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 Abstract 
Article Info Updating soil information systems (SIS) requires advanced technologies to support 

the time and cost-effective and environment-friendly soil data. The use of mid- 
infrared (MIR) Spectroscopy as alternative to wet chemistry has been tested. The 
MIR spectral library is a useful technique for predicting soil attributes with high 
accuracy, efficiency, and low cost. The Hungarian MIR spectral library contained data 
on 2200 soil samples from 10 counties representing the first Soil Information and 
Mentoring System (SIMS) survey. Archived soil samples were prepared and scanned 
based on Diffuse Reflectance Infrared spectroscopy (DRIFT) technique and spectra 
data were saved in the fourier transform infrared (FTIR) spectrometer OPUS 
software. Preprocessed filtering methods, outlier detection methods and calibration 
sample selection methods were applied for spectral library. MIR calibration models 
were built for soil attributes using Partial Least Square Regression (PLSR) method. 
Coefficient determination (R2), The Root Mean Squared Error (RMSE) and Ratio of 
Performance to Deviation (RPD) were used to assess the goodness of calibration and 
validation models. MIR spectral library had the ability to significantly estimate soil 
properties such as SOC, CaCO3, sand, clay and silt through various scale models 
(national, county and soil type). The findings showed that our spectral library soil 
estimations are precise enough to provide information on national, county and soil 
type levels enabling a wide range of soil applications that demand huge amounts of 
data such as soil survey, precision agriculture and digital soil mapping. 
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Introduction 
Soil is a finite natural resource with diverse environmental functions: storing nutrients, and organic carbon, 
functioning as buffer and filter, biodiversity conservation, cultural and living space for humans. It is crucial for 
ensuring food security and coping with climate change (Grunwald et al., 2011). Soil quality and its fertility are 
deemed vital for soil scientists, decision-makers, farmers, etc. Furthermore, soils cultivated with crops and 
forests has gained scientific, social, and political attention. Thus, it is critical to recognize, monitor, and store 
soil physical and chemical attributes using innovative approaches. Demands of soil-related information have 
risen substantially (Pásztor et al., 2015), and there is ample evidence that soil information systems are 
required to satisfy the growing need for soil data (Bullock and Montanarella, 1987). Globally and continentally, 
the properly organized soil information databases represent a comprehensive scientific basis of the various 
plans of action for sustainable land use and soil management. A significant quantity of soil data has been 
accumulated during long-term activities of land observations and soil surveys in Hungary and arranged in 
different spatial soil information systems. For instance, the Hungarian Soil Information Conservation and 
Monitoring System (SIMS) is an independent soil subsystem, consists of integrating environmental data and a 
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monitoring database. Soil information systems must rely on accurate, reliable, good quality and updated soil 
information. Updating soil information systems has to include alternative laboratory technologies to support 
the time, cost-effective and environment-friendliness of soil data analysis. Many new soil analysis techniques 
have recently been developed, in particular, diffuse reflectance spectroscopy. Although soil wet chemistry 
techniques are widely regarded as accurate methods for characterizing soil attributes, they sometimes have 
been viewed as impractical due to their, time-consuming, and occasional imprecision (Demattê et al., 2019). 
When numerous measurements are required for soil taxonomy and mapping, wet chemistry frequently 
necessitates a large amount of sample preparation and sophisticated apparatus, which is usually insufficient 
(Viscarra Rossel et al., 2016). Also, traditional wet chemistry has disadvantages such as physical damage to 
the soil system's nature (Waruru et al., 2014) and generation of toxic wastes (environmentally harmful) that 
must be disposed off properly (Sila et al., 2017).  
Soil infrared techniques are promising and have demonstrated several advantages over wet chemistry 
methods, making it more extensively used in the soil research community, notably in soil analysis. It permits 
rapid acquiring of soil data and attributes prediction (Seybold et al., 2019),  e.g., soil samples preparation and 
spectral scanning carry out within a few minutes, allowing for a high throughput of samples per day. This 
approach is cheap, utilized tiny subsamples and have the advantage that a single spectrum of soil sample 
integrates many attributes with highly precise (Raphael, 2011; Waruru et al., 2015). Besides, the prior 
mentioned advantages, these methods do not require the use of chemical extracts that might harm the 
environment (Viscarra Rossel et al., 2006), allowing for the scanning diverse of soil types without samples 
dilution (Siebielec et al., 2004). The IR spectroscopy is a repeatable and reproducible analytical approach for 
predicting soil properties (Soriano-Disla et al., 2014). Fundamentally, soil infrared spectroscopy relies on the 
interplay of electromagnetic energy with matter to characterize samples' physical and biochemical 
composition. The given soil spectrum represents a unique fingerprint of a specific compound in the tested 
system (Tinti et al., 2015). The electromagnetic spectrum of infrared radiation ranges from 0.7 µm to 1 mm 
that contains: near-infrared (0.70 - 2.5 µm), mid-infrared (2.5 - 25 µm) and far-infrared (25 - 1000 µm) (Nocita 
et al., 2015). The two most important spectral ranges for soil investigation and analysis are mid-infrared and 
near-infrared (Wijewardane et al., 2018). The mid-infrared spectroscopy spectrum contains a high reflectivity, 
useful spectral features and gives greater information on soil attributes (Shepherd and Walsh, 2007; Stenberg 
et al., 2010); it has been confirmed to show better results and high predictions for several soil properties 
across soil types in comparison to near-infrared spectroscopy (Minasny and McBratney, 2008; Pirie et al., 
2005). This is due to the fact that MIR range results are based on fundamental molecular vibrations, while vis-
NIR spectra result from overtones and combination bands which are complex and more difficult to describe 
than those recorded in the MIR region. The basic vibrations of functional groups in minerals and organic 
matter of soil samples are used to explain the strong absorption of mid-infrared spectra (Shepherd and Walsh, 
2007). The type of molecular motions, functional groups, or bonds present in the soil sample can be identified 
through mid-infrared spectroscopy since every frequency correlates to a certain quantity of energy and a 
specific molecular motion such asstretching, bending, etc (Tinti et al., 2015). The MIR range shows high-
density peaks (Shepherd and Walsh, 2007; Soriano-Disla et al., 2014), containing much mineral composition 
information on soils such as Si-bearing minerals and iron forms. Soil mid-infrared spectroscopy data has the 
ability to store in databases known as spectral libraries. These soil spectral libraries are frequently required 
as reference patterns, making spectral data useful to the soil specialists community (Demattê et al., 2019). 
Additionally, it also applied for applications of soil remote sensing, spectral variations across sample sites 
(Deng et al., 2013), and building statistical models used in predictions of soil properties (Terra et al., 2015). 
Many publications showed soil attributes have been efficiently estimated based on the mid-infrared spectral 
library with high accuracy. It has been usefully applied to predict various soil physical properties, including 
soil texture (Shepherd and Walsh, 2005), and some properties of clay-like plasticity (Kasprzhitskii et al., 
2018). In addition, it is been used to investigate and predict several biological and chemical soil properties 
like soil organic carbon fraction (Knox et al., 2015), organic carbon, calcium carbonates, soluble salts, cation 
exchange capacity, and soil pH (Reeves and Smith, 2009; D’Acqui et al., 2010). Since the soil properties can 
vary greatly, it is difficult to build accurate models for soil samples that are not present in spectral libraries. 
As a result, extensive spectral libraries are required to give robust models over broad areas with a lot of soil 
diversity (Nocita et al., 2015) to ensure models include soil samples identical to those predicted (Guerrero et 
al., 2016). Soil mid-infrared spectral libraries are ranging from large (regional, national and global) to local 
databases, including the field level (Wijewardane et al., 2016). For example, the LUCAS spectral library in 
Europe has approximately 20000 soil samples from the surface; the spectral library of the Australian continent 
represents 4000 soil samples, and the ICRAF-ISRIC soil spectral library contains 785 profiles (Demattê et al., 
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2019). On other hand, traditional soil surveys and fresh soil sampling campaigns are costly and time-
consuming. Soil archives in agriculture associations, universities, and research centers might allow building 
of soil spectral libraries (Nocita et al., 2015). The majority of large soil spectral databases are built from 
archived historical soil samples (Rossel and Webster, 2012). Even soil samples obtained decades ago may have 
an abundance of spectral information that can be utilized to improve the calibration models of the mid-
infrared spectral library. Analyzing soil mid-infrared spectral data using multivariate statistical techniques 
has given a powerful approach for soil component discrimination. Several multivariate regression approaches 
have been developed, such as Partial Least Square Regression (PLSR) that relates both response and predictor 
variables. PLSR has been used for soil attributes prediction from the spectral library and can quantify varied 
soil attributes with a high level of accuracy (Seybold et al., 2019). PLSR is easy to compute and understand 
(Wijewardane et al., 2018), and commonly integrates PCA and multiple regression (Wold et al., 2001). 
The reflectance spectroscopy approach is being used for soil analysis in Hungary. There is no evidence for the 
existence of national spectral libraries that include a wide diversity of soils. There are only scattered studies 
using mid-infrared soil applications which represent small areas. Such lack of information opens up additional 
opportunities for study and research to take advantage of its applications, such as soil properties prediction. 
The study objectives are: 1)developing the first Hungarian mid-infrared spectral library 2) build a multivariate 
statistical models using PLSR and 3) test the predictive capacity of the developed spectral library in the 
spectral based estimation of key physical and chemical soil properties (SOC, CaCO3, sand, silt and clay).  

