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A B S T R AC T A R T I C L E I N F O

The time-dependent system of partial differential equations of the second order
describing the electric wave propagation in electrically and magnetically anisotropic
homogeneous media is considered in the paper. A method for the computation of
the polynomial solutions of the initial value problem for the considered system
is proposed. Symbolic computations are used and these symbolic computations
are implemented in Maple. It is proved also that these polynomial solutions are
approximate solutions of the considered initial value problem with smooth initial
data and the inhomogeneous term. The computational experiments confirm the
robustness of the suggested method for the computation of electric fields in general
electrically and magnetically anisotropic media.
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1. Introduction

At the recent time the use and development of new
anisotropic materials stimulates the growing interest for
modeling electric and magnetic wave propagations in-
side these new materials. This topic is an important
interdisciplinary area of research with many cutting-edge
scientific and technological applications [6],[7],[11]. The
physical properties of anisotropic media essentially de-
pend on the orientation and position. For instance, in
anisotropic homogeneous media the physical properties
depend on the orientation and do not depend on the posi-
tion [11]. The medium can be isotropic relative to some
properties and anisotropic with respect to others. For
example, anisotropic crystals and dielectrics are mag-
netically isotropic but electrically anisotropic. Some of
materials are magnetically anisotropic but electrically
isotropic and some of materials are electrically and mag-
netically anisotropic. One of the first and a very well
known approach for modeling wave propagations is a
’plane wave approach’, when a wave front is considered as
an unbounded plane front in the space (see, for example

[3],[6],[7],[11],[12]).
Besides that the electromagnetic waves are often raised
by electric currents or charges located in some points,
curves and surfaces [3],[6],[7]. For example, antenna
radiation above the earth’s surface is an important subject
in radio wave communications. The boundary-value prob-
lem of radiation from a dipole antenna above a dielectric
isotropic half space was first investigated by Sommerfeld
and it thus became known as the Sommerfeld dipole prob-
lem. Electromagnetic wave radiations in a dielectric free
space and half space from different types of currents(pulse
polarized dipole, line currents, sheet currents, and shell
currents) have been studied in [3],[6],[7],[11].
The observations of electric and magnetic fields in dif-
ferent anisotropic media generated by electric currents
give an information about the dependence of electromag-
netic field behavior and the structure of media. These
observations allow engineers to study properties of known
anisotropic materials and design new materials with the
certain response to electric and magnetic fields for given
source. Most of electromagnetic scattering problems,
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initial value and initial boundary value problems have
been solved by numerical methods, in particular, finite
elements method, boundary elements methods, finite dif-
ference method, nodal method (see, for example, works
[1],[9],[10],[13],[18],[20] and their references).
Nowadays computers can perform very complicated sym-
bolic computations (in addition to numerical calculations)
and this opens up new possibilities to solve initial value
and initial boundary value problems. Symbolic compu-
tations can be considered as useful tools for analytical
methods that can provide exact solutions of problems.
The main object studied in this paper is the following
initial value problem (IVP) of radiation from the electric
current in electrically and magnetically anisotropic media

𝜀
𝜕2E
𝜕𝑡2

+ 𝑐𝑢𝑟𝑙𝑥 (𝜇−1𝑐𝑢𝑟𝑙𝑥E) + 𝜎𝜕E
𝜕𝑡

= −𝜕j
𝜕𝑡
, (1)

E
���
𝑡=0

= 0,
𝜕E
𝜕𝑡

���
𝑡=0

= 0. (2)

In this paper, the IVP (1),(2) is solved using polynomial
solution method. The method has been successfully ap-
plied to solve some IVPs before. In [14], [17], this method
is applied to solve IVP for system of crystal optics for sim-
ulations of waves in homogeneous, anisotropic dielectrics
and electrically anisotropic materials for the case when
𝜎 = 0, 𝜇 is identity matrix. In [15] PS method is applied
to IVP for equations of electric and magnetic fields in
general electrically and magnetically anisotropic media
for the case when𝜎 = 0, 𝜀 and 𝜇 are arbitrary matrices. In
the paper [16], the method is applied to IVP for Maxwell’s
equations in bi-anisotropic materials. However, the IVP
for Maxwell’s equations in conducting media for the case
when 𝜀, 𝜇 are arbitrary positive definite matrices and 𝜎
is a symmetric matrix has not been studied yet.
In this paper, the IVP (1),(2) of radiation from electric
current in electrically and magnetically anisotropic media
is studied in the case when 𝜀, 𝜇 and 𝜎 are arbitrary matri-
ces. An analytical method for computing a polynomial
solution of the Cauchy problem (1) with constant coeffi-
cients is studied. As an assumption the initial data and
inhomogeneous term have polynomial presentations with
respect to space variables. A solution of the initial value
problem is found in polynomial form with undetermined
coefficients depending on the time variable. For these
undetermined coefficients, the recurrence relations which
are used in the procedure of the coefficients recovery are
found. To be able to implement this method the following
studies are completed:
- Stability estimates (energy inequalities) for solutions
of (1) in a finite domain of dependence (a finite domain
containing characteristic cones) are described.
- Using these stability estimates, it is justified that the
polynomial solutions are approximate solutions of the

initial value problems with non-polynomial data.
- These theoretical results are confirmed by computational
experiments which compare the exact solutions and poly-
nomial solutions found by explained method.
This method can be applied for the isotropic, anisotropic or
bi-anisotropic cases. If compared with the other methods,
in the computation there are no grids and discretiza-
tion which are not clear for complicated media such as
anisotropic media. By the polynomial solution method,
a solution of the initial value problem can be obtained
easily if the initial data and inhomogeneous term have
polynomial presentations with respect to space variables.

2. Maxwell system
Maxwell’s equations are a set of partial differential equa-
tions that relate the electric field and magnetic field to the
charge and current densities that specify the fields and give
rise to electromagnetic radiation. The time dependent
Maxwell equations in anisotropic homogeneous media
can be written as follows [1], [11]

𝑐𝑢𝑟𝑙𝑥H =
𝜕D
𝜕𝑡

+ J, (3)

𝑐𝑢𝑟𝑙𝑥E = −𝜕B
𝜕𝑡
, (4)

𝑑𝑖𝑣𝑥 (B) = 0, (5)
𝑑𝑖𝑣𝑥 (D) = 𝜌, (6)

where 𝑥 = (𝑥1, 𝑥2, 𝑥3) be a space variable from R3

and 𝑡 be a time variable from R. E = (𝐸1, 𝐸2, 𝐸3),
H = (𝐻1, 𝐻2, 𝐻3) are electric and magnetic fields, with
components 𝐸𝑖 = 𝐸𝑖 (𝑥, 𝑡), 𝐻𝑖 = 𝐻𝑖 (𝑥, 𝑡) , 𝑖 = 1, 2, 3 ;
depending on 𝑥 and 𝑡 variables.
D = (𝐷1, 𝐷2, 𝐷3), B = (𝐵1, 𝐵2, 𝐵3) are electric and
magnetic displacements with components 𝐷𝑖 = 𝐷𝑖 (𝑥, 𝑡),
𝐵𝑖 = 𝐵𝑖 (𝑥, 𝑡) , 𝑖 = 1, 2, 3; depending on 𝑥 and 𝑡 variables.
J = (𝐽1, 𝐽2, 𝐽3) is the density of the electric current where
𝐽𝑖 = 𝐽𝑖 (𝑥, 𝑡), 𝑖 = 1, 2, 3; 𝜌 is the density of electric charges.
The conservation law of charges is given by

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣𝑥J = 0.

