectively. Thus ψ define the bundle isometry

ζ : f
∗
TRn+3

q+d → g∗TRn+3
q+d , such that

ζf∗ = g∗,

and ζ|trf (TM) = ζ, satisfies

ζ(ϕf (N)) = ϕg(N),

ζ(ϕf (u)) = ϕg(u).

Then, by Theorem 5.1, there exists a bundle isometry τ : Rn+3
q+d → Rn+3

q+d , such that

τf = g and τ∗|trf (TM) = ζ,

which in turn induces the bundle isometry τ : Qn+2
c,q → Qn+2

c,q that satisfies

τf = g and τ∗|trf (TM) = ψ.
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