Material and Methods 
Resources of data and the MIR spectral library 

The MIR spectral library was built at the Hungarian University of Agriculture and Life Sciences, Szent István 
Campus. The soil samples of spectral database belong to the first SIMS project survey, 1992. This system 
provides yearly data regarding the condition of the Hungarian soils. The SIMS contains 1235 observation 
points based on physiographical-soil-ecological units. All points have geographic coordinates and 
approximately correspond to a 1:100.000 scale map. The soil profile sites have been distributed mainly among 
agricultural (arable) land, forests, and environmentally threatened (hot spot) regions. A total of 2200 soil 
samples, corresponding to horizons of 543 points were collected from the laboratory bank archives of SIMS, 
representing 10 Hungarian counties which are: Baranya, Fejer, Komarom_Esztergom, Nograd, Pest, Tolna,  
Bacs-Kiskun, Bekes, Csongrad and Jasz-Nagykun-Szolnok (Figure 1). 

 
Figure 1.  Spread of sampling points according to counties in Hungary 

Preparation and scanning of soil samples 

Previously, all soil samples have been dried, mashed, and filtered via a two-millimetre sieve, with the 
remaining part stored in SIMS archives in plastic containers at room temperature. 300 g from each sample 
were packaged in plastic sacs and shipped out to the Department of Soil Science, Gödöllő. Coning and 
quartering were used to obtain 20 g of soil subsamples, which were then grinded to less than 0.5 um (fine 
powdered particle size between 20 and 53um) by hand using an agate pestle and mortar. Samples were not 
mixed with alkali halides to avoid interferences that may cause ion exchange between KBr powder and soil 
sample (Janik et al., 1998). Through a micro spatula, the fine soil samples were put into aluminium sample 
cups, and one by one the loaded samples were placed in the sample holding tray. Excess soil was removed to 
reduce sample surface roughness and the surface was leveled with a straight-edged tool. 
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Mid Infrared Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT)  

Nguyen et al. (1991) and Janik et al. (1995) introduced the Diffuse Reflectance Infrared Fourier Transform 
Spectroscopy (DRIFT) approach for determining soil composition, which is a result of electromagnetic 
radiation interaction with matter. The Bruker Alpha II with a spectral range of 2500 – 25000 nm (4000 – 500 
cm-1) was used to scan the 2200 soil samples given for this study under DRIFT mode. A scan of the gold 
background was taken before the measurement of each sample to account for variations in temperature and 
moisture content. Gold uses as a reference material in mid-infrared spectroscopy methods since it does not 
absorb infrared light (Nash, 1986). While it could also be used to absorb other reflections throughout the IR 
spectrum. Every soil sample was read three times using three subsamples, and each spectrum was produced 
from 47 scans. Soil spectra were measured following the protocol proposed by the World Agroforestry Centre 
(Dickens Ateku, 2014). The collected information of all spectra was saved with the FTIR spectrometer OPUS 
software.  

