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Çoklu Yansıma Ortamlarında Geniş Menzilli Hedeflerin Uyarlanabilir Radar Tespiti 

Harun Taha HAYVACI 

Öne Çıkanlar: 

• Karmaşık ve çoklu 

yansımaların 

bulunduğu ortamlarda 

geniş hedefler için 

sağlam ve güvenilir 

radar tespit algoritması  

• Kontrol gözetim, 

güvenlik ve uzaktan 

algılama uygulamaları 

 

Anahtar Kelimeler: 

• Adaptif Radar Tespiti 

• Çoklu Yol Kullanımı 

• Geniş Menzilli 

Hedefler 

• Kısıtlı Optimizasyon 

• Genelleştirilmiş 

Olasılık Oranı Testi 

(GLRT)  

 

ÖZET:  

Bu makalede, Gauss gürültüsü altında gömülü geniş menzilli radar hedeflerinin uyumlu algılama problemi, 

dağınık çoklu yol ortamı varsayımı altında ele alınmıştır.  Her aralık hücresinden hedef yankısı, doğrudan 

yol bileşenini hesaba katan bilinmeyen bir ölçek faktörüyle belirlenen belirli bir veri vektörü ve bir parlak 

yüzeyin çoklu yankılarını temsil eden bilinmeyen bir kovaryans matrisiyle Gaussian dağılımlı rastgele veri 

vektörünün toplamı olarak modellemiştir. Tasarım aşamasında, her birincil veri kovaryans matrisi, ikincil 

veri seti ile elde edilen örnek bir kovaryans matrisi çevresinde yer aldığı varsayılır. Adaptif tespit problemi 

için bir kısıttlı Genelleştirilmiş Olasılık Oranı Testi (GLRT) ele alınmıştır. Geliştirilen algoritmanın, 

literatürdeki iyi bilinen adaptif dedektörlerle performans analizi yapılmıştır. Sunulan sonuçlar ve 

performans analizi, önerilen yaklaşımın yayılmış çoklu yol varlığı olan ortamlarda geniş menzilli radar 

hedeflerinin tespit performansını artırdığını vurgulamaktadır. 
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ABSTRACT:  

This paper discusses the adaptive detection of extended radar targets buried in Gaussian clutter, assuming 

a diffuse multipath environment. The target return signal from each range cell is modeled as the sum of a 

deterministic data vector, which includes an unknown scaling factor representing the direct path component, 

and a randomly distributed data vector in a Gaussian distribution with unknown covariance matrix 

representing multipath echoes. During the design phase, it is assumed that the primary data covariance 

matrix falls within the vicinity of a sample covariance matrix that is devised from the secondary data set. 

The paper proposes a constraint Generalized Likelihood Ratio Test (GLRT) for the adaptive detection 

problem of extended radar targets in diffuse multipath environments, and conducts a performance analysis 

comparing the developed algorithm with well-known adaptive detectors in the literature. The results and 

performance analysis demonstrate that the proposed approach enhances the detection performance of 

extended radar targets in environments with diffuse multipath. Overall, this article provides valuable 

insights for improving the adaptive detection of extended targets in challenging environments, with 

potential applications in radar and sensing technologies. 
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INTRODUCTION 

Radar systems are commonly used for remote sensing and detection of targets in various 

environments. However, in cluttered and multipath environments, the performance of radar detection 

algorithms can be significantly degraded due to interference and scattering from surrounding objects 

(Pamela et al, 1995; Richards et al, 2010; Fertig et al, 2012). In particular, detecting extended targets, 

such as vehicles or buildings, in diffuse multipath environments remains a challenging problem (Gerlach 

et al, 1999). To address this issue, adaptive radar detection algorithms have been developed to mitigate 

the effects of multipath interference and clutter (Fante et al, 1991; Fante et al, 1995). These algorithms 

employ adaptive signal processing techniques to estimate the interference statistics and adaptively 

suppress them, while preserving the target signals of interest. Adaptive detectors, which are proposed to 

detect extended (range spread) radar targets embedded in Gaussian clutter, experience performance 

degradation for several reasons (Aubry et al, 2016; Tang et al, 2017). Modern High-Resolution Radars 

(HRR’s) may have range resolutions, which are smaller than the target to be identified, thus 

backscattered signals from the target can be received through not just one but more than one isolated 

point, which are considered as range cells (Bachman, 1965). Therefore, various techniques have been 

developed for adaptively detecting extended radar targets during the last decades.  