In general, there are some relations that expresses D, B
and J in terms of E and H when the media is electrically
and magnetically anisotropic homogeneous, these are

D = 𝜀E, B = 𝜇H, J = 𝜎E + j. (7)

Here 𝜀 is the dielectric permittivity characterizing the
electrical properties, 𝜇 is magnetic permeability charac-
terizing the magnetical properties, 𝜎 is the conductivity
and j is the density of the currents arising from the action
of the external electromagnetic forces.
In the paper, we suppose that for 𝑡 ≤ 0

H |𝑡≤0= 0, E |𝑡≤0= 0, j |𝑡≤0= 0, 𝜌 |𝑡≤0= 0. (8)
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Using equations (3)-(6),(7) and (8), two initial value prob-
lems can be obtained. One of the IVP is for the radiation
from the electric current that is

𝜀
𝜕2E
𝜕𝑡2

+ 𝑐𝑢𝑟𝑙𝑥 (𝜇−1𝑐𝑢𝑟𝑙𝑥E) + 𝜎𝜕E
𝜕𝑡

= −𝜕j
𝜕𝑡
, (9)

E
���
𝑡=0

= 0,
𝜕E
𝜕𝑡

���
𝑡=0

= 0, (10)

and other is IVP for magnetic field defined with equations

𝜕H
𝜕𝑡

= −𝜇−1𝑐𝑢𝑟𝑙𝑥E, (11)

H(𝑥, 𝑡) |𝑡=0 = 0. (12)

In this paper, using polynomial solution method (PS-
method) the initial value problem (9),(10) is solved to
obtain polynomial solution of electric field E(𝑥, 𝑡). Using
the solution of IVP (9),(10) IVP for magnetic field H(𝑥, 𝑡)
is solved symbolically.
As an assumption the matrices 𝜀, 𝜇 that characterizes
the electrical and magnetical properties are taken as sym-
metric positive definite matrices with constant elements
and the conductivity 𝜎 is taken as a symmetric positive
semi definite matrix with constant elements. Also, the
components 𝑗𝑖 (𝑥, 𝑡) of density of the current j(𝑥, 𝑡) are
considered in the following polynomial form

𝑗𝑖 (𝑥, 𝑡) =
𝑝∑︁
𝑘=0

𝑝∑︁
𝑚=0

𝑝∑︁
𝑛=0

𝑗
𝑘,𝑚,𝑛
𝑖

(𝑡)𝑥𝑘1 𝑥
𝑚
2 𝑥

𝑛
3 , (13)

where 𝑝 is a fixed number. Using existence theorems
it can be shown that the solution of the problem can be
written in the form

𝐸𝑖 (𝑥, 𝑡) =
∞∑︁
𝑘=0

∞∑︁
𝑚=0

∞∑︁
𝑛=0

𝐸
𝑘,𝑚,𝑛
𝑖

(𝑡)𝑥𝑘1 𝑥
𝑚
2 𝑥

𝑛
3 .

Applying the operator 𝐷𝛼 =
𝜕 |𝛼 |

𝜕𝑥𝛼1 𝜕𝑥
𝛼
2 𝜕𝑥

𝛼
3

to (9),(10) for

𝛼 > 𝑝, following IVP can be obtained

𝜀
𝜕2E𝛼

𝜕𝑡2
+ 𝑐𝑢𝑟𝑙𝑥 (𝜇−1𝑐𝑢𝑟𝑙𝑥E𝛼) + 𝜎𝜕E𝛼

𝜕𝑡
= 0,

E𝛼
���
𝑡=0

= 0,
𝜕E𝛼

𝜕𝑡

���
𝑡=0

= 0,

where E𝛼 = 𝐷𝛼E.
The solutions of the IVP is E𝛼 = 0 inside the conoid of
dependence, since j𝛼𝑖 = 0 for 𝛼 > 𝑝. Thus the components
of the solution of the IVP (9),(10) is in the polynomial
form

𝐸𝑖 (𝑥, 𝑡) =
𝑝∑︁
𝑘=0

𝑝∑︁
𝑚=0

𝑝∑︁
𝑛=0

𝐸
𝑘,𝑚,𝑛
𝑖

(𝑡)𝑥𝑘1 𝑥
𝑚
2 𝑥

𝑛
3

3. Initial value problems for electric and magnetic field
In this section, let us consider the IVP (9),(10) with inho-
mogeneous term that has polynomial presentation with
respect to space variables. Note following theorem from
[4] that is
Theorem. If 𝜀 is positive definite and 𝜎 is symmetric, pos-
itive semi-definite matrix then there exists a nonsingular
matrix S = (𝑆𝑖 𝑗 ); (𝑖, 𝑗 = 1, 2, 3) such that

S𝑇𝜀S = 𝐼,

S𝑇𝜎S = D,

where D = (𝑑1, 𝑑2, 𝑑3), 𝑑 𝑗 ≥ 0 ( 𝑗 = 1, 2, 3) is the diag-
onal matrix with eigenvalues of 𝜀−

1
2𝜎𝜀−

1
2 on diagonal.

Using this theorem and considering E = 𝑆Ẽ in (9),(10)
and multiplying with S𝑇 from left hand side we obtain

𝜕2Ẽ
𝜕𝑡2

+ S𝑇𝑐𝑢𝑟𝑙𝑥 (M−1𝑐𝑢𝑟𝑙𝑥 (SẼ)) + D 𝜕Ẽ
𝜕𝑡

= −S𝑇 𝜕j
𝜕𝑡
,

(14)

Ẽ(𝑥, 0) = 0,
𝜕Ẽ(𝑥, 𝑡)
𝜕𝑡

����
𝑡=0

= 0, 𝑥 ∈ 𝑅3. (15)

(𝑥 ∈ 𝑅3, 𝑡 > 0)

Let us consider the solution of (14),(15) in the following
form

Ẽ(𝑥1, 𝑥2, 𝑥3, 𝑡) =
𝑝∑︁
𝑘=0

𝑝∑︁
𝑚=0

𝑝∑︁
𝑛=0

Ẽ𝑘,𝑚,𝑛 (𝑡)𝑥𝑘1 𝑥
𝑚
2 𝑥

𝑛
3 , (16)

where Ẽ𝑘,𝑚,𝑛 (𝑡) = S𝑇E𝑘,𝑚,𝑛 (𝑡), E𝑘,𝑚,𝑛 (𝑡) =

(𝐸 𝑘,𝑚,𝑛1 (𝑡), 𝐸 𝑘,𝑚,𝑛2 (𝑡), 𝐸 𝑘,𝑚,𝑛3 (𝑡)). Substituting (13),(16)
into (14) and (15) following IVP for ordinary differential
equations are obtained

𝑑2�̃� 𝑘,𝑚,𝑛
𝑖

𝑑𝑡2
+ 𝑑𝑖

𝑑�̃�
𝑘,𝑚,𝑛
𝑖

𝑑𝑡
= 𝑓

𝑘,𝑚,𝑛
𝑖

, 𝑖 = 1, 2, 3, (17)

�̃�
𝑘,𝑚,𝑛
𝑖

���
𝑡=0

= 0,
𝑑�̃�

𝑘,𝑚,𝑛
𝑖

𝑑𝑡

���
𝑡=0

= 0, (18)

here

𝑓
𝑘,𝑚,𝑛
𝑖

=

(
𝑆𝑇

(
−𝜕 𝑗
𝜕𝑡

))
𝑖

−𝑆𝑇𝑖1𝐵1−𝑆𝑇𝑖2𝐵2−𝑆𝑇𝑖3𝐵3, 𝑖 = 1, 2, 3

where
𝐵1 = 𝜇−1

31

(
(𝑚 + 2) (𝑚 + 1)

(
𝑆31�̃�

𝑘,𝑚+2,𝑛
1 + 𝑆32�̃�

𝑘,𝑚+2,𝑛
2 +

𝑆33�̃�
𝑘,𝑚+2,𝑛
3

))
− 𝜇−1

31

(
(𝑚 + 1) (𝑛 + 1)

(
𝑆21�̃�

𝑘,𝑚+1,𝑛+1
1 +

𝑆22�̃�
𝑘,𝑚+1,𝑛+1
2 + 𝑆23�̃�

𝑘,𝑚+1,𝑛+1
3

))
+ 𝜇−1

32

(
(𝑚 + 1) (𝑛 +

1)
(
𝑆11�̃�

𝑘,𝑚+1,𝑛+1
1 + 𝑆12�̃�

𝑘,𝑚+1,𝑛+1
2 + 𝑆13�̃�

𝑘,𝑚+1,𝑛+1
3

))
−
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𝜇−1
32

(
(𝑘 + 1) (𝑚 + 1)

(
𝑆31�̃�

𝑘+1,𝑚+1,𝑛
1 + 𝑆32�̃�

𝑘+1,𝑚+1,𝑛
2 +

𝑆33�̃�
𝑘+1,𝑚+1,𝑛
3

))
+ 𝜇−1

33

(
(𝑘 + 1) (𝑚 + 1)