Soil reference data 

Physical and chemical soil parameters were determined at the horizon level using conventional laboratory 
methods in the frame of the SIMS project and have been stored in the project database since 1992. TIM (1995) 

gives detail for reference laboratory methods used in the conventional database of SIMS. The conventional 
database was subjected to quality and consistency checks before being used as soil reference data for 
calibration models. 

Spectral data preprocessing and transformations 
Initially, the transformation of measured spectral reflectance to absorbance value was performed using the 
equation: 

Absorbance = log (1/Reflectance) 
Absorbance spectra were preprocessed with a moving average window of 17 bands and Savitzky-Golay 
filtering methods (Savitzky and Golay, 1964). Both techniques are used to reduce and remove noise that 
represents random fluctuations around the signal. This noise may originate from the instrument or 
environmental laboratory conditions.  

Chemometric analyses 

It might be challenging to estimate soil properties from big 
spectral data, resulting in increased prediction errors 
(Stevens et al., 2013). Chemometrics procedures can deal 
with the complexity of spectral data (Ramirez-Lopez et al., 
2013) through statistical tools and mathematical methods 
(Varmuza and Filzmoser, 2016). Principal Component 
Analysis (PCA) was applied to reduce the dimension of the 
spectral library and improve computational efficiency for 
different model scenarios of our data. Two outlier detection 
methods were carried out on principal component scores of 
spectral data: Mahalanobis distance (Figure 2) and H distance.  

 
Figure 2. Location of outliers detected from PCs 

The purpose of these methods is to identify samples that deviate from the average population of spectra 
(Shepherd and Walsh, 2002; Waruru et al., 2014). Based on standard arbitrary threshold methods, the 
samples with a Mahalanobis dissimilarity larger than one were considered outliers, while outlier samples 
were excluded using H distance values greater than 3. 

Calibration sample selection  

Kennard-Stone Sampling (Kennard and Stone, 1969), k-
means cluster sampling (Næs, 1987), and Conditioned Latin 
Hypercube sampling (Minasny and McBratney, 2006) were 
applied to the spectral library data to define how many 
observations (samples) should be listed in calibration dataset 
in order to develop the best mid-infrared spectral models. 
According to representativity plots, the optimal calibration 
sample sets were selected by using the Kennard-Stone 
sampling (KSS) method (Figure 3), where the curve „flattens 
out”. The remaining samples were retained for the validation 
set. 

 
Figure 3. Kennard-stone sampling distributions 

 



M.A.MohammedZein et al. Eurasian Journal of Soil Science 2023, 12(3), 244 - 256 

 

248 

 

Build of soil properties prediction models 

Prior to building the models, the mid-infrared spectral library and soil reference data, including the depths of 
horizons, were merged into one dataset. Three modelling scenarios were used. Consequently, the dataset was 
split according to 10 counties, 6 soil types and a national scenario that included the whole dataset. 
Furthermore, depending on the KSS method, the dataset of each sub-scenario was split into a calibration 
dataset and validation datasets.  

PLSR was introduced by (Lorber et al., 1987), which is the widely used approach (Burns and Ciurczak, 2007) 
for estimating physical and chemical soil characteristics (Johnson et al., 2019). Its purpose is to estimate a 
collection of dependent variables (soil attributes) by choosing a subset of 'orthogonal' components from the 
spectra (or latent variables). The following are the equations of PLSR: 

X = TPT + E 

Y = UQT + F 

Where: X  is predictor variables, while  Y is response variables, T and U are score matrices, P and Q are loading 
matrices, E is the matrix of residuals for X, and F is the matrix of residuals for Y. 

In this research, statistical the models were fitted between latent variables (mid-infrared spectral library) and 
response variables (soil attributes) based on calibration data using the highest number of principal 
components and oscorespls method (Wadoux et al., 2020). The number of PCA was determined by plotting 
the RMSEP of predication models and RMSEP of bias-adjusted. The components amount with the lowest RMSE 
were selected. For each soil property, the PLSR regression coefficients were plotted using the number of 
components. The built PLSR models and the appropriate number of components were used to predict soil 
properties using spectra on the calibration and validation datasets. Five soil properties in the frame of this 
study were predicted, including, organic carbon (OC), percentages of clay, silt, and sand content and calcium 
carbonate (CaCO3). Rsoftware (R Core Team, 2022) was used for spectral displaying, analysis and modelling 
processes. Models development and predictions were performed using the caret package interface (Max et al., 
2016) and PLSR function from pls package (Liland et al., 2016). 

Models performance and accuracy assessment 

Soil attribute model performance was assessed by comparing predicted (MIR spectral library) and observed 
(reference soil database) values using different metrics. Coefficient of determination (R2), ratio performance 
to deviation (RPD) and root mean square error (RMSE) were used to determine the goodness and inaccuracy 
of the model's predictions. Prediction reliability based on coefficient determination and ratio performance to 
deviation values classified the regression models into three categories: RPD > 2: “good” models that predicted 
with an acceptable or high level of accuracy; RPD ranging from 1.4 to 2: “satisfactory” models that had a 
medium level of prediction and might be improved and RPD lower than 1.4: “unreliable” or poor models with 
no predictive abilities. While the smaller the RMSE value, the reliability the accuracy of the models. RPD is 
widely used to determine the consistency and correlation of observed and predicted values (not of accuracy). 