Many studies in literature considering adaptive detectors for distributed targets have modeled 

target returns as known signals with unknown scaling factors (Conte et al, 2001; Conte at al, 2001; Aubry 

et al, 2013). It can be regarded as convenient when the target echoes consist only of a line-of-sight signal 

return. However, the received signals often contain multipath echoes along with line-of-sight echo, 

which distort the direct path returns and cause steering vector mismatch between the actual and nominal 

one (Hayvaci et al, 2013, Kumbul et al, 2019, Yilmaz et al, 2021). In this content, adaptive subspace 

detectors for both point-like and extended targets are devised to overcome steering vector mismatch 

related challenges by exploiting prior knowledge about the environment (Kraut et al, 2001; Bandiera et 

all, 2007). Though, it is not always easy or practical to predict target subspace particularly in glistening 

surfaces such as sea surface, which causes diffuse multipath (Fante et al, 1991). In such scenarios, the 

backscattered target echoes are reached to the radar receiver through many propagation paths. It is 

exceedingly difficult to predict the signal parameters of multipath components, such as direction of 

arrival, due to unpredictable dynamic behavior of the scene. A novel adaptive detection algorithm is 

developed for point-like targets, which models the multipath echoes via random variables with an 

unknown covariance matrix to tackle these challenges. The devised detector, referred to as T-AMF 

(Tunable-Adaptive Matched Filter), considers the radar signal return as the sum of direct and multipath 

returns from the target. The signal return is assumed to be buried in Gaussian noise with unknown 

covariance matrix (Aubry et al, 2015). 

In this article, the author presents a novel adaptive radar detection algorithm for extended targets 

in diffuse multipath environments where geometry of the problem is depicted in Figure 1. The algorithm 

is based on a constrained Generalized Likelihood Ratio Test that models the target and interference 

signals using a joint probability density function. The author investigates the detection of radar signal 

returns from extended targets, which are buried in Gaussian clutter under the assumption of a radar-

target environment with diffuse multipath. The target echo from each range cell is modeled as the sum 

of a deterministic data, which is direct path component, and a zero-mean complex Gaussian distributed 

random vector, which is diffuse multipath component, as in (Aubry et al, 2015). A suitable disturbance 

model involving the characteristics of multipath environment is critical for robust adaptive detection. 

Author designs Generalized Likelihood Ratio Test with the assumption of each data coming from 
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different range cell has a covariance matrix, which is in the restrained vicinity of the sample covariance 

matrix that is devised from the secondary data set. Thus, the author devises a set of constrained 

optimization problems with Maximum Likelihood (ML) estimate of the primary data covariance 

matrices by exploiting knowledge about the environment. The author derives the optimal detection 

criterion based on this model and proposes an efficient algorithm for its implementation. The 

performance of the proposed algorithm is evaluated using simulated data through Monte Carlo 

simulations, demonstrating its effectiveness in detecting extended targets in challenging environments. 

 
Figure 1. Geometry of the problem 

Overall, this work contributes to the development of robust and reliable radar detection algorithms 

for extended targets in cluttered and multipath environments. The proposed algorithm has potential 

applications in various fields, including surveillance, security, and remote sensing. 

The organization of the paper is as follows. In Problem Formulation section, the author describes 

the hypothesis-testing problem, and defines the parameters of target echo and disturbance model. In 

Detector Design section, the author devises the proposed detector to enhance detection of extended radar 

targets in diffuse multipath environments. In Performance Assessment section, the author presents the 

performance analysis and evaluation of the proposed detector along with well-known adaptive detectors, 

namely extended version of Kelly’s receiver and Adaptive Matched Filter (AMF). Finally, the author 

addresses the concluding remarks in Conclusions. 