(
𝑆21�̃�

𝑘+1,𝑚+1,𝑛
1 +

𝑆22�̃�
𝑘+1,𝑚+1,𝑛
2 + 𝑆23�̃�

𝑘+1,𝑚+1,𝑛
3

))
− 𝜇−1

33

(
(𝑚 + 2) (𝑚 +

1)
(
𝑆11�̃�

𝑘,𝑚+2,𝑛
1 +𝑆12�̃�

𝑘,𝑚+2,𝑛
2 +𝑆13�̃�

𝑘,𝑚+2,𝑛
3

))
+𝜇−1

21

(
(𝑛+

2) (𝑛 + 1)
(
𝑆21�̃�

𝑘,𝑚,𝑛+2
1 + 𝑆22�̃�

𝑘,𝑚,𝑛+2
2 + 𝑆23�̃�

𝑘,𝑚,𝑛+2
3

))
−

𝜇−1
21

(
(𝑚 + 1) (𝑛 + 1)

(
𝑆31�̃�

𝑘,𝑚+1,𝑛+1
1 + 𝑆32�̃�

𝑘,𝑚+1,𝑛+1
2 +

𝑆33�̃�
𝑘,𝑚+1,𝑛+1
3

))
+ 𝜇−1

22

(
(𝑘 + 1) (𝑛 + 1)

(
𝑆31�̃�

𝑘+1,𝑚,𝑛+1
1 +

𝑆32�̃�
𝑘+1,𝑚,𝑛+1
2 + 𝑆33�̃�

𝑘+1,𝑚,𝑛+1
3

))
− 𝜇−1

22

(
(𝑛 + 2) (𝑛 +

1)
(
𝑆11�̃�

𝑘,𝑚,𝑛+2
1 + 𝑆12�̃�

𝑘,𝑚,𝑛+2
2 + 𝑆13�̃�

𝑘,𝑚,𝑛+2
3

))
+

𝜇−1
23

(
(𝑚 + 1) (𝑛 + 1)

(
𝑆11�̃�

𝑘,𝑚+1,𝑛+1
1 + 𝑆12�̃�

𝑘,𝑚+1,𝑛+1
2 +

𝑆13�̃�
𝑘,𝑚+1,𝑛+1
3

))
− 𝜇−1

23

(
(𝑘 + 1) (𝑛 + 1)

(
𝑆21�̃�

𝑘+1,𝑚,𝑛+1
1 +

𝑆22�̃�
𝑘+1,𝑚,𝑛+1
2 + 𝑆23�̃�

𝑘+1,𝑚,𝑛+1
3

))
,

𝐵2 = 𝜇−1
11

(
(𝑚+1) (𝑛+1)

(
𝑆31�̃�

𝑘,𝑚+1,𝑛+1
1 +𝑆32�̃�

𝑘,𝑚+1,𝑛+1
2 +

𝑆33�̃�
𝑘,𝑚+1,𝑛+1
3

))
− 𝜇−1

11

(
(𝑛 + 2) (𝑛 + 1)

(
𝑆21�̃�

𝑘,𝑚,𝑛+2
1 +

𝑆22�̃�
𝑘,𝑚,𝑛+2
2 + 𝑆23�̃�

𝑘,𝑚,𝑛+2
3

))
+ 𝜇−1

12

(
(𝑛 + 2) (𝑛 +

1)
(
𝑆11�̃�

𝑘,𝑚,𝑛+2
1 + 𝑆12�̃�

𝑘,𝑚,𝑛+2
2 + 𝑆13�̃�

𝑘,𝑚,𝑛+2
3

))
−

𝜇−1
12

(
(𝑘 + 1) (𝑛 + 1)

(
𝑆31�̃�

𝑘+1,𝑚,𝑛+1
1 + 𝑆32�̃�

𝑘+1,𝑚,𝑛+1
2 +

𝑆33�̃�
𝑘+1,𝑚,𝑛+1
3

))
+ 𝜇−1

13

(
(𝑘 + 1) (𝑛 + 1)

(
𝑆21�̃�

𝑘+1,𝑚,𝑛+1
1 +

𝑆22�̃�
𝑘+1,𝑚,𝑛+1
2 + 𝑆23�̃�

𝑘+1,𝑚,𝑛+1
3

))
− 𝜇−1

13

(
(𝑚 + 1) (𝑛 +

1)
(
𝑆11�̃�

𝑘,𝑚+1,𝑛+1
1 + 𝑆12�̃�

𝑘,𝑚+1,𝑛+1
2 + 𝑆13�̃�

𝑘,𝑚+1,𝑛+1
3

))
+

𝜇−1
31

(
(𝑘 + 1) (𝑛 + 1)

(
𝑆21�̃�

𝑘+1,𝑚,𝑛+1
1 + 𝑆22�̃�

𝑘+1,𝑚,𝑛+1
2 +

𝑆23�̃�
𝑘+1,𝑚,𝑛+1
3

))
− 𝜇−1

31

(
(𝑘 + 1) (𝑚 + 1)

(
𝑆31�̃�

𝑘+1,𝑚+1,𝑛
1 +

𝑆32�̃�
𝑘+1,𝑚+1,𝑛
2 + 𝑆33�̃�

𝑘+1,𝑚+1,𝑛
3

))
+ 𝜇−1

32

(
(𝑘 + 2) (𝑘 +

1)
(
𝑆31�̃�

𝑘+2,𝑚,𝑛
1 + 𝑆32�̃�

𝑘+2,𝑚,𝑛
2 + 𝑆33�̃�

𝑘+2,𝑚,𝑛
3

))
−

𝜇−1
32

(
(𝑘 + 1) (𝑛 + 1)

(
𝑆11�̃�

𝑘+1,𝑚,𝑛+1
1 + 𝑆12�̃�

𝑘+1,𝑚,𝑛+1
2 +

𝑆13�̃�
𝑘+1,𝑚,𝑛+1
3

))
+ 𝜇−1

33

(
(𝑘 + 1) (𝑚 + 1) (𝑆11�̃�

𝑘+1,𝑚+1,𝑛
1 +

𝑆12�̃�
𝑘+1,𝑚+1,𝑛
2 + 𝑆13�̃�

𝑘+1,𝑚+1,𝑛
3

))
− 𝜇−1

33

(
(𝑘 + 2) (𝑘 +

1)
(
𝑆21�̃�

𝑘+2,𝑚,𝑛
1 + 𝑆22�̃�

𝑘+2,𝑚,𝑛
2 + 𝑆23�̃�

𝑘+2,𝑚,𝑛
3

))
,

𝐵3 = 𝜇−1
21

(
(𝑘+1) (𝑚+1)

(
𝑆31�̃�

𝑘+1,𝑚+1,𝑛
1 +𝑆32�̃�

𝑘+1,𝑚+1,𝑛
2 +

𝑆33�̃�
𝑘+1,𝑚+1,𝑛
3

))
− 𝜇−1

21

(
(𝑘 + 1) (𝑛 + 1)

(
𝑆21�̃�

𝑘+1,𝑚,𝑛+1
1 +

𝑆22�̃�
𝑘+1,𝑚,𝑛+1
2 + 𝑆23�̃�

𝑘+1,𝑚,𝑛+1
3

))
+ 𝜇−1

22

(
(𝑘 + 1) (𝑛 +

1)
(
𝑆11�̃�

𝑘+1,𝑚,𝑛+1
1 + 𝑆12�̃�

𝑘+1,𝑚,𝑛+1
2 + 𝑆13�̃�

𝑘+1,𝑚,𝑛+1
3

))
−

𝜇−1
22

(
(𝑘 + 2) (𝑘 + 1)

(
𝑆31�̃�

𝑘+2,𝑚,𝑛
1 + 𝑆32�̃�

𝑘+2,𝑚,𝑛
2 +

𝑆33�̃�
𝑘+2,𝑚,𝑛
3

))
+ 𝜇−1

23

(
(𝑘 + 2) (𝑘 + 1)