𝑅2    =
∑ (ŷ𝒊 − ȳ𝒊  ) 𝟐 

𝑛

𝑖=1

∑ (𝑌𝒊 − ȳ𝒊  ) 𝟐 
𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 =    √
1

𝑛
  ∑(ŷ𝑖 − 𝑌𝑖) 2 

𝑛

𝑖=1

    

RPD =    𝑠𝑦/𝑅𝑀𝑆𝐸 

ŷ indicates the spectral library's predicted value, while ȳ and y represent the observed value average and 
observed value of reference soil database respectively n represents the sample number where I is equivalent 
to 1, 2, …, while, 𝑠𝑦  the observed values' standard deviation. 

Eval function of R was used to derive the goodness measurement of prediction and validation models. 

Results and Discussion 

Building the Hungarian Mid-Infrared spectral library 

The legacy soil samples of SIMS project represent a huge part of Hungary soils. These soils were formed on 
relatively young rock, with a small part covered by soils formed on older parent material and can be classified 
into four main categories: forest, grassland, meadow formations, and salt affected soils. The Hungarian MIR 
spectral library of the typical soil profile's at various depths reveals absorption signatures that were consistent 
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with the criteria in Figure 4. The spectral curves of minimum and maximum absorption values recorded from 
the many sites showed wide variation in absorption intensities. Differences in physical and chemical soil 
properties impact the shape of the spectrum curves. Despite, the presence of spectral library overlapping 
bands, several absorption bands linked to certain functional groupings were identified (Figure 4). The 
hydroxyl stretching vibrations of kaolinite, smectite, and illite are thought to be responsible for the absorption 
bands amongst 3800 and 3600 (1/cm). More specifically, the absorption peak at 3620 (1/cm) might be due to 
clay minerals, similar result was obtained by (Nguyen et al., 1991). The wide band around 3400 (1/cm) may 
be caused by hydroxyl stretching vibrations of water molecules in 2:1 mineral. The presence of carbonate in 
soil was detected by diagnostic absorption bands. Bands around 2592, 2515 and 720 (1/cm) which were 
attributed to calcite while the peaks at 2510, 1479-1408 and 887-866 (1/cm) were assigned to carbonates. 
The existence of quartz was recognized by absorption bands at about 2000, 1870 and 1790 (1/cm) 
respectively which is consistent with the result by (Janik et al., 2007; Rossel et al., 2008). Quartz mixtures were 
confirmed by a band at 798 and near 779 (1/cm). Even though soil organic matter spectra include vast and 
overlapping regions, our spectra showed some bands of SOM function groups in Figure 4. The absorption 
bands at 2930 and 2850 (1/cm) attributable to alkyl material are especially, effective for detecting organic 
materials in soils. The spectra also displayed absorption bands due to C=O stretch of carbonyl C (1720-1700 
1/cm), proteins (1640 and 1530 1/cm), aromatic amines (1342-1307 1/cm), carbohydrates (near 1100–1050 
1/cm) and Lignin (835 1/cm) in soil organic matter. Some studies have the same finding  (Skjemstad and Dalal, 
1987; Kaiser et al., 2011; Tinti et al., 2015).     

 
Figure 4. Absorbance mid-infrared spectral library data  

Summary statistics of spectral library soil attributes 

Descriptive statistics tables (1-5) clarify the summary statistics of training and testing sets for soil types, 
counties and national levels that were used in the modelling of the five soil attributes. The soil attributes of 
the spectral library dataset showed wide-ranging distributions. This factor was expected in this database, due 
to samples were derived from different depths and horizons of soil types at wide spatial variability covering 
several variations of climatic conditions, geological formation and parent material, land cover and human 
activity. Calibration and validation datasets contained comparable mean values demonstrating the partition 
of data was somewhat balanced with some narrower differences ranges for some soil attributes. This is a 
positive indication that the selected validation points were within the calibration space's threshold which may 
led to increased prediction reliability and effective models assessment. 

Principle component analysis 

Figure 3 show scores plots of the overall structure data and Mahalanobis outlier samples respectively. The 
first three PCs accounted for 63 % of the variance in the whole spectral library data, as seen in Figure 3. In soil 
types levels, the PC1 was accounted for most of the variability in the spectral data and it ranged between 33 - 
34 % while, the other successive components (PC2 and PC3) explain a smaller percentage of the remaining 
variability in the data and it ranged between 11 - 21%. While for the counties scale, the amount of variance in 
PC1 ranged from 32 - 36% and the remaining PC1 and PC2 together were ranging between 10 to 19 %. These 
few components with lower dimensions explained the variation in the spectral data and showed also different 
spectral distribution patterns in the counties. Figure 3 indicates, eight samples were observed as outliers 
(wmahald > 1) at the national level, scattered randomly. Among spectral data from 10 Hungarian counties, 
only two sample outliers were detected in Pest County, in addition to one outlier in Fejer and Tolna counties 
respectively. Also, one sample was detected as an outlier in Meadow soils and skeletal soils in terms of soil 
types. Detected outlier samples were filtered away from the mid-infrared spectral library data set at different 
levels of the scenarios then further investigation and calibration were performed on the remaining samples. 
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Prediction of soil properties for national, counties and soil types models 

Soil organic cabon content  

Table 1 represents the descriptive statistics and model results of organic carbon content. The models' 
performance assessment of SOC showed a high level of prediction accuracies for most of the calibration and 
validation datasets scenarios.  The national organic carbon content (1.35 and 1.21 %) produced a good models 
in both the calibration set (R2 of  0.80, RPD of 2.23 and RMSE of 0.5) and validation set (R2: 0.81, RPD: 2.28 
and RMSE: 0.46). For soil types, the soil organic carbon content was accurately predicted with R2 ranging from 
0.99 to 0.76 and RMSE from 0.09 - 0.55 in the calibration model while R2 and RMSE varied from 0.88 – 0.68 
and 0.35 to 0.50, repectively, in the validation model. Salt-affected, Brown forest, alluvial and colluvial soils 
presented the best modeled, whereas Skeletal soils presented the lower result, which may be due to the high 
sand and gravel content in these soils. These results were expected since the majority of Hungarian soils have 
high organic carbon. The only unexpected result was from Chernozem soils. For county scenarios, soil organic 
carbon content prediction within 10 counties showed that six counties had R2 ≥ 0.90, while only two counties 
had R2 < 0.75 in the calibration set, while in validation set six counties had R2 ≥ 0.75. The county with the 
highest prediction model in calibration set was Komarom_Esztergom with R2 of 1, RMSE is 0.01 and RPD of 
125.8. Variation in results were due to the variety of soil types and different land management practices in 
these counties. Moreover, the existence of carbonates in soil could affect the predictions of soil organic carbon 
(Reeves and Smith, 2009). Similar results with a high prediction model for SOC were found in some spectral 
libraries studies by (Rossel et al., 2008; Baumann et al., 2021). In addition (Ng et al., 2022) through numerous 
studies observed excellent predictions of soil organic carbon with R2 ranging between 1.0 and 0.80.   