MATERIALS AND METHODS  

In this study, the author employs certain mathematical notation to denote vectors, matrices, and 

operations. Vectors are represented with boldface lowercase letters, such as 𝒂, while boldface uppercase 

letters, such as 𝑨, denotes matrices. The notation ( )† represents the conjugate transpose, and 𝑑𝑒𝑡( ) 

denotes the determinant of a square matrix argument. The symbol 𝑰 represents the identity matrix, with 

its size determined by the context. The author uses 𝐶𝑁, 𝐶𝑁,𝐾, and 𝐻𝑁 respectively to represent the sets 

of 𝑁-dimensional vectors of complex numbers, 𝑁 × 𝐾 matrices of complex numbers, and 𝑁 × 𝑁 

Hermitian matrices. The notation 𝜆(𝑋)  =  [𝜆1(𝑋), 𝜆2(𝑋), . . . , 𝜆𝑁(𝑋)]
𝑇 is used to represent the vector of 

eigenvalues of a Hermitian matrix 𝑋 ∈ 𝐻𝑁, arranged in descending order, with 𝜆𝑖(𝑋) representing the 𝑖-

th ordered eigenvalue. The symbol ⪰ (and its strict form ≻) is used to denote generalized matrix 

inequality. For any 𝑨 ∈ 𝐻𝑁, 𝑨 ⪰ 0 denotes that 𝑨 is a positive semi-definite matrix (with 𝑨 ≻ 0 

representing positive definiteness). The author uses ∥ 𝒙 ∥ to represent the Euclidean norm of 𝒙. For any 

complex number 𝑥, |𝑥| represents the modulus of 𝑥. The symbol ∥ 𝐴 ∥2 denotes the spectral norm of the 

matrix 𝑨 ∈ 𝐶𝑁,𝑀. Finally, the notation 𝐸 [·] is used to denote statistical expectation. 
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Problem Formulation 

The author explores a set of radar sensors that gather data from N channels. These channels can 

be temporal, spatial, or a combination of the two (spatial-temporal). The author tackles the problem of 

detecting radar return signals from an extended radar target across 𝐻 range cells. The primary data set, 

in other words data under test, is assumed to be a set of 𝑁-dimensional vectors of complex numbers, 

denoted by 𝒓𝑡  ∈ 𝐶
𝑁. The secondary data, denoted by 𝒓𝑙, 𝑙 =  1, . . . , 𝐾 (𝐾 ≥  𝑁), consists of vectors 

that are free of signal of interest. All data are obtained at the radar receiver. The radar receiver is 

operating in a diffuse multipath environment, which is caused by a glistening surface (Yilmaz et al, 

2021). Thus, the detection problem is depicted as a binary hypothesis testing problem, where the goal is 

to determine whether a signal of interest is present or not. The relevant binary hypothesis testing problem 

is depicted as the following. 

{
𝐻0: {

𝒓𝑡 = 𝒏𝑡, 𝑡 = 1,… ,𝐻                
𝒓𝑙 = 𝒏𝑙, 𝑙 = 1,… , 𝐾                

𝐻1: {
𝒓𝑡 = 𝛼𝑡 𝒑 + 𝒔𝑡 + 𝒏𝑡   𝑡 = 1,… ,𝐻
𝒓𝑙 = 𝒏𝑙   𝑙 = 1,… , 𝐾                        

                                 
                                                       

(1) 

where 

• 𝒑 ∈ 𝐶𝑁 , ∥ 𝒑 ∥2= 1, The target steering vector is denoted by  the target steering 𝒑 ∈ 𝐶𝑁, where 

𝒑 has a Euclidean norm of 1, ∥ 𝒑 ∥2= 1. This target’s steering vector takes into account  the 

line of sight component, which represents the direct path between the transmitter and the target. 

