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Abstract
Calcium is a vital element in our body and plays a crucial role to moderate the calcium signalling process. Calcium-dependentprotein and flux through the sodium-calcium exchanger are also involved in signalling process to perform and execute necessarycellular activities. The loss or alteration in this cellular activity starts the early progress of Parkinson’s disease. A mathematicalcalcium model is developed in the form of the Hilfer fractional reaction-diffusion equation to examine the calcium diffusion in thecells. The effect of calcium-dependent protein and flux through the sodium-calcium exchanger is incorporated in the model. Thesolution of the Hilfer fractional calcium model is obtained by using the Sumudu transform technique in the form of the Wrightfunction and Mittag-Leffler function. The graphical results are obtained for the different amounts of proteins, presence, andabsence of sodium-calcium exchanger, and various orders of Hilfer derivative. The obtained results show that the modified calciummodel is a function of time, position, and Hilfer fractional derivative. Thus the modified Hilfer calcium model provides a richphysical interpretation of a calcium model as compared to the classical calcium model.
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1 Introduction

Neurons a main component of the brain also refer as nerve cells that transfer the message from the brain to other parts in the form ofelectrochemical gradient and vice versa. The major part of a neuron is made by a combination of a cell body, axon, and dendrite. Dendrite isa long tree like structure that receives information from the other neurons and is passed to the cell body. The cell body is a central part ofthe neuron that analyzed the received information and prepared a necessary outcome. The axon received the outcomes and carries them toother neurons. This is the basic life cycle of a typical neuron. Our brain consists of around 80-90 billion neurons so it made a complexneuronal network to perform and execute cellular activities [1]. Besides neuron, astrocytes and glial cells are also supports and moderatethe requisite cellular activities [2].
Calcium is also known as the second messenger and it is found in almost all kinds of nerve cells such as a neuron, astrocytes, oocytes, andmany others. Calcium diffusion is a very dynamic process in the cells to understand the calcium signalling phenomena. Calcium diffuses
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into the cell and reacts with protein, channels, pumps, and many other cellular entities. Due to the complexity, we have incorporated theflux through a sodium calcium exchanger in the presence of protein only. They diffused and produce the calcium depending protein asper a requirement of the calcium signalling process. The cytosol feels like a full of free calcium then the calcium buffering phenomenaconvert the level of free calcium into calcium dependent protein. That generated protein is utilized for fertilization, cell differentiation,synaptogenesis, and so on [3, 4]. The sodium calcium exchanger is also one of the major sources to transform free calcium from the cytosolto cells. They exchange three sodium ions against one calcium ion. That is three sodium ions enter into the cytosol and one calcium ionexists from the cytosol. In the present study, we have considered the sodium calcium exchanger with an exchange ratio of 3Na+ : 1Ca++
[5, 6, 7]. The alteration in the process to manage free calcium in the cells for long periods may result in various neurological diseases namelyParkinson’s, Alzheimer’s, Amyotrophic lateral sclerosis, etc [8, 9]. Parkinson’s disease (PD) is a disorder of the nervous system stronglyassociated with the dysfunction or alteration of calcium signalling. There is numerous factor associated with it such as environmentaleffect, age, gene mutation, misfolded protein sequence, calcium homeostasis, etc [10, 11, 12].
Panday and Pardasani have employed the finite element method to study the role of sodium calcium exchanger on calcium diffusion inoocytes cells [5]. Tewari and Pardasani have employed Gear’s method to study the role of sodium calcium exchanger, calcium channel,plasma membrane, sodium pump and buffer on calcium diffusion in neuron cells [6]. Jha et al. have employed the finite element method tostudy the role of sodium calcium exchanger by considering a point source and line source of calcium flux on calcium diffusion in neuroncells [7]. Also, there have been several experimental attempts that were performed in the past to identify the role and physiological impactof sodium calcium exchangers on various cells [13, 14, 15, 16]. Beside this a researches has explored the role of parameters of calciumtoolkits on astrocytes [17, 18, 19, 20, 21, 22], neuron [23, 24, 25, 26, 27, 28, 29, 30], oocytes [31, 32], myocytes [33, 34, 35], hepatocytes[36], and T lymphocytes cells [37, 38]. Thus a very little amount of work has attempted to study parameters of calcium toolkits by usingthe fractional calculus approach. Also, the literature suggests that none of the researchers and scientists has studied the effect of sodiumcalcium exchanger and protein on calcium diffusion and related to Parkinson’s disease. Therefore, in this paper, we have studied the role ofsodium calcium exchanger and calcium dependent protein on calcium diffusion by using the fractional calculus approach.
The fractional calculus is a generalization of the integer-order calculus and it provides more accurate results as compared to classicalcalculus. Hence, it is widely used in mathematical modelling of science and engineering, medical, and almost all area of education[39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. Nowadays, numbers of the fractional derivative areavailable to deal with real-world problems such as Caputo derivative, Caputo-Fabrizio derivative, Atangana-Baleneu derivative, Hilferderivative, Weyl derivative, Conformable derivative and many more. We have used the Hilfer fractional derivative in this study because it isa generalization of the Caputo and Riemann-Liouville derivatives [61]. Also, there are a number of effective methods such as differentialtransform method, double Laplace transform, Fourier transform method, Sumudu transform method, iterative method, Adomian de-composition method, homotopy transform method, and many more. We have used the Sumudu transform method in this study becauseit is best to our problems and it provides a closed form solution of the calcium model in terms of Wright function and Mittag-Leffler function.
The structure of this study is as follows. In Section 2, we provide some basic definitions that are used in this study. In Section 3, we developa mathematical formulation of the calcium model then, we modify the model in the sense of the Hilfer fractional calcium model. The resultsare obtained in Section 4 for different amounts of calcium protein and sodium calcium exchanger. In the last Section 5, some conclusionsare derived from the proposed results.
2 Mathematical preliminaries