Table 1. PLSR model values, descriptive statistics and results of calibration and validation prediction models of SOC 

 

                        Calibration set Validation set 
SOC % n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 

National 241 0.02 6.72    1.35 0.80 0.57 2.23 1959 0.01 6.56 1.21 0.81 0.46 2.28 

C
o

u
n

ti
es

 

Pest 98 0.05 5.34 1.18 0.93 0.33 3.70 294 0.01 5.07 1.16 0.85 0.40 2.55 
Baranya 70 0.04 5.14 1.06 0.92 0.31 3.65 141 0.10 3.78 0.88 0.81 0.33 2.33 
Fejer 49 0.02 6.26 1.59 0.90 0.49 3.28 186 0.03 4.65 1.38 0.68 0.60 1.76 
Komarom-Esztergom 35 0.01 4.30 0.93 1.00     0.01 125.80 125 0.01 4.48 0.89 0.52 0.67 1.45 
Nograd 55 0.11 4.07 1.11 0.81 0.41 2.35 88 0.14 4.01 1.26 0.71 0.47 1.86 
Tolna 39 0.12 6.72 1.67 0.99 0.16 10.23 153 0.13 4.50 1.27 0.77 0.43 2.08 
Bacs-Kiskun 98 0.07 5.20 1.02 0.74 0.49 1.98 186 0.07 2.97 0.69 0.79 0.30 2.20 
Bekes 70 0.14 5.76 1.54 0.96 0.24 5.29 132 0.23 3.69 1.57 0.85 0.39 2.56 
Csongrad 50 0.11 5.74 1.12 0.67 0.66 1.77 116 0.10 5.00 1.29 0.61 0.70 1.61 
Jasz-Nagykun-Szolnok 40 0.50 3.57 1.75 0.75 0.56 2.03 179 0.23 4.04 2.01 0.84 0.47 2.52 

So
il

 t
yp

es
 Chernozem  149 0.01    3.86      1.19    0.76 0.49 2.06 530 0.01    4.03 1.53    0.79 0.47 2.19 

Brown forest  99 0.04 4.510 0.88 0.94 0.24 3.97 395 0.02 4.48 0.945 0.71 0.43 1.87 
Alluvial & colluvial  55 0.04 3.98 1.45 0.90 0.35 3.16 153 0.08 4.50 1.15 0.68 0.50 1.76 
Meadow  149 0.04 6.72 1.64 0.89 0.49 3.08 261 0.08 5.00 1.55 0.88 0.39 2.92 
Skeletal  99 0.01 5.15 0.93 0.76 0.55 2.03 200 0.02 5.07 0.59 0.70 0.35 1.83 

 Salt-affected  27 0.13 5.76 1.15 0.99 0.09 13.56 64 0.15 4.77 1.07 0.77 0.43 2.10 

Calcium carbonate 

Predictions of calcium carbonate for spectral library had wide-ranging results (Table 2). CaCO3 at the national 
level (16.57 and 15.01 %) was well modeled with R2 of 0.84, RPD of 2.54 and RMSE of 5.96 in the calibration 
set and R2 of 0.77, RPD of 2.08 and RMSE of 5.96 in the validation set. These high results may be due to the 
fact that about 49 % of Hungarian soils are calcareous having CaCO3 content ranging from 1-25 % (TIM, 1995). 
From all the Hungarian counties, only Csongrad county had a low prediction level of CaCO3 in the training set 
(R2 of 0.60 and RMSE of 8.11) and testing set (R2 of 0.51 and RMSE of 7.09). CaCO3 in Pest county was 
predicted slightly better with R2 of 0.76 and RMSE of 6.61 in the training set and R2 is 0.67 in validation set. 
Performance model results of the other 8 counties were well modeled at a high level of accuracy with R2 of 
0.94 to 0.83 and RPD from 4.0 to 2.44 in calibration sets (Table 2). Four counties had R2 < 0.75 in validation 
sets, while the remaining six counties had R2 ≥ 0.75. The CaCO3 assessment statistics for soil types prediction 
showed that a good calibration model was obtained for salt-affected soils (R2 of 0.91, RPD of 3.41, RMSE = 4.4) 
with corresponding high validation results (R2 0.81). This can partly be explained by the fact that of Hungarian 
soils were moderately or highly alkaline and were basically all salt-affected. Modest predictions were obtained 
by Chernozem soils and Skeletal soils in the calibration set (R2 = 0.73 to 0.56) performing slightly better in 
the validation sets (R2 = 0.78 to 0.76). Other remaining soil types produced R2 values from 0.89 to 0.79 and 
RMSE from 3.59 to 6.33 in the calibration sets while RMSE ranged from 4.51 - 5.21 and R2 from 0.85 - 0.79 in 
the validation sets (Table 2). Viscarra Rossel et al. (2016) obtained R2 values of 0.77 and RMSE of 3.96 for the 
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calcium carbonate predictions, while Knox et al. (2015) and Seybold et al. (2019) showed good calcium 
carbonate predictions models with R2 of 0.92 and RMSE of 0.30 and R2 of 0.99 and RMSE of 1.2, respectively. 
Generally, the high prediction model of SOC and calcium carbonate was attributed to the specific strong 
absorption bands associated with chemical bonds of carbon-containing compounds in soil (Rossel and 
Behrens, 2010; Wijewardane et al., 2018).  