• The parameter 𝛼𝑡  ∈  𝐶 is a deterministic quantity that encompasses the target reflectivity as 

well as the channel propagation effects for the line of sight component associated with each 

range cell. 

• The author uses the notations 𝒏𝑡 ∈  𝐶
𝑁, 𝑡 = 1,… ,𝐻, and 𝒏𝑙 ∈ 𝐶

𝑁, 𝑙 = 1,… , 𝐾, to represent 

the clutter interference and noise contributions for each range cell and the secondary data set, 

respectively. It is assumed that all 𝒏𝑡 and 𝒏𝑙 are independent and identically distributed (iid) 

complex normal random vectors, with a mean of zero and a positive definite covariance matrix 

𝑴 ≻ 𝟎. 

𝐸[𝒏𝑡𝒏𝑡
†] = 𝐸[𝒏𝑙𝒏𝒍

†] = 𝑴,      𝑡 = 1,… ,𝐻;    𝑙 = 1,… , 𝐾; 

• The data vector, 𝒔𝑡, with = 1,… ,𝐻, represents the diffuse multipath phenomena for each range 

cell in an extended target scenario (Fante et al, 1991). In the current context, the signal of interest 

radiating from the target is received through many diverse propagation paths over a glistening 

surface. The data vector, therefore, models the sum of echoes from multiple spatially distributed 

reflectors. In this study, we assume that the data vector, 𝒔𝑡, follows a complex, zero-mean, 

circularly symmetric Gaussian process with a covariance matrix, 𝚺𝑡, which is unknown. This 

assumption is based on the Central Limit Theorem. 

In the current context, the covariance matrix of the primary data is a key factor in testing the 𝐻1 

and 𝐻0 hypotheses. Under the 𝐻1 hypothesis, the covariance matrix is denoted as 𝑴𝑡 = 𝑴+ 𝚺𝑡, where 

𝑡 =  1, . . . , 𝐻. In contrast, under the 𝐻0 hypothesis, the covariance matrix is 𝑴𝑡 = 𝑴, without any 

additional terms. Additionally, the term 𝒔𝑡 in this formulation is included to account for potential 

mismatches that may arise due to propagation effects in the environment. 

In order to compare and assess performance, the author examines the widely-known Kelly's 

receiver and AMF among the available adaptive detection strategies, as given in (Kelly, 1986; Robey et 

al, 1992). However, in this study author use the extended target version of these receivers. Kelly's 

receiver is presented. The extended target version of Kelly's receiver is presented below. 
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𝑡𝐾𝑒𝑙𝑙𝑦 =∑
|𝒑† 𝑺−1𝒓𝑡|

2

(𝒑† 𝑺−1𝒑)∑ 𝒓𝑡
†𝑺−1𝒓𝑡

𝐻
𝑡=1

𝐻

𝑡=1

𝐻1
≷
𝐻0

𝜂1, 
 (2) 

and the extended target version of AMF is given as, 

 

 

 

Detector Design 

 The author introduces a new adaptive detector, named extended T-AMF, by developing a 

constrained generalized likelihood ratio test (GLRT) in this section. The hypothesis testing that leads to 

the constrained GLRT is outlined below. 

𝑓1,𝐻[𝛼1,…,𝛼𝐻∈𝐶,𝑴1,…,𝑴𝐻∈Ω𝑡
𝜖]

𝑚𝑎𝑥                       

𝑓0,𝐻𝑴=𝑺
𝑚𝑎𝑥  

𝐻1
≷
𝐻2

𝜂3 (4) 

where 𝑓1,𝐻 and  𝑓0,𝐻 are defined as 

𝑓1,𝐻 = 𝑓1(𝒓1, … , 𝒓𝐻; 𝛼1, … , 𝛼𝐻 ,𝑴1, … ,𝑴𝐻)