The mathematical model developed in the present study is solved by using the Hilfer fractional derivative and Sumudu transform technique.The basic definitions of the Hilfer derivative and Sumudu transform are provided here that can be used to solve the model [61, 62, 63, 64].

Definition 1 The Riemann-Liouville fractional order integral for a function y(t) is defined as

Iu
a (y(t)) = 1

Γ(u)
t∫

a
(t – ξ)u–1y(ξ)dξ, (1)

where t > a, and R(u) > 0.
Definition 2 The Riemann-Liouville fractional order derivative for a function y(t) of order u is defined as

RL
a Du

t (y(t)) = ( d
dt

)n(In–u
a y(t)), (2)

where R(u) > 0.
Definition 3 The Caputo fractional order derivative for a function y(t) of order u is defined as

C
a Du

t (y(t)) =


1
Γ(m–u)

t∫
a

ym(ξ)(t–ξ)u+1–m dξ, m – 1 < u ≤ m,
dm
dtm y(t), u = m, (3)

where R(u) > 0 and m ∈ N.
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Definition 4 The Hilfer fractional derivative for a function y(t) is defined as

H
a Du,v

t (y(t)) = Iv(1–u)
t

∂

∂t (I(1–v)(1–u)
t y(t)), 0 < u < 1, 0 ≤ v ≤ 1. (4)

Remark 1 The Hilfer fractional derivative is a generalization of the Riemann-Liouville and Caputo fractional definition. The Riemann-Liouville
and Caputo fractional definitions are recovered by setting v = 0 and v = 1 respectively in equation (4).

Definition 5 Let consider a set A over the function y(t) as

A = {y(t) : ∃M,τ1,τ2 > 0, |y(t)| < Met/τj , t ∈ (–1)j × [0,∞)}, (5)
then the Sumudu transform of function y(t) over the set A is defined as

S{y(t)} = Y(p) =
∞∫
0

1
p e– t

p y(t)dt, p ∈ (–τ1,τ2). (6)

Definition 6 The inverse Sumudu transform of function Y(p) is defined as follows

S–1{Y(p)} = y(t) = 12πi

γ+i∞∫
γ–i∞

e
t
p Y(p)dp, (7)

whereγ ∈ R is a fixed number.