(
𝑆21�̃�

𝑘+2,𝑚,𝑛
1 +

𝑆22�̃�
𝑘+2,𝑚,𝑛
2 + 𝑆23�̃�

𝑘+2,𝑚,𝑛
3

))
− 𝜇−1

23

(
(𝑘 + 1) (𝑚 +

1) (𝑆11�̃�
𝑘+1,𝑚+1,𝑛
1 + 𝑆12�̃�

𝑘+1,𝑚+1,𝑛
2 + 𝑆13�̃�

𝑘+1,𝑚+1,𝑛
3

))
+

𝜇−1
11

(
(𝑚 + 1) (𝑛 + 1)

(
𝑆21�̃�

𝑘,𝑚+1,𝑛+1
1 + 𝑆22�̃�

𝑘,𝑚+1,𝑛+1
2 +

𝑆23�̃�
𝑘,𝑚+1,𝑛+1
3

))
− 𝜇−1

11

(
(𝑚 + 2) (𝑚 + 1)

(
𝑆31�̃�

𝑘,𝑚+2,𝑛
1 +

𝑆32�̃�
𝑘,𝑚+2,𝑛
2 + 𝑆33�̃�

𝑘,𝑚+2,𝑛
3

))
+ 𝜇−1

12

(
(𝑘 + 1) (𝑚 +

1)
(
𝑆31�̃�

𝑘+1,𝑚+1,𝑛
1 + 𝑆32�̃�

𝑘+1,𝑚+1,𝑛
2 + 𝑆33�̃�

𝑘+1,𝑚+1,𝑛
3

))
−

𝜇−1
12

(
(𝑚 + 1) (𝑛 + 1)

(
𝑆11�̃�

𝑘,𝑚+1,𝑛+1
1 + 𝑆12�̃�

𝑘,𝑚+1,𝑛+1
2 +

𝑆13�̃�
𝑘,𝑚+1,𝑛+1
3

))
+ 𝜇−1

13

(
(𝑚 + 2) (𝑚 + 1)

(
𝑆11�̃�

𝑘,𝑚+2,𝑛
1 +

𝑆12�̃�
𝑘,𝑚+2,𝑛
2 + 𝑆13�̃�

𝑘,𝑚+2,𝑛
3

))
− 𝜇−1

13

(
(𝑘 + 1) (𝑚 +

1)
(
𝑆21�̃�

𝑘+1,𝑚+1,𝑛
1 + 𝑆22�̃�

𝑘+1,𝑚+1,𝑛
2 + 𝑆23�̃�

𝑘+1,𝑚+1,𝑛
3

))
.

The solution of the IVP (17),(18) is

�̃�
𝑘,𝑚,𝑛
𝑖

=
1
𝑑𝑖

∫ 𝑡

0
(1−𝑒𝑑𝑖 (𝜏−𝑡 ) ) 𝑓 𝑘,𝑚,𝑛

𝑖
(𝜏)𝑑𝜏, 𝑖 = 1, 2, 3.

(19)
Using (16) and (19), the solution Ẽ(𝑥, 𝑡) of (14),(15) can
be obtained. Since E = SẼ then a solution of the IVP
(9),(10) can be obtained in polynomial form. Using the
solution of IVP (9),(10), the IVP (11),(12) can be solved
by symbolic calculation.

4. Existence of solutions for the IVPs
Equations (3)-(6),(8) can be rewritten as a first order
hyperbolic system in the form

𝐴0
𝜕U
𝜕𝑡

+
3∑︁
𝑗=1

𝐴 𝑗
𝜕U
𝜕𝑥 𝑗

+ 𝐵U = F, (20)

U(𝑥, 𝑡)
���
𝑡=0

= 0, (21)

where U =

(
E
H

)
, 𝐴0 =

(
𝜀 0
0 𝜇

)
, 𝐵 =

(
𝜎 0
0 0

)
and

F = −
(

j
0

)
, and the matrix 𝐴 𝑗 is defined as

𝐴 𝑗 =

(
03×3 𝐴1

𝑗

(𝐴1
𝑗
)∗ 03×3

)
.

which has the components

𝐴1
1 =

©«
0 0 0
0 0 1
0 −1 0

ª®¬ , 𝐴1
2 =

©«
0 0 −1
0 0 0
1 0 0

ª®¬ ,
𝐴1

3 =
©«

0 1 0
−1 0 0
0 0 0

ª®¬ .
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Consider the symmetric positive definite matrix 𝐴0. There
exists a symmetric positive definite matrix 𝑆 such that
𝐴−1

0 = 𝑆2, that is, 𝐴− 1
2

0 = 𝑆. Let us denote the vector

U(𝑥) = 𝑆u(𝑥) (22)

Substituting (22) into (20),(21) and multiplying the re-
sulting formula with matrix 𝑆 from the left hand side we
obtain

𝜕u
𝜕𝑡

+
𝑛∑︁
𝑗=1

𝐴 𝑗
𝜕u
𝜕𝑥 𝑗

+ 𝐵u = f, 𝑥 ∈ R𝑛, 𝑡 > 0, (23)

u(𝑥, 𝑡)
���
𝑡=0

= 0, 𝑥 ∈ R𝑛, (24)

where

𝐼6 = 𝑆𝐴0𝑆, 𝐴 𝑗 = 𝑆𝐴 𝑗𝑆, 𝐵 = 𝑆𝐵𝑆, f = 𝑆F.

Since 𝑆 and 𝐴 𝑗 , 𝑗 = 1, 2, 3 are symmetric, the matrix
𝐴 𝑗 will also be symmetric, which implies that (23) is a
symmetric hyperbolic system.
Theorem. Let 𝐴 𝑗 is a symmetric matrix with constant
entries and let 𝑇 be a fixed positive number then for an
arbitrary 𝑓 𝑗 (𝑥, 𝑡) ∈ 𝐶 ( [0, 𝑇];H1 (R3)) we have a unique
solution of (23),(24) such that

𝑢 𝑗 (𝑥, 𝑡) ∈ 𝐶 ( [0, 𝑇];H1 (R3)) ∩ 𝐶1 ( [0, 𝑇];L2 (R3))

The theorem and the proof of the theorem can be found
in [8].

5. Domain of dependence and uniqueness theorem
inside conoid of dependence

In this section we describe the domain of dependence
for first order symmetric hyperbolic systems and prove
that the solution of the system is uniquely determined
inside the conoid of dependence [2], [5], [19]. And we
obtain the theorem for the uniqueness of the solution of
considered IVPs.
Let us consider the symmetric hyperbolic system of the
form (23),(24) where each 𝐴 𝑗 (𝑥) is an 𝑚 × 𝑚 symmetric
matrix. Let

A(𝜉) =
𝑛∑︁
𝑗=1

𝐴 𝑗𝜉 𝑗

and 𝜆 𝑗 (𝜉), 𝑗 = 1, . . . , 𝑚 be the eigenvalues of A(𝜉). We
define the constant 𝑀 as

𝑀 = max
𝑖=1,...,𝑚
|𝜉 |=1

|𝜆 𝑗 (𝜉) |. (25)

Using the constant 𝑀 we define the following domains
for the arbitrary point 𝑃 with coordinates (𝑥0, 𝑡0) ∈

R𝑛 × (0,∞)

Γ(𝑃) =
{
(𝑥, 𝑡) : 0 ≤ 𝑡 ≤ 𝑡0, |𝑥 − 𝑥0 | ≤ 𝑀 (𝑡0 − 𝑡)

}
,

𝑆(ℎ) =
{
𝑥 ∈ R𝑛 : |𝑥 − 𝑥0 | ≤ 𝑀 |𝑡0 − ℎ|

}
, 0 ≤ ℎ ≤ 𝑡0,

𝑅(ℎ) =
{
(𝑥, 𝑡) : 0 ≤ 𝑡 ≤ ℎ, |𝑥 − 𝑥0 | = 𝑀 |𝑡0 − 𝑡 |

}
.

Here Γ(𝑃) is the conoid of dependence with vertex 𝑃.
𝑆(ℎ) is the surface constructed by the intersection of the
plane 𝑡 = ℎ and the conoid Γ(𝑃). For 𝑡 = 0, 𝑆(0) is the
base of the conoid. 𝑅(ℎ) is the lateral surface of the
conoid bounded by 𝑆(0) and 𝑆(ℎ).