=  
1

∏ det (𝜋𝑴𝑡)
𝐻
𝑡=1

𝑒−∑ (𝒓𝑡−𝛼𝑡𝒑)
†𝑴𝑡

−1(𝒓𝑡−𝛼𝑡𝒑)
𝐻
𝑡=1  

(5) 

and  

𝑓0,𝐻 = 𝑓0(𝒓1, … , 𝒓𝐻;  𝑴) =  
1

∏ det (𝜋𝑴)𝐻
𝑡=1

𝑒−∑ 𝒓𝑡
†
𝑴
−1
𝒓𝑡

𝐻
𝑡=1        (6) 

respectively. In addition, the constrained set for 𝑴𝑡 is defined as 

Ω𝑡
𝜖 = {𝑴𝑡 ≻ 𝟎: ‖𝑺

1
2𝑴𝑡

−1𝑺
1
2 − 𝑰‖

2
≤ 𝜖𝑡}   𝜖𝑡 ≥ 0, 𝑡 = 1,… , 𝐻        (7) 

The signal detection threshold, denoted as 𝜂3, is determined with respect to the desired 

probability of false alarm rate 𝑃𝑓𝑎. In equation (7), a collection of positive-definite matrices 𝑴𝑡 ≻ 𝟎 is 

defined such that 𝑺1/2𝑴𝑡
−1𝑺1/2 is 𝜖𝑡-similar to the identity matrix 𝑰, following the method described in 

(Aubry et al, 2015). In other words, the suitable neighborhood of 𝑺 for locating 𝑴𝑡 is defined as Ω𝑡
𝜖, 

with 𝜖 representing a parameter that controls the size of uncertainty region of the covariance matrix. 

Higher values of 𝜖 are recommended for environments with strong reflection contributions, while lower 

values of 𝜖 are more suitable for weak multipath returns.  

In order to derive the extended T-AMF equation (4), the following substitution is required as a 

preliminary step. 

𝑿𝑡 = 𝑺
1
2𝑴𝑡

−1𝑺
1
2, 𝑡 = 1, … , 𝐻 

 

Therefore, equation (4) can be reformulated as follows: 

𝑡𝐴𝑀𝐹 =∑
|𝒑† 𝑺−1𝒓𝑡|

2

𝒑† 𝑺−1𝒑

𝐻

𝑡=1

𝐻1
≷
𝐻0

𝜂2.                              (3) 
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𝑚𝑎𝑥
�̅�𝑡∈C,𝑿𝑡∈Ω1

𝜖𝑡
 (∏  

𝐻

𝑡=1

det (𝑿𝑡))𝑒
−∑  𝐻

𝑡=1 𝑓�̅�(�̅�𝑡,𝑿𝑡;�̅�𝑡)
𝐻1
≷
𝐻0

𝜂4  (8) 

where 𝑓�̅�(�̅�𝑡, 𝑿𝑡; �̅�𝑡) and �̅�𝑡 are defined respectively as 

𝑓�̅�(�̅�𝑡, 𝑿𝑡; �̅�𝑡) = (�̅�𝑡 − �̅�𝑡�̅�)
†𝑿𝑡(�̅�𝑡 − �̅�𝑡�̅�) − ∥∥�̅�𝑡∥∥

2

Ω1
𝜖𝑡 = {𝑿𝑡 ≻ 𝟎: ∥∥𝑿𝑡 − 𝑰∥∥2 ≤ 𝜖𝑡},

 

and  

�̅�𝑡 = 𝑺−1/2𝒓𝑡,  �̅� =
𝑺−1/2𝒑

∥∥𝑺−1/2𝒑∥∥
,  �̅�𝑡 = 𝛼𝑡∥∥𝑺

−1/2𝒑∥∥ 

where 𝑡 = 1,… ,𝐻. 