3 Mathematical formulation of the calcium model

The calcium in the cytosol is diffuse with protein and produces a different chemical species that modulate the cellular process and isrepresented by the chemical equation as
Ca2+ + Bi

k+↔
k– CaBi, (8)

where Ca2+ represents calcium ion, Bi represents the proteins calbindin-D28k, and CaBi represents the produced calcium dependent protein.
The calcium flow in the cell at any position and time is determined by the following partial differential equation [23, 31, 32, 33]

∂

∂t [Ca2+] = DCa
∂2
∂x2 [Ca2+] + ∑

i
Ri + f . (9)

The rate of change of calcium is denoted by the first order derivative with time, the diffusion of calcium is denoted by the Laplacian operator,
DCa is the diffusion coefficient, f denoted the calcium source from cellular entities, whereas the summation corresponds to multiple proteinsand reaction term is a combination of chemical reactant and it is described as

Ri = –k+[Bi][Ca2+] + k–[CaBi]. (10)
The similar chemical reaction for the proteins and calcium dependent protein follows the Fickian diffusion mechanism and is defined as[65, 66]

∂

∂t [Bi] = DB ·
∂2
∂x2 [Bi] + Ri, (11)

∂

∂t [CaBi] = DCaBi
·
∂2
∂x2 [CaBi] – Ri, (12)

where DB and DCaBi
represent a diffusion coefficient of proteins and calcium dependent protein, respectively.

Thus to identify the calcium flow in the cell at any moment it is necessary to solve the given system of partial differential equation
∂
∂t [Ca2+] = DCa

∂2
∂x2 [Ca2+] + ∑

i
Ri + f,

∂
∂t [Bi] = DB · ∂

2
∂x2 [Bi] + Ri,

∂
∂t [CaBi] = DCaBi

· ∂
2

∂x2 [CaBi] – Ri.
(13)
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Modified calcium model in form of Hilfer fractional derivative

The classical model is replaced by Hilfer fractional model to catch the memory of cells that increase the complexity of a model butsimultaneously increase the accuracy of a model. The classical calcium model (13) become as
H0 Dα,β

t [Ca2+](x, t) = DCa
∂2
∂x2 [Ca2+](x, t) + ∑

i
Ri + f(x, t),

H0 Dα,β
t [Bi](x, t) = DB · ∂

2
∂x2 [Bi](x, t) + Ri(x, t),

H0 Dα,β
t [CaBi](x, t)=DCaBi

· ∂
2

∂x2 [CaBi](x, t) – Ri(x, t),
(14)

where 0 < α < 1, 0 ≤ β ≤ 1.
The molecular weight of calcium is very small as compared to proteins and calcium dependent proteins. Hence by using this assumption wehave DB = DCaBi

= Di and we get the following equation
H0 Dα,β

t [Bi]T(x, t) = Di
∂2
∂x2 [Bi]T(x, t), (15)

where [Bi]T = [Bi] + [CaBi].
The background concentration of proteins and calcium dependent protein in the terms of a total concentration and dissociate constant aregiven as [66]

[Bi]∞ = K[Bi]T
K + [Ca2+]∞ , (16)

and
[CaBi]∞ = [Ca2+]∞[Bi]T

K + [Ca2+]∞ , (17)
where K = k–/k+.
Thus by combining equations (15-17) the model (14) is converted to a Hilfer fractional reaction diffusion equation which is given as

H0 Dα,β
t [Ca2+](x, t) = DCa

∂2
∂x2 [Ca2+](x, t) – ∑

i
k+

i [Bi]∞([Ca2+](x, t) – [Ca2+]∞) + f(x, t), (18)

where 0 < α < 1, 0 ≤ β ≤ 1.
The sodium calcium exchanger flux is considered in the model whose electrochemical gradient is involved in the signalling phenomena.There are two valence ions of calcium they provide the given equation [5, 6, 7]

∆µCa = ZFVm + RT ln( Cai
Cao

) . (19)
Similarly, there is one valence ion of sodium they generate the following equation as a result of electrochemical gradient as

∆µNa = ZFVm + RT ln( Nai
Nao

) . (20)
The exchange ratio of sodium and calcium ion is 3:1 that is three sodium ions enter into the cytosol and one calcium ion removed from thecytosol. The mathematical expression of the sodium calcium exchange ratio is given as

3∆µNa = 1∆µCa. (21)
By combining the electrochemical gradient and sodium calcium exchange ratio the equation (19-21) becomes as