Theorem.(see, [2]) Let (𝑥0, 𝑡0) ∈ R𝑛 × (0,∞), and
𝑆(ℎ), 𝑅(ℎ), Γ(𝑃) be as defined above, and u(𝑥, 𝑡) ∈
C([0, 𝑇];H1 (R𝑛;R𝑚))⋂C1 ( [0, 𝑇];L2 (R𝑛;R𝑚)) be a
solution of (23). Then the following energy inequality is
valid∫

𝑆 (ℎ)
|u(𝑥, ℎ) |2𝑑𝑥 ≤ 𝑒𝐾ℎ

∫ ℎ

0

∫
𝑆 (𝑡 )

|f (𝑥, 𝑡) |2𝑑𝑥𝑑𝑡,

if

max
𝑗

max
𝑘,𝑙

max
𝑥∈𝑆 (0)

���𝜕𝑎 𝑗𝑘𝑙
𝜕𝑥 𝑗

��� ≤ 𝐿, max
𝑘,𝑙

max
𝑥∈𝑆 (0)

���𝑏𝑘𝑙 (𝑥)��� ≤ 𝐿.

Proof. Let Ω be the region bounded by 𝑆(0), 𝑆(ℎ), 𝑅(ℎ)
and 𝜕Ω = 𝑆(0) ∪ 𝑆(ℎ) ∪ 𝑅(ℎ). Multiplying (23) with u
and integrating over Ω we have

∫
Ω

{
u.
𝜕u
𝜕𝑡

+ u. ©«
𝑛∑︁
𝑗=1

𝐴 𝑗
𝜕u
𝜕𝑥 𝑗

ª®¬
}
𝑑𝑥𝑑𝑡 +

∫
Ω

u.𝐵(𝑥)u𝑑𝑥𝑑𝑡

(26)

=

∫
Ω

u.f𝑑𝑥𝑑𝑡.

Noting the relations

u.
𝜕u
𝜕𝑡

=
1
2
𝜕 |u|2
𝜕𝑡

,

u. ©«
𝑛∑︁
𝑗=1

𝐴 𝑗
𝜕u
𝜕𝑥 𝑗

ª®¬ =
1
2

𝑛∑︁
𝑗=1

𝜕

𝜕𝑥 𝑗

(
u.𝐴 𝑗u

)
− 1

2

𝑛∑︁
𝑗=1

(
u.
𝜕𝐴 𝑗

𝜕𝑥 𝑗
u
)

Equation (26) can be rewritten as follows

1
2

∫
Ω

{ 𝜕 |u|2
𝜕𝑡

+
𝑛∑︁
𝑗=1

𝜕

𝜕𝑥 𝑗

(
u.𝐴 𝑗u

)
−

𝑛∑︁
𝑗=1

(
u.
𝜕𝐴 𝑗

𝜕𝑥 𝑗
u
)}
𝑑𝑥𝑑𝑡

+
∫
Ω

u.𝐵(𝑥)u𝑑𝑥𝑑𝑡 =
∫
Ω

u.f𝑑𝑥𝑑𝑡
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and applying the divergence theorem one can get

1
2

∫
𝜕Ω

{
|u|2𝜈𝑡 +

𝑛∑︁
𝑗=1

(
u.𝐴 𝑗u

)
𝜈 𝑗

}
𝑑𝑆

− 1
2

∫
Ω

𝑛∑︁
𝑗=1

(
u.
𝜕𝐴 𝑗

𝜕𝑥 𝑗
u
)
𝑑𝑥𝑑𝑡 +

∫
Ω

u.𝐵(𝑥)u𝑑𝑥𝑑𝑡

=

∫
Ω

u.f𝑑𝑥𝑑𝑡, (27)

where 𝜈 = (𝜈1, . . . , 𝜈𝑛, 𝜈𝑡 ) is the outward unit normal on
𝜕Ω. Since 𝜕Ω = 𝑆(0) ∪ 𝑆(ℎ) ∪ 𝑅(ℎ) and

𝜈 = (0, . . . , 1) on 𝑆(ℎ),
𝜈 = (0, . . . ,−1) on 𝑆(0),

𝜈 =
(𝑥1 − 𝑥0

1, . . . , 𝑥𝑛 − 𝑥
0
𝑛, 𝑀

2 (𝑡0 − 𝑡))
(𝑡0 − 𝑡)𝑀

√
1 + 𝑀2

on 𝑅(ℎ),

formula (27) takes the form

1
2

∫
𝑆 (ℎ)

|u|2𝑑𝑥 − 1
2

∫
𝑆 (0)

|u|2𝑑𝑥 + 1
2

∫
𝑅 (ℎ)

|u|2 𝑀
√

1 + 𝑀2
𝑑𝑆

+ 1
2

∫
𝑅 (ℎ)

𝑛∑︁
𝑗=1

(
u.𝐴 𝑗u

) 𝑥 𝑗 − 𝑥0
𝑗

(𝑡0 − 𝑡)𝑀
√

1 + 𝑀2
𝑑𝑆

− 1
2

∫
Ω

{ 𝑛∑︁
𝑗=1

u.
𝜕𝐴 𝑗

𝜕𝑥 𝑗
u − 2u.𝐵u

}
𝑑𝑥𝑑𝑡

=

∫
Ω

u.f𝑑𝑥𝑑𝑡. (28)

Let us denote

𝜉 𝑗 =
(𝑥 𝑗 − 𝑥0

𝑗
)

(𝑡0 − 𝑡)𝑀
, 𝑗 = 1, . . . , 𝑛,

which satisfies |𝜉 | =
√︃
𝜉2

1 + . . . + 𝜉2
𝑛 = 1. Using this

notation and

A(𝜉) =
𝑛∑︁
𝑗=1

𝐴 𝑗𝜉 𝑗 ,

we write the following equality

1
2

∫
𝑅 (ℎ)

𝑛∑︁
𝑗=1

(
u.𝐴 𝑗u

) 𝑥 𝑗 − 𝑥0
𝑗

(𝑡0 − 𝑡)𝑀
√

1 + 𝑀2
𝑑𝑆

=
1

2
√

1 + 𝑀2

∫
𝑅 (ℎ)

𝑛∑︁
𝑗=1

(
u.𝐴 𝑗𝜉 𝑗u

)
𝑑𝑆

=
1

2
√

1 + 𝑀2

∫
𝑅 (ℎ)

(u.A(𝜉)u) 𝑑𝑆. (29)

Substituting (29) into (28) we get

1
2

∫
𝑆 (ℎ)

|u|2𝑑𝑥 − 1
2

∫
𝑆 (0)

|u|2𝑑𝑥

+ 1
2
√

1 + 𝑀2

∫
𝑅 (ℎ)

[
|u|2𝑀 + u.A(𝜉)u

]
𝑑𝑆

− 1
2

∫
Ω

{ 𝑛∑︁
𝑗=1

u.
𝜕𝐴 𝑗

𝜕𝑥 𝑗
u − 2u.𝐵u

}
𝑑𝑥𝑑𝑡

=

∫
Ω

u.f𝑑𝑥𝑑𝑡. (30)

Consider the term 𝑀I + A(𝜉), where I is the identity
matrix of order 𝑚 × 𝑚. Since A(𝜉) is diagonalizable we
can find a matrix Z which reduces A(𝜉) to a diagonal
matrix of its eigenvalues, denoted diag(𝜆1, 𝜆2, . . . , 𝜆𝑚).
Multiplying 𝑀I + A(𝜉) with matrix Z from right, and
with its inverse Z−1, from left we have

Z−1 (𝑀I + A(𝜉)) Z = Z−1𝑀IZ + Z−1A(𝜉)Z
= 𝑀I + Z−1A(𝜉)Z
= diag(𝑀, 𝑀, . . . , 𝑀)

+ diag(𝜆1, 𝜆2, . . . , 𝜆𝑚).

Noting the formula (25), we conclude that the matrix
𝑀I + A(𝜉) has positive eigenvalues, which implies that
it is a positive-definite matrix, and from the definition of
positive-definiteness we obtain the following inequality

|u|2𝑀 + u.A(𝜉)u = u.(𝑀I + A(𝜉))u ≥ 0.