Once one takes the logarithm of (8), the original decision test depicted (4) can be formulated as 

𝑡T-AMFI (𝜖) = 𝑚𝑎𝑥
�̅�𝑡∈ℂ𝑿𝑡∈Ω1

𝜖𝑡
 𝑨

𝐻1
≷
𝐻0

𝜂 (9) 

where 

𝑨 =∑  

𝐻

𝑡=1

(log det (𝑿𝑡) − 𝑓�̅�(�̅�𝑡, 𝑿𝑡; �̅�𝑡)) 

with 𝜂 the modification of 𝜂4 in (9). Later, one can observe that it is to maximize 

[∑𝑡=1
𝐻   (log det (𝑿𝑡) − (�̅�𝑡 − �̅�𝑡�̅�)

†𝑿𝑡(�̅�𝑡 − �̅�𝑡�̅�))] with respect to �̅�1, … �̅�𝐻 ∈ ℂ, and 𝑿1, … , 𝑿𝐻 ∈

Ω1
𝜖𝑡 , (∥∥�̅�𝑡∥∥

2
 are constant values). Constraint and objective functions are separable functions of 𝑿𝑡, thus 

one can obtain the optimal solution by solving the optimization problem as the following.  

𝒫𝒚𝑡
𝒚𝑡 {
max
𝑿𝑡
 log det (𝑿𝑡) − 𝒚𝑡

†𝑿𝑡𝒚𝑡

 s.t. 𝑿𝑡 ∈ Ω1
𝜖𝑡

,  𝑡 = 1,… ,𝐻 (10) 

where 𝒚𝑡 ∈ ℂ
𝑁 is an 𝑁-dimensional complex vector and it stands for (�̅�𝑡 − 𝛼‾𝑡�̅�). 

Thus, based on Proposition III.1 in (Aubry et al, 2015), the decision test denoted as 𝑡 T-AMF (𝜖) in 

equation (10) can be expressed as following: 

𝑡T-AMF (𝜖) =∑  

𝐻

𝑡=1

𝑓𝜖𝑡(𝛾𝑡) +∑  

𝐻

𝑡=1

𝛾𝑡
𝑜 ≷
𝐻1

𝐻0

𝜂 (11) 

where 

𝑓𝜖𝑡(𝛾𝑡) = log (𝜆𝑡
⋆) − 𝜆𝑡

⋆𝛾𝑡 + (𝑁 − 1)log (1 + 𝜖𝑡), 

and  𝛾𝑡
𝑜 = ∥∥�̅�𝑡∥∥

2
 and 𝛾𝑡 = ∥∥�̅�𝑡∥∥

2 − |�̅�†�̅�𝑡|
2
. 

In this context, every 𝜆𝑡
⋆, where 𝑡 = 1,… ,𝐻, represents a distinct and optimal solution to a strictly 

concave optimization problem stated as follows: 

𝒫𝛾𝑡 {
max
𝜆𝑡
 log (𝜆𝑡) − 𝜆𝑡𝛾𝑡

 s.t. ∥∥𝜆𝑡 − 1∥∥ ≤ 𝜖𝑡𝜆𝑡 ≥ 0
 ,  𝑡 = 1,… ,𝐻 (12) 

Thus, the optimal solution for each optimization problem 𝒫𝛾𝑡 is obtained through 
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1) 0 ≤ 𝜖 < 1. 

𝜆𝑡
⋆ =

{
  
 

  
 1 + 𝜖𝑡  if  𝛾𝑡 ≤

1

1 + 𝜖𝑡
1

𝛾𝑡
 if  

1

1 + 𝜖𝑡
< 𝛾𝑡 ≤

1

1 − 𝜖𝑡

1 − 𝜖𝑡  if  𝛾𝑡 >
1

1 − 𝜖𝑡

 

2) ϵ ≥ 1. 

𝜆𝑡
⋆ =

{
 

 1 + 𝜖𝑡  if 𝛾𝑡 ≤
1

1 + 𝜖𝑡
1

𝛾𝑡
 if 𝛾𝑡 >

1

1 + 𝜖𝑡

 

(13) 

Finally, the algorithm for computing decision statistics of the devised T-AMF for the extended target 

model is given as the following. 

 

RESULTS AND DISCUSSION  

In this section, the author evaluates the performance of a detector that has been developed by 

measuring its probability of detection 𝑃𝑑 at a predetermined false alarm rate 𝑃𝑓𝑎. To compare the 

performance of the developed detector with existing ones, extended versions of Kelly's receiver and the 

AMF, as shown in equations (2) and (3), respectively, are also evaluated. 