Table 2.  PLSR model values, descriptive statistics and results of calibration and validation prediction models of CaCO3 

 

                        Calibration set Validation set 
CaCO3 % n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 

National 241 0.10 96.0       16.57    0.84 5.96 2.54   1959 0.10 86.0 15.01    0.77 5.96 2.08 

C
o

u
n

ti
es

 

Pest 98 0.10 65.0 16.41 0.76 6.61 2.07 294 0.10 67.0 17.12 0.67 7.41 1.75 
Baranya 70 0.10 51.0 14.57 0.93 3.11 3.70 141 0.10 52.0 13.24 0.92 3.19 3.50 
Fejer 49 0.20 96.0 26.62 0.94 5.92 4.00 186 0.50 56.0 21.94 0.78 5.75 2.13 
Komarom-Esztergom 35 0.10 43.0 14.66 0.83 5.47 2.44 125 0.30 38.0 13.70 0.72 5.68 1.90 
Nograd 55 0.10 26.0 7.32 0.88 1.99 2.86 88 0.10 17.0 4.88 0.84 1.58 2.50 
Tolna 39 0.90 38.0 20.08 0.86 4.94 2.75 153 0.70 41.0 18.81 0.84 4.89 2.53 
Bacs-Kiskun 98 0.10 47.0 17.14 0.91 3.74 3.42 186 0.10 49.0 14.61 0.89 3.38 2.96 
Bekes 70 0.50 45.0 11.41 0.85 4.03 2.63 132 0.10 30.0 10.87 0.84 3.50 2.51 
Csongrad 50 0.10 64.0 13.12 0.60 8.11 1.59 116 0.10 66.0 11.15 0.51 7.09 1.44 
Jasz-Nagykun-Szolnok 40 0.70 40.0 10.71 0.93 2.70 3.70 179 0.10 32.0 7.57 0.73 3.50 1.92 

So
il

 t
yp

es
 Chernozem  149 0.50 53.0 16.27 0.56 7.54 1.51 530 0.10 45.0 17.33 0.76 5.37 2.06 

Brown forest  99 0.10 65.0 15.77 0.79 6.33 2.21 395 0.10 52.0 10.25 0.81 4.51 2.28 
Alluvial & colluvial  55 0.10 49.0 14.43 0.89 3.59 3.03 153 0.50 47.0 16.23 0.79 4.97 2.19 
Meadow  149 0.60 85.0 19.99 0.89 5.43 3.04 261 0.10 67.0 14.78 0.85 5.21 2.56 
Skeletal  99 0.10 50.0 11.44 0.73 5.03 1.94 200 0.10 50.0 9.95 0.78 3.89 2.11 

 Salt-affected  27 0.50 47.0 20.63 0.91 4.40 3.41 64 0.10 49.0 16.35 0.81 5.71 2.31 

Sand 

Amongst all soil properties in this study, soil texture, especially, sand content (39.81 - 40.32 %) showed the 
highest prediction model at the national level in the calibration set (R2 of 0.89) and validation set (R2 of 0.85) 
(Table 3). All calibration models had coefficient determination higher than 0.81 at counties scenario and 6 
counties had coefficient determination ≥ 0.90, while in validation models five counties had coefficient 
determination higher than 0.8 and ratio performance to deviation higher than 2 (Table 3).  All soil types’ levels 
had highest calibration models with R2 greater than 0.83 and RPD higher than 2.53, as well as R2 greater than 
0.74 and RPD near 2 in validation models. Meadow soils and salt-affected soils had R2 greater than 0.90 and 
RPD higher than 3.36 in the calibration sets and R2 greater than 0.83 and RPD higher than 2.48 in the 
validation model sets (Table 3). Based on TIM (1995), the sand content in Hungary represents (16 %) which 
may partly explain high prediction of sand and also partly by robust interaction between Mid-infrared 
radiation and minerals of sandy soils. The high accuracy performance models of sand content agreed with the 
results of some other mid-infrared spectral libraries reported by some authors (Wijewardane et al., 2018; 
Demattê et al., 2019). 

Table 3.  PLSR model values, descriptive statistics and results of calibration and validation prediction models of Sand 

 

                        Calibration set Validation set 
Sand % n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 

National 241 2.23 99.02 39.81 0.89    9.35 2.96 1959 0.70    99.02       40.32 0.85 10.97 2.57 

C
o

u
n

ti
es

 

Pest 98 2.40 96.20 52.01 0.82 11.1 2.39 294 6.70 96.50 48.15 0.85 10.76 2.62 
Baranya 70 2.50 95.00 34.30 0.85 9.64 2.62 141 1.60 96.30 25.89 0.62 12.32 1.62 
Fejer 49 7.40 95.20 46.86 0.93 6.39 3.90 186 2.23 86.80 38.74 0.68 10.85 1.73 
Komarom-Esztergom 35 2.00 94.50 47.82 0.90 8.54 3.19 125 9.10 92.10 48.58 0.63 13.38 1.66 
Nograd 55 1.3 94.60 36.90 0.83 11.51 2.48 88 1.80 91.90 33.23 0.68 12.26 1.79 
Tolna 39 0.70 94.50 36.55 0.91 8.32 3.41 153 0.90 93.50 33.59 0.70 11.44 1.82 
Bacs-Kiskun 98 8.15 98.55 59.43 0.96 5.84 5.09 186 8.62 99.02 69.34 0.92 7.45 3.61 
Bekes 70 3.20 76.82 19.84 0.94 4.06 4.28 132 2.92 65.46 19.16 0.85 5.72 2.61 
Csongrad 50 3.65 95.65 50.01 0.84 14.5 2.52 116 2.52 96.02 36.35 0.87 11.45 2.76 
Jasz-Nagykun-Szolnok 40 3.83     91.82 32.57 1.00 0.11 249.8 179 1.53 92.88 22.94 0.82 8.03 2.36 

So
il

 t
yp

es
 Chernozem  149 0.70 98.55 45.65 0.84 10.16 2.54 530 1.80 92.10 31.07 0.74 9.56 1.96 