Thus (30) becomes

1
2

∫
𝑆 (ℎ)

|u|2𝑑𝑥 − 1
2

∫
𝑆 (0)

|u|2𝑑𝑥

− 1
2

∫
Ω

{ 𝑛∑︁
𝑗=1

u.
𝜕𝐴 𝑗

𝜕𝑥 𝑗
u − 2u.𝐵u

}
𝑑𝑥𝑑𝑡

−
∫
Ω

u.f𝑑𝑥𝑑𝑡 ≤ 0. (31)

Remark. Let us denote

𝜕𝐴 𝑗

𝜕𝑥 𝑗
=

( 𝜕𝑎 𝑗
𝑘𝑙

𝜕𝑥 𝑗

)
,

and

max
𝑗

max
𝑘,𝑙

max
𝑥∈𝑆 (0)

���𝜕𝑎 𝑗𝑘𝑙
𝜕𝑥 𝑗

��� ≤ 𝐿,

max
𝑘,𝑙

max
𝑥∈𝑆 (0)

���𝑏𝑘𝑙 (𝑥)��� ≤ 𝐿.

Since
𝑛∑︁
𝑗=1

u.
𝜕𝐴 𝑗

𝜕𝑥 𝑗
u − 2u.𝐵u =

〈
u,

( 𝑛∑︁
𝑗=1

𝜕𝐴 𝑗

𝜕𝑥 𝑗
− 2𝐵

)
u
〉
,
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then���〈u,
( 𝑛∑︁
𝑗=1

𝜕𝐴 𝑗

𝜕𝑥 𝑗
− 2𝐵

)
u
〉��� = ���〈u,

𝑛∑︁
𝑗=1

𝜕𝐴 𝑗

𝜕𝑥 𝑗
u
〉
− 2

〈
u, 𝐵u

〉���,
≤ 𝐿

[ 𝑛∑︁
𝑗=1

〈
u, u

〉
+ 2

〈
u, u

〉]
,

≤ 𝐿 (𝑛 + 2)
〈
u, u

〉
,

≤ 𝐿 (𝑛 + 2)
���u(𝑥, 𝑡)���2.

Using previous remark, the inequality (31) becomes

1
2

∫
𝑆 (ℎ)

|u|2𝑑𝑥 − 1
2

∫
𝑆 (0)

|u|2𝑑𝑥 −
∫
Ω

u.f𝑑𝑥𝑑𝑡

≤ 𝐿 (𝑛 + 2)
∫ ℎ

0

∫
𝑆 (ℎ)

���u(𝑥, 𝑡)���2𝑑𝑥𝑑𝑡.
Denoting

1
2

∫
𝑆 (𝜏 )

|u(𝑥, 𝜏) |2𝑑𝑥 = 𝑤(𝜏),

we have

𝑤(ℎ) ≤ 𝑤(0) + 2(𝑛 + 2)𝐿
∫ ℎ

0
𝑤(𝑡)𝑑𝑡 +

∫ ℎ

0
𝑤(𝑡)𝑑𝑡

+ 1
2

∫ ℎ

0

∫
𝑆 (𝑡 )

|f (𝑥, 𝑡) |2𝑑𝑥𝑑𝑡.

Using Gronwall’s Lemma we obtain

𝑤(ℎ) ≤
(
𝑤(0) + 1

2

∫ ℎ

0

∫
𝑆 (𝑡 )

|f (𝑥, 𝑡) |2𝑑𝑥𝑑𝑡
)
𝑒𝐾ℎ .

(𝐾 = 2(𝑛 + 2)𝐿 + 1)

Then we get the energy inequality∫
𝑆 (ℎ)

|u(𝑥, ℎ) |2𝑑𝑥 ≤ 𝑒𝐾ℎ
∫ ℎ

0

∫
𝑆 (𝑡 )

|f (𝑥, 𝑡) |2𝑑𝑥𝑑𝑡.

Thus, the stability estimate for solution of (20),(21) is∫
𝑆 (ℎ)

|𝐴
1
2
0 U(𝑥, ℎ) |2𝑑𝑥 ≤ 𝑒𝐾ℎ

∫ ℎ

0

( ∫
𝑆 (𝑡 )

|𝐴− 1
2

0 F(𝑥, 𝑡) |2𝑑𝑥
)
𝑑𝑡.

Theorem. (Uniqueness Theorem for the IVP)
Let 𝑥 ∈ R𝑛, 𝑡 > 0 and 𝐴 𝑗 (𝑥) is an 𝑚 × 𝑚 symmetric
matrix then following Initial Value Problem has unique
solution

𝜕u
𝜕𝑡

+
𝑛∑︁
𝑗=1

𝐴 𝑗
𝜕u
𝜕𝑥 𝑗

+ 𝐵(𝑥)u = f,

u(𝑥, 0) = 𝜑(𝑥),

Proof. Assume that we have two solutions 𝑢 and 𝑢∗ corre-
sponding to the same data 𝜑 and the same inhomogeneous
term 𝑓 . Let û = u − u∗. Then û satisfies

𝜕û
𝜕𝑡

+
𝑛∑︁
𝑗=1

𝐴 𝑗
𝜕û
𝜕𝑥 𝑗

+ 𝐵(𝑥)û = 0,

û(𝑥, 0) = 0,
Applying energy inequality we have∫

𝑆 (ℎ)
|û(𝑥, ℎ) |2𝑑𝑥 ≤

∫
𝑆 (0)

|û(𝑥, 0) |2𝑑𝑥 = 0,

0 ≤
∫
𝑆 (ℎ)

|û(𝑥, ℎ) |2𝑑𝑥 ≤ 0, for all ℎ ∈ [0, 𝑇] .

Hence

|û(𝑥, ℎ) |2 ≡ 0, for all ℎ ∈ [0, 𝑇], 𝑥 ∈ 𝑆(ℎ),

then we have

u(𝑥, ℎ) − u∗ (𝑥, ℎ) ≡ 0, for all ℎ ∈ [0, 𝑇], 𝑥 ∈ 𝑆(ℎ),

that is,

u(𝑥, ℎ) ≡ u∗ (𝑥, ℎ), for all ℎ ∈ [0, 𝑇], 𝑥 ∈ 𝑆(ℎ).

This proves the uniqueness theorem.

6. Implementation of the method
In this section, our aim is to implement the method to a
simplified form of the problem and sketch out how the
method works.
For implementation of PS method, let us consider

the IVP (9),(10) with −𝜕 𝑗
𝜕𝑡

= ( 𝑓 , 0, 0), 𝜀 = 𝐼3×3,

𝜇−1 = diag (𝜇11, 𝜇22, 𝜇33), 𝜎 = diag (𝜎11, 𝜎22, 𝜎33). Let
𝑓 (𝑥, 𝑡) has an approximation in the domain of dependence
in the form

𝑓 (𝑥, 𝑡) =
𝑝∑︁
𝑛=0

𝑓 𝑛 (𝑡)𝑥𝑛, (32)

where 𝑥 ∈ R, 𝑡 ∈ R and 𝑝 ∈ N. The solution
E(𝑥, 𝑡) = (𝐸1 (𝑥, 𝑡), 𝐸2 (𝑥, 𝑡), 𝐸3 (𝑥, 𝑡)) of the problem will
be in the form

E(𝑥, 𝑡) =
𝑝∑︁
𝑛=0

E(𝑥, 𝑡)𝑛 (𝑡)𝑥𝑛 (33)

Substituting (32) and (33) into the IVP (9),(10) we get

𝜕2𝐸𝑛1
𝜕𝑡2

− 𝜇22 (𝑛 + 2) (𝑛 + 1)𝐸𝑛+2
1 + 𝜎11

𝜕𝐸𝑛1
𝜕𝑡

= 𝑓 𝑛1 (𝑡)

𝐸𝑛1
��
𝑡=0 = 0,

𝜕𝐸𝑛1
𝜕𝑡

����
𝑡=0

= 0,

(34)
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𝜕2𝐸𝑛2
𝜕𝑡2

+ 𝜎22
𝜕𝐸𝑛2
𝜕𝑡

= 0,

𝐸𝑛2
��
𝑡=0 = 0,

𝜕𝐸𝑛2
𝜕𝑡

����
𝑡=0

= 0,
(35)

𝜕2𝐸𝑛3
𝜕𝑡2

+ 𝜎33
𝜕𝐸𝑛3
𝜕𝑡

= 0,

𝐸𝑛3
��
𝑡=0 = 0,

𝜕𝐸𝑛3
𝜕𝑡

����
𝑡=0

= 0.
(36)

The solutions of IVPs (35),(36) are 𝐸𝑛2 (𝑡) = 0, 𝐸𝑛3 (𝑡) = 0.
Also the IVP (34) for any 𝑛 > 𝑝 we have 𝐸𝑛1 (𝑡) = 0. Let
us start PS method computation when 𝑛 = 𝑝. For 𝑛 = 𝑝
we have

𝜕2𝐸
𝑝

1
𝜕𝑡2

− 𝜇22 (𝑝 + 2) (𝑝 + 1)𝐸 𝑝+2
1 + 𝜎11

𝜕𝐸
𝑝

1
𝜕𝑡

= 𝑓
𝑝

1 ,

𝐸𝑃1
��
𝑡=0 = 0,

𝜕𝐸
𝑝

1
𝜕𝑡

�����
𝑡=0

= 0.