Conventional Monte Carlo simulation methods are utilized to obtain the performance metrics. 

The false alarm rate 𝑃𝑓𝑎 is set to a nominal value of 10−4 to facilitate the computational process. To 

ensure that the assigned false alarm rate is achieved, the threshold value is determined through 100/𝑃𝑓𝑎 
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independent trials. Furthermore, each value of 𝑃𝑑 is estimated through 104 independent realizations of 

the decision statistics. The performance analysis simulations are carried out for 𝑁 = 16 space channels, 

𝐾 = 32 secondary data, and 𝐻 = 10 range cells. 

In order to simulate the multipath environment, the author assumes 𝑁𝑀𝐿 = 4 mainlobe and 𝑁𝑆𝐿 =

4 sidelobe scatterers from glistening surface points for each range cell. The directions of arrival for both 

main lobe and side lobe scatterers are modeled as uniformly distributed independent random variables 

within the ranges of [−2, 2] and [8.5, 11.5] degrees, respectively. The complex amplitudes of the 

reflected multipaths, denoted as 𝛼𝑖 for 𝑖 =  1, . . . , 𝑁𝑀𝐿 + 𝑁𝑆𝐿, are modeled as dependent on the useful 

signal power with a factor of path loss L associated with multipath.  

𝛼𝑖 = 𝛼
𝑥𝑖

√𝐿
,       𝑖 = 1,… ,𝑁𝑀𝐿 + 𝑁𝑆𝐿  (16) 

In this context, the random variable 𝑥𝑖 is an independent, circularly symmetric complex normal 

distribution with zero mean and a unit variance. The factor 𝐿, which is associated with the multipath, 

represents the path loss and is measured in decibels. In summary, the formulation of the primary data 

covariance matrix can be expressed as follows. 

𝑴𝑡 =  𝜎𝑐
2𝑴+ 𝜎𝑛

2𝑰 + 𝜮𝑡(𝛼𝑡, 𝐿), (17) 

where 𝑡 = 1, . . . , 𝐻 and the entry located at row n and column m of 𝑴 is (Barbarossa et al, 1994)  

                                                      𝑴(𝑛,𝑚) =  𝑒−(𝑛−𝑚)
2/(2𝜎𝑑

2)                                                                              (18) 

Here, the parameters 𝜎𝑑 = 0.995, 𝜎𝑛
2 > 0, and 𝜎𝑐

2 > 0  are defined as follows: 𝜎𝑑 represents the one-

lag correlation coefficient, 𝜎𝑛
2 denotes the thermal noise power, and 𝜎𝑐

2 is the clutter power. Moreover, 

the covariance matrix is defined as the following. 

𝛴𝑡(𝛼𝑡, 𝐿) = ∑
|𝛼𝑖|

2

𝐿

𝑁𝑀𝐿+𝑁𝑆𝐿

𝑖=1

𝑣(𝜃𝑖)𝑣(𝜃𝑖)
† (19) 

where 𝜃𝑖, for 𝑖 =  1, . . . , 𝑁𝑀𝐿 + 𝑁𝑆𝐿, are the angles of arrival from the glistening surface, and they are 

defined as the following. 

𝑣(𝜃_𝑖)  =  
1

√𝑁
[1, 𝑒𝑗2𝜋

𝑑
𝜆
𝑠𝑖𝑛(𝜃𝑖), … , 𝑒𝑗2𝜋

(𝑁−1)
𝑑
𝜆
𝑠𝑖𝑛(𝜃𝑖)]

𝑇

 (20) 

It is important to underscore that when considering the 𝐻0 hypothesis, where 𝛼𝑖 = 0 for 𝑖 =

1, 2, … ,𝑁𝑀𝐿 + 𝑁𝑆𝐿, the multipath returns as described in (19) are absent. In addition, the Signal-to-

Interference-Plus-Noise Ratio (SINR) can be defined as follows.  