Brown forest  99 1.60   92.20 43.11 0.87 9.20 2.82 395 1.30 94.60 36.22 0.75 11.64 2.02 
Alluvial & colluvial  55 0.90 96.46 43.92 0.85 9.97 2.59 153 0.90 98.06 39.90 0.74 13.28 1.96 
Meadow  149 1.53 95.10 34.30 0.91 7.84 3.37 261 2.47 93.60 24.78 0.84 8.70 2.49 
Skeletal  99 12.9 98.70 70.39 0.85 10.23 2.61 200 8.90 99.02 81.22 0.79 11.1 2.18 

 Salt-affected  27 3.65 82.06 26.59 0.96 4.3 5.33 64 4.24 95.78 29.05 0.88 8.42 2.92 
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Clay  

The clay content at the national scale (22.88 and 22.86 %) showed high results in the calibration set with R2 
of 0.80 and RMSE of 5.94 and in the validation set with R2 is 0.80 and RMSE is 6.59 (Table 4). At the counties 
level, clay content within 8 counties was well with R2 ranging from 0.97 to 0.80 in calibration set and 5 
counties had R2 ranging from 0.73 to 0.80 in validation model sets. Nograd County showed the worst result in 
the calibration set with R2 of 0.34 and RMSE of 15.92 while Tolna county had (R2 of 0.74, RMSE = 5.30 and 
RPD of 2.00) but still had a medium level of prediction (Table 4). At soil types scenario, salt-affected soils 
showed the best performing calibration model with R2 of 0.92 and RMSE of 4.30, whereas R2 was 0.80 in the 
validation sets. In three soil types, the coefficient determination was higher than 0.84 and only Brown forest 
soils and Skeletal soils had R2 of 0.76 and 0.64, respectively in the calibration models. Validation sets showed 
four soil types had R2 higher than 0.78 and RPD higher than 2.14 (Table 4). Since clay minerals are spectrally 
active molecules (Ng et al., 2022), this may be the reason why the clay content was predicted accurately, 
furthermore, clay has fundamental vibrations. Therefore, the low and medium coefficient determination and 
variation of clay predictions results may associate either with the low total clay or the variability of clay 
content in the soil. Some studies have justified the low clay predictions with presence of high carbonate 
content in the soil samples (Seybold et al., 2019).  

Table 4.  PLSR model values, descriptive statistics and results of calibration and validation prediction models of Clay 

 

                        Calibration set Validation set 
Clay % n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 

National 241 2.23 99.02 39.81 0.89    9.35 2.96 1959 0.70    99.02       40.32 0.85 10.97 2.57 

C
o

u
n

ti
es

 

Pest 98 1.90 62.60 17.12 0.92 3.19 3.47 294 0.10 45.60 18.89 0.77 5.16 2.07 
Baranya 70 1.40 53.00 23.69 0.85 4.48 2.60 141 1.20 44.40 24.08 0.78 4.21 2.13 
Fejer 49 1.40 50.80 19.60 0.92 3.25 3.66 186 0.40 46.10 19.26 0.28 6.22 1.18 
Komarom-Esztergom 35 2.20 48.30 17.83 0.80 5.36 2.27 125 1.50 41.20 15.26 0.30 6.45 1.20 
Nograd 55 0.90 82.70 24.59 0.34 15.92 1.24 88 1.80 56.90 26.13 0.45 10.08 1.36 
Tolna 39 0.30 39.60 19.83 0.74 5.30 2.00 153 0.10 42.30 19.89 0.49 6.23 1.40 
Bacs-Kiskun 98 0.16 56.32 14.06 0.97 2.04 6.08 186 0.16 31.68 7.874 0.80 3.02 2.24 
Bekes 70 9.02 67.04 38.30 0.96 2.77 4.86 132 2.24 64.88 38.55 0.73 6.34 1.95 
Csongrad 50 2.88 62.55 24.02 0.81 7.84 2.34 116 0.24 61.92 29.87 0.48 12.89 1.40 
Jasz-Nagykun-Szolnok 40 6.81 64.01 33.54 0.94 3.78 4.07 179 4.81 64.89 38.47 0.83 4.90 2.45 

So
il

 t
yp

es
 Chernozem  149 1.28 51.72 19.47 0.85 4.34 2.58 530 0.30 54.46 23.81 0.68 6.10 1.77 

Brown forest  99 1.70   56.90 21.54 0.76 6.72 2.03 395 0.80 82.70 23.06 0.53 8.29 1.46 
Alluvial & colluvial  55 0.10 62.60 19.14 0.87 4.63 2.80 153 0.10 45.75 19.22 0.86 4.12 2.65 
Meadow  149 1.92 67.04 29.06 0.88 5.55 2.93 261 2.40 64.89 36.38 0.83 6.43 2.44 
Skeletal  99 0.24 40.37 10.01 0.64 4.62 1.68 200 0.16 44.77 7.11 0.78 3.84 2.14 

 Salt-affected  27 4.80 54.40 34.35 0.92 4.30 3.56 64 2.88 57.90 31.52 0.80 7.11 2.23 

Silt  

Silt content had similar prediction results as clay content in most of the levels, but with some lower values, 
particularly in the validation sets. For the national scenario, silt content (37.75 and 37.92 %) had a medium 
level with R2 of 0.64 and 0.69 in calibration and validation sets, respectively (Table 5). From 10 counties with 
silt calibration prediction, six counties had R2 ≥ 0.83, three counties had R2 ≥ 0.70 and one county had R2 of 
0.53 (Table 4).  Predictive modeling of silt at soil types scale showed all calibration sets had R2 ≥ 0.70, except 
the Chernozem soils type which had R2 of 0.69. Salt-affected soils had R2 of 0.94 and RMSE of 3.85 (Table 5). 
Four soil types had R2 ranging from 0.55 to 0.81 in the validation sets.  