(37)

The solution of IVP (37) is of the form

𝐸
𝑝

1 (𝑡) = 1
𝜎11

∫ 𝑡

0
𝑓
𝑝

1 (𝜏)
(
1 − 𝑒𝜎11 (𝜏−𝑡 )

)
+

(
𝜇22 (𝑝 + 2) (𝑝 + 1)𝐸 𝑝+2

1 (𝜏)
) (

1 − 𝑒𝜎11 (𝜏−𝑡 )
)
𝑑𝜏.

Since 𝐸 𝑝+2
1 = 0, the solution of problem (37) is

𝐸
𝑝

1 (𝑡) = 1
𝜎11

∫ 𝑡

0
𝑓
𝑝

1 (𝜏)
[
1 − 𝑒𝜎11 (𝜏−𝑡 )

]
𝑑𝜏.

Now, the computation will continue with 𝑛 = 𝑝 − 1 to
calculate 𝐸 𝑝−1

1 (𝑡). When 𝑛 = 𝑝 − 1 we have

𝜕2𝐸
𝑝−1
1

𝜕𝑡2
− 𝜇22 (𝑝 + 1)𝑝𝐸 𝑝+1

1 + 𝜎11
𝜕𝐸

𝑝−1
1
𝜕𝑡

= 𝑓
𝑝−1

1 ,

𝐸
𝑝−1
1

���𝑝−1

𝑡=0
,
𝜕𝐸

𝑝−1
1
𝜕𝑡

�����
𝑡=0

= 0.

(38)

With the similar reasoning, the solution of (38) is

𝐸
𝑝−1
1 (𝑡) = 1

𝜎11

∫ 𝑡

0
𝑓
𝑝−1

1 (𝜏)
[
1 − 𝑒𝜎11 (𝜏−𝑡 )

]
𝑑𝜏.

Continuing calculation when 𝑛 = 𝑝 − 2 we have

𝜕2𝐸
𝑝−2
1

𝜕𝑡2
− 𝜇22𝑝(𝑝 − 1)𝐸 𝑝1 +

𝜕𝐸
𝑝−2
1
𝜕𝑡

= 𝑓
𝑝−2

1 (𝑡),

𝐸
𝑝−2
1

���
𝑡=0

= 0,
𝜕𝐸

𝑝−2
1
𝜕𝑡

�����
𝑡=0

= 0.
(39)

Since 𝐸 𝑝1 (𝑡) is calculated in previous steps, we get the
solution of IVP (39) as

𝐸
𝑝−2
1 (𝑡) = 1

𝜎11

∫ 𝑡

0
𝑓
𝑝−2

1 (𝜏)
(
1 − 𝑒𝜎11 (𝜏−𝑡 )

)
+

(
𝜇22𝑝(𝑝 − 1)𝐸 𝑝1 (𝜏)

) (
1 − 𝑒𝜎11 (𝜏−𝑡 )

)
𝑑𝜏.

Thus, the values of 𝐸 𝑖1 (𝑡) (0 ≤ 𝑖 ≤ 𝑝) with decreasing 𝑖
values can be calculated with the following formula

𝐸 𝑖1 (𝑡) =
1
𝜎11

∫ 𝑡

0
𝑓 𝑖1 (𝜏)

(
1 − 𝑒𝜎11 (𝜏−𝑡 )

)
+

(
𝜇22 (𝑖 + 2) (𝑖 + 1)𝐸 𝑖+2 (𝜏)

) (
1 − 𝑒𝜎11 (𝜏−𝑡 )

)
𝑑𝜏.

The values of 𝐸 𝑖+2 (𝜏) are calculated with the previous
steps. In this way all coefficients 𝐸 𝑖1 (𝑡) of the solution
𝐸1 (𝑥, 𝑡) that is given with formula (33) can be calculated.

7. Computational examples

In this section, there are three examples. In the first
example, all the components of non homogeneous term
are in polynomial form. PS method is used to solve
the problem and the solutions obtained by using Maple
codes are checked by direct substitution to the prob-
lem. In example 2 and example 3 the components of
non homogeneous term are chosen as smooth functions.
Chebyshev polynomials are used for approximations
of these smooth functions. Each example is chosen
since we know the exact solutions of the problems with
chosen matrices 𝜀, 𝜇 and 𝜎 and inhomogeneous term.
Aim is to compare the exact solution with the solution
obtained by using Chebyshev polynomials and PS method.

Example 1: Let us consider a simple example for the IVP
given with the equations (3)-(8). Let the matrices 𝜀, 𝜇 and
𝜎 be identity matrices and let the inhomogeneous term

f(𝑥, 𝑡) = −𝜕j
𝜕𝑡

be a vector function that has the components

𝑓1 (𝑥, 𝑡) = (𝑥1 + 4𝑥4
2 + 3𝑥2

3),
𝑓2 (𝑥, 𝑡) = 𝑥2

3𝑡,

𝑓3 (𝑥, 𝑡) = (2𝑥1 + 𝑥2) (𝑡 + 2).

As we mention in Section 1, this problem can be written
in the form of two IVPs (9),(10) and (11),(12). Our aim is
to find electric and magnetic currents. Using PS method
exact solution of IVP (9),(10) can be obtained.
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The components of electric field E(𝑥, 𝑡) are

𝐸1 (𝑥, 𝑡) = 942𝑒−𝑡 − 942 + 378𝑒−𝑡 𝑡 + 564𝑡 − 141𝑡2

+ 48𝑒−𝑡 𝑡2 + 16𝑡3 + (4𝑒−𝑡 − 4 + 4𝑡)𝑥4
2

+ (3𝑒−𝑡 − 3 + 3𝑡)𝑥2
3,

𝐸2 (𝑥, 𝑡) = 7.99𝑒−𝑡 − 7.99𝑒−𝑡𝑒𝑡 + .33𝑒−𝑡 𝑡3𝑒𝑡 + 5.99𝑒−𝑡 𝑡𝑒𝑡

− 2𝑒−𝑡 𝑡2𝑒𝑡 + 2𝑒−𝑡 𝑡 + (.50𝑡2 − 𝑒−𝑡 + 1 − 𝑡)𝑥2
3,

𝐸3 (𝑥, 𝑡) = (𝑡2 + 2𝑡 + 2𝑒−𝑡 − 2)𝑥1 + (.50𝑡2 + 𝑡 + 𝑒−𝑡 − 1)𝑥2.

Using the solution of the IVP (9),(10), the solution of
the IVP (11),(12) can be obtained. The components of
magnetic filed H(𝑥, 𝑡) are

𝐻1 (𝑥, 𝑡) = −.16𝑡3 − .50𝑡2 + 𝑒−𝑡 + 𝑡 + .33𝑡3𝑥3 + 2𝑥3𝑒
−𝑡

+ 2𝑥3𝑡 − 𝑥3𝑡
2 − 2𝑥3 − 1,

𝐻2 (𝑥, 𝑡) = −2𝑡 + 6𝑥3𝑒
−𝑡 + 6𝑥3𝑡 − 3𝑥3𝑡

2 + .33𝑡3 + 𝑡2

− 2𝑒−𝑡 − 6𝑥3 + 2,

𝐻3 (𝑥, 𝑡) = 8𝑥3
2𝑡

2 − 16𝑥3
2𝑒

−𝑡 − 16𝑥3
2𝑡 − 96𝑥2𝑡

2 + 288𝑥2𝑡

+ 384𝑥2𝑒
−𝑡 + 96𝑥2𝑒

−𝑡 𝑡 + 16𝑥2𝑡
3 + 16𝑥3

2 − 384𝑥2.