JSINR = |𝛼|2𝒑†𝑴−1𝒑 (21) 

Figure 1 depicts a scenario where there is an absence of multipath, and it showcases the 

probability of detection plot, 𝑃𝑑 versus the Signal-to-Interference-Plus-Noise Ratio (SINR), where the 

loss parameter 𝐿 equals 40 𝑑𝐵, and the parameter 𝜖 is equal to 0. The results from the figure validate 

the effectiveness and accuracy of the devised detector, as it matches the performance of the AMF in the 
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absence of multipath and when 𝜖 is equal to 0. This verification is essential in establishing the reliability 

of the devised detector.   

 

Figure 1. 𝑃𝑑  versus SINR for the extended T-AMF, the extended AMF and the extended version of Kelly’s receiver; 𝑁 =

16, 𝐾 = 32, 𝐻 = 10, 𝑃𝑓𝑎 = 10−2, 𝜖 = 0, and 𝐿 = 40 𝑑𝐵. 

In Figure 2, the absence of multipath is assumed, and the probability of detection plot, 𝑃𝑑 versus 

the Signal-to-Interference-Plus-Noise Ratio (SINR), is presented for a loss parameter 𝐿 equal to 40 𝑑𝐵, 

while the parameter 𝜖 is equal to 0.75. The results from the figure indicate that when the value of 𝜖 is 

high, such as 0.75, the detection performance of the extended T-AMF is inferior to that of the AMF and 

Kelly’s GLRT. This outcome is not unexpected since the sample data covariance matrix 𝑴 is expected 

to be similar to the actual primary data covariance matrix 𝑺 when there is no multipath (i.e., 𝑴 ≃ 𝑺). 

Higher values of ϵ imply a higher probability of mismatch between the sample data covariance matrix 

and the actual primary data covariance matrix, which leads to inferior detection performance.  

 

Figure 2. 𝑃𝑑 versus SINR for the extended T-AMF, the extended AMF and the extended version of Kelly’s receiver; 𝑁 =

16, 𝐾 = 32, 𝐻 = 10, 𝑃𝑓𝑎 = 10−2, 𝜖 = 0.75, and 𝐿 = 40 𝑑𝐵. 
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Figure 3 explores a scenario where there is a significant multipath effect, with a loss parameter 

𝐿 of 20 𝑑𝐵. In this scenario, Kelly's GLRT experiences severe performance degradation due to its strong 

selectivity. On the other hand, the AMF exhibits better detection performance in a multipath environment 

than Kelly's receiver, but it still has a notable performance loss compared to the extended T-AMF. For 

this particular scenario, the parameter 𝜖 is chosen as 0.75, allowing the extended T-AMF to exploit the 

multipath environment and achieve better performance.  

 

Figure 3. 𝑃𝑑 versus SINR for the extended T-AMF, the extended AMF and the extended version of Kelly’s receiver; 𝑁 =

16, 𝐾 = 32, 𝐻 = 10, 𝑃𝑓𝑎 = 10−2, 𝜖 = 0.75, and 𝐿 = 20 𝑑𝐵. 

CONCLUSION 

The paper discusses the adaptive detection of extended targets in a clutter rich environment with 

diffuse multipath. The author models the target return signal from each range cell as a combination of a 

deterministic signal and a Gaussian-distributed random vector, with the deterministic data vector 

representing the direct path component and the random data vector representing multipath echoes. For 

the respective hypothesis testing, the author implements a constraint GLRT in Section II, assuming that 

the primary data covariance matrix of each range bin is within a certain vicinity of a sample covariance 

matrix that is devised from the secondary data set. The similarity between primary covariance and 

sample covariance matrix of the secondary data is set by an adjustable parameter, which depends on the 

power of multipath components. Thus, the mismatch between the sample data covariance matrix and the 

actual primary data covariance matrix is adjustable. The performance analysis demonstrates that the 

devised extended T-AMF performs better than the extended versions of conventional adaptive receivers 

in diffuse multipath environments. 
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