Generally, our prediction results for clay was similar to those found in other studies (e.g., Terhoeven-
Urselmans et al., 2010; Baumann et al., 2021) which focused mostly on legacy soil samples. For the same 
studies, the authors had lower prediction results of silt content (R2 range from 0.55 - 0.51). Ng et al. (2022) 
reported that the prediction accuracies of sand, clay and silt and had R2 values of 0.80, 0.84 and 0.70, 
respectively which generally had higher accuracy predictions of particle size distribution compared to our 
national-level results. 

Generally, from all soil properties predicted in Hungarian MIR spectral library, Fejer county showed poorest 
result with R2 of 0.28 in the validation datasets (Tables 4). While sand showed highest results with R2 of 0.89 
in calibration set and 0.85 in validation set. 

At the national scale, silt presented lower predictive model in validation set with R2 of 0.69 (Table 5). 
Komarom_Esztergom and Jasz-Nagykun-Szolnok counties showed best prediction models with R2 of 1 (Tables 
1 and 3) in calibration sets. While Baranya and Bacs-Kiskun showed best prediction models with R2 of 0.92 
(Tables 2 and 3) in validation sets. A similar high result with R2 of 1 was obtained by (Sanderman et al., 2020) 
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for organic carbon.  At soil type scal Salt-affected soils presented best performing model with a R2 of 0.99 
(Table 1) in calibration sets while in validation sets, Meadow and Salt-affected soils presented best performing 
model with a R2 of 0.88 (Table 1 and 3).The descriptive statistics tables showed some soil attributes had small 
datasets that may have affected the predictions accuracies. 

Table 5.  PLSR model values, descriptive statistics and results of calibration and validation prediction models of Silt 

 

                        Calibration set Validation set 
Silt % n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 

National 241 2.19    94.40        37.75    0.64 11.5 1.68       1959 0.61 102.4 37.92    0.69 10.79   1.79    

C
o

u
n

ti
es

 

Pest 98 1.50 70.70 30.98 0.86 7.15 2.65 294 1.10 71.30 32.94 0.82 8.34 2.35 
Baranya 70 3.30 71.10 42.01 0.75 8.97 2.01 141 2.60 76.50 50.30 0.38 11.86 1.27 
Fejer 49 3.60 69.64 32.24 0.83 7.38 2.42 186 6.11 102.4 42.32 0.53 11.85 1.47 
Komarom-Esztergom 35 1.80 76.80 34.36 0.92 5.33 3.63 125 4.60 83.50 36.20 0.66 10.76 1.71 
Nograd 55 2.80 98.70 38.58 0.53 16.59 1.48 88 5.30 96.20 40.82 0.30 14.31 1.21 
Tolna 39 2.10 85.60 43.72 0.74 11.6 1.99 153 2.50 81.40 46.67 0.46 12.82 1.37 
Bacs-Kiskun 98 1.09 73.74 29.78 0.93 5.83 3.78 186 0.61 74.38 30.01 0.91 6.61 3.27 
Bekes 70 14.1 57.80 41.83 0.90 3.09 3.18 132 18.7 56.00 42.27 0.42 6.53 1.31 
Csongrad 50 1.20 66.45 25.97 0.70 10.9 1.85 116 1.06 71.10 33.78 0.33 16.24 1.23 
Jasz-Nagykun-Szolnok 40 1.37 64.52 33.74 0.93 3.98 3.91 179 2.19 58.57 38.63 0.68 5.87 1.76 

So
il

 t
yp

es
 Chernozem  149 1.42 74.10 35.26 0.69 10.3 1.79 530 2.86 102.4 45.20 0.40 11.65 1.30 

Brown forest  99 5.30 94.40 35.59 0.72 9.88 1.90 395 2.60 98.70 40.85 0.55 12.64 1.50 
Alluvial & colluvial  55 1.50 79.30 37.58 0.81 8.01 2.29 153 1.59 81.40 41.18 0.56 12.5 1.51 
Meadow  149 2.30 76.38 36.64 0.70 8.84 1.84 261 2.55 72.14 38.85 0.54 8.84 1.48 
Skeletal  99 1.10 70.70 21.33 0.77 9.66 2.08 200 0.61 66.70 14.29 0.81 6.67 2.32 

 Salt-affected  27 5.80 64.29 39.05 0.94 3.85 4.13 64 1.06 73.74 40.03 0.80 6.38 2.27 

 

Despite, we used a large number of samples (n = 2200), we assume completion of the Hungarian spectral 
library with missing soil samples (9 counties) may expand and enhance the use of the spectral library. 
Hungary's soils were formed mainly on the relatively young rock bed and old parent material as well as on 
eolic, alluvial and colluvial deposits (TIM, 1995). In addition to climatic conditions and natural vegetation, 
human activities like intensive land use, soil improvement and cultural techniques have significant effect on 
soil information processes in Hungary. Results of these diverse interactions between soil formation factors 
may produced great variability in performance of models for soil types and Counties. Reeves and Smith (2009) 
found that dataset diversity, parent materials, land uses, and climate can lead to poor model prediction results. 

Conclusion 
We report the first soil MIR spectral library with 2200 soil samples for Hungary based on legacy soil samples 
of the SIMS project as well as, predicting an array of five soil attributes in the Hungary SIMS system. Models 
were built using PLSR for national level, ten counties and six soil types using the SIMS reference soil database 
and the spectral library data. Hungarian MIR spectral library is valuable for estimating soil properties such as 
SOC, CaCO3 and physical soil texture with variable results between national, county and soil type models 
scenarios. The results were logical for spectrally active elements that include: soil organic carbon, CaCO3, sand 
and clay as well as for silt which are not spectrally active but correlated with other active elements. The results 
showed that legacy soil samples can be used to generate a spectral library with good quality information. The 
developed first Hungarian Mid-infrared spectral library provides rapid soil estimates with low cost-
effectiveness, which is the basis for updating soil information and monitoring systems. Furthermore, it can be 
used in soil survey, DSM and soil classification. We expect to improve this spectral library by adding new soil 
samples, in addition to the remaining soil samples from the SIMS survey. We also hope that its soil information 
will be available to soil scientists, land managers, conservationists and other stakeholders. 
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