By direct substitution of E(𝑥, 𝑡) and H(𝑥, 𝑡) that are
obtained using PS method into the problem given in
equations (3)-(8) the robustness of the method is checked.

Example 2: Let us consider the IVP (3)-(8) with the
matrices 𝜀, 𝜇 and 𝜎 that are identity matrices and let the

inhomogeneous term f(𝑥, 𝑡) = −𝜕j
𝜕𝑡

be a vector function
that has the components

𝑓1 (𝑥, 𝑡) = (𝑥1 + 1)10 + (𝑥2 + 3)3,

𝑓2 (𝑥, 𝑡) = 𝑥3
2 (𝑡 − 1),

𝑓3 (𝑥, 𝑡) = (5𝑥2 + 𝑥2
3)𝑡.

As we mention in Section 1 and in the example 1, this
problem can be written in the form of two IVPs (9),(10)
and (11),(12). Similarly, our aim is to find electric and
magnetic currents. Using PS method exact solution of
IVP (9),(10) can be obtained.
The components of electric field E(𝑥, 𝑡) are

𝐸1 (𝑥, 𝑡) = (𝑥1 + 1)10 (
𝑒−𝑡 + 𝑡 − 1

)
+ (𝑥2 + 3)3 (

𝑒−𝑡 + 𝑡 − 1
)

− 6(𝑡 + 3) (𝑥2 + 3)
(
𝑒−𝑡 + 𝑡 − 1

)
+ 9(𝑥2 + 3)𝑡2

𝐸2 (𝑥, 𝑡) =
(
𝑡2

2
− 2𝑡 − 2𝑒−𝑡 + 2

)
𝑥3

2

𝐸3 (𝑥, 𝑡) = (5𝑥2 + 𝑥2
3)

(
𝑡2

2
− 𝑒−𝑡 + 1 − 𝑡

)
.

Using the solution of the IVP (9),(10), the solution of
the IVP (11),(12) can be obtained. The components of

magnetic filed H(𝑥, 𝑡) are

𝐻1 (𝑥, 𝑡) = −5𝑡3

6
+ 5𝑡2

2
− 5(𝑒−𝑡 + 𝑡 − 1),

𝐻2 (𝑥, 𝑡) = 0,

𝐻3 (𝑥, 𝑡) = −
(
3𝑥2

2 + 6𝑡 + 18𝑥2 + 3
) (
𝑒−𝑡 + 𝑡 − 1

)
+

3𝑥2
2𝑡

2

2
+ 𝑡3 + 9𝑥2𝑡

2 + 3𝑡2

2
.

By direct substitution of E(𝑥, 𝑡) and H(𝑥, 𝑡) that are
obtained using PS method into the problem given in
equations (3)-(8) the robustness of the method is checked.
It is not easy to compute the solutions of such examples.
As the inhomogeneous terms order increase it becomes
much more complicated. This method enables us to deal
with these complicated problems.

Example 3: Now let us consider problem (9),(10) and
(11),(12) when 𝜀, 𝜇 and 𝜎 be identical matrices and
let the non-homogeneous term f(𝑥, 𝑡) = − 𝜕j

𝜕𝑡
be a vec-

tor function that is not polynomial. The components of
non-polynomial smooth data f = ( 𝑓1, 𝑓2, 𝑓3) are

𝑓1 (𝑥, 𝑡) = cos(𝑥1) sin(2𝑥2) sin(3𝑥3)𝛿(𝑡),
𝑓2 (𝑥, 𝑡) = sin(𝑥1) cos(2𝑥2) sin(3𝑥3)𝛿(𝑡),
𝑓3 (𝑥, 𝑡) = sin(𝑥1) sin(2𝑥2) cos(3𝑥3)𝛿(𝑡).

The exact solution of IVPs can be easily found without
using PS method. The components of the solutions are

𝐸1 (𝑥, 𝑡) =
165
385

(
1 − 𝑒−𝑡

)
cos(𝑥1) sin(2𝑥2) sin(3𝑥3)

+ 8
√

55
385

(
𝑒−

𝑡
2 sin(

√
55𝑡
2

)
)

cos(𝑥1) sin(2𝑥2) sin(3𝑥3),

𝐸2 (𝑥, 𝑡) =
330
385

(
1 − 𝑒−𝑡

)
sin(𝑥1) cos(2𝑥2) sin(3𝑥3)

+ 2
√

55
385

(
𝑒−

𝑡
2 sin(

√
55𝑡
2

)
)

sin(𝑥1) cos(2𝑥2) sin(3𝑥3),

𝐸3 (𝑥, 𝑡) = −495
385

(
𝑒−𝑡 − 1

)
sin(𝑥1) sin(2𝑥2) cos(3𝑥3)

− 4
√

55
385

(
𝑒−

𝑡
2 sin(

√
55𝑡
2

)
)

sin(𝑥1) sin(2𝑥2) cos(3𝑥3),

(40)
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and

𝐻1 (𝑥, 𝑡) = −
√

55
770

sin(𝑥1) cos(2𝑥2) cos(3𝑥3)
(
e−

𝑡
2 sin

(√
55𝑡
2

))
− 55

770
sin(𝑥1) cos(2𝑥2) cos(3𝑥3)

(
e−

𝑡
2 cos

(√
55𝑡
2

)
− 1

)
𝐻2 (𝑥, 𝑡) =

√
55

385
cos(𝑥1) sin(2𝑥2) cos(3𝑥3)

(
e−

𝑡
2 sin

(√
55𝑡
2

))
+ 55

385
cos(𝑥1) sin(2𝑥2) cos(3𝑥3)

(
e−

𝑡
2 cos

(√
55𝑡
2

)
− 1

)
𝐻3 (𝑥, 𝑡) = −

√
55

770
cos(𝑥1) cos(2𝑥2) sin(3𝑥3)

(
e−

𝑡
2 sin

(√
55𝑡
2

))
− 55

770
cos(𝑥1) cos(2𝑥2) sin(3𝑥3)

(
e−

𝑡
2 cos

(√
55𝑡
2

)
− 1

)
.

(41)

Using PS method we obtain polynomial form of the solu-
tion of the IVPs (9),(10) and (11),(12) and these solutions
are compared by the solutions given in (40),(41) at the
same fixed points and the results of the comparison of
𝐸1 (𝑥, 𝑡) are presented in the table given below. The results
obtained by the PS method are in good agreement with
the exact solution.

Table 1: Values of 𝐸1 and 𝐸𝑁1 for 𝑁 = 24

𝑡 𝑥1 𝑥2 𝑥3 Error

7/5 1 1 1 0.1 ∗ 10−10

1 2 1 2 0.3 ∗ 10−10

2 5 2 2 0.2 ∗ 10−10

14/10 0 2 3 0.1 ∗ 10−9

2 4 4 4 0.3 ∗ 10−9

2 5 5 5 0.2 ∗ 10−9

Using the method in Section 3, a polynomial solution
E𝑁 = (𝐸𝑁1 , 𝐸

𝑁
2 , 𝐸

𝑁
3 ) of the IVP (9), (10) is calculated.

The graph of the comparison for the first component of
the approximate function that is 𝐸𝑁1 (𝑥, 𝑡) and the the first
component of the explicit formula 𝐸1 (𝑥, 𝑡) are presented
below.

1
Figure 1: The graphs of the first component of the electric
field E(𝑥, 𝑡) computed by PS method and the explicit
formula when 𝑥2 = 2, 𝑥3 = 1, 𝑡 = 1.

8. Conclusion

Symbolic computations for constructing polynomial solu-
tions for initial value problem of radiation from the electric
current in electrically and magnetically anisotropic media
is used for the case when 𝜀, 𝜇 are arbitrary positive defi-
nite matrices and 𝜎 is a symmetric matrix with constant
elements. Stability estimates (energy inequalities) for so-
lutions of the system in a finite domain of dependence (a
finite domain containing characteristic cones) is described.
Using these stability estimates we justify that polynomial
solutions are approximate solutions of the initial value
problems with non-polynomial data. These theoretical re-
sults are confirmed by computational experiments which
compares the exact solutions with polynomial solutions
found by using polynomial solution method.
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