2FVm + RT ln( Cai
Cao

) = 3FVm + 3RT ln( Nai
Nao

) . (22)
The rearrangement of equation (22) gives us the following equation

Cai
Cao

= ( Nai
Nao

)3
e

FVm
RT . (23)

Thus the mathematical expression for the sodium calcium flux becomes
fNCX = Cao

( Nai
Nao

)3
e

FVm
RT , (24)
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where Cai, Cao, Nai and Nao are the intracellular and extracellular flux from the respective ions. By incorporating the flux through sodiumcalcium exchanger into the model the equation (18) becomes
H0 Dα,β

t [Ca2+](x, t) = DCa
∂2
∂x2 [Ca2+](x, t) – ∑

i
k+

i [Bi]∞([Ca2+](x, t) – [Ca2+]∞) – fNCX . (25)

The initial and boundary conditions of a problem are as
lim
x→0

(–DCa
∂

∂x [Ca2+]) = σCa,t > 0, (26)

limx→∞
([Ca2+]) = [Ca2+]∞,t ≥ 0, (27)

[Ca2+]∣∣∣
t=0 = 0, 0 ≤ x < ∞. (28)

For sake of simplicity the equation (25) rewritten as
H0 Dα,β

t C(x, t) = DCa
∂2
∂x2 C(x, t) – ξ · C(x, t) +ψ, (29)

where 0 < α < 1, 0 ≤ β ≤ 1,ξ = k+[Bi]∞, andψ = k+[Bi]∞C∞ – Cao
( Nai

Nao

)3
e

FVm
RT .

The corresponding initial and boundary condition are
lim
x→0

(
∂C
∂x

) = –σCa
DCa

,t > 0, (30)

limx→∞ C(x, t) = C∞,t ≥ 0, (31)

C(x, 0) = 0, 0 ≤ x < ∞. (32)
Applying Sumudu transform on both sides of equation (29) with respect to time then we get

s–αC̄(x, s) – s–1+β(1–α) 0∑
k=0

∂k

∂xk

(
I(1–β)(1–α)0 C(x, 0)) =DCa

∂2
∂x2 C̄(x, s) – ξ · C̄(x, s) +ψ, (33)

Using the initial condition (32), equation (33) can be written as
s–αC̄(x, s) = DCa

∂2
∂x2 C̄(x, s) – ξ · C̄(x, s) +ψ, (34)

The equation (34) can be rewritten as
∂2
∂x2 C̄(x, s) – 1

DCa

(
s–αC̄(x, s) – ξ · C̄(x, s) +ψ) = 0, (35)

Further simplification of equation (35) lead us to the given equation
∂2
∂x2 C̄(x, s) – s–α – ξ

DCa
C̄(x, s) – ψ

DCa
= 0, (36)

Thus the Sumudu transform of the equation (29) is obtained as
C̄(x, s) = C1 exp

(√
s–α – ξ

DCa

)
x + C2 exp

(
–
√

s–α – ξ
DCa

)
x – ψ

s–α – ξ , (37)
By Applying the Sumudu transform on the boundary conditions (30-31), we get

∂

∂x C̄(0, s) = –σCa
DCa

, (38)
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and
limx→∞ C̄(x, s) = 0. (39)

By using equations (38-39), equation (37) turns out to be
C̄(x, s) = σCa√

DCa
sα/2 exp

(
–
√

s–α – ξ
DCa

)
x – ψ

s–α – ξ , (40)
To invert the Sumudu transform of equation (40) we use the following inequalities [64]

S–1 (pα/2e–λp–α/2) = tα/2W
(–α2 , α2 + 1, –λt–α/2) , (41)

and
S–1( pβ–1

1 – λpα

)
= tβ–1Eα,β(λtα), (42)

By using equations (41-42) the inverse Sumudu transform of equation (40) gives the following results

C(x, t) = σCa√
DCa

e

√
ξ

DCa tα/2W
(

–α2 , α2 + 1, – x√
DCa

t–α/2) –ψtαEα,α+1(ξtα), (43)
where W (α,β,γ) and Eα,β(z) are the Wright function and Mittag-Leffler function for two parameters respectively [61, 62, 63].
4 Results and discussion

The numerical values for the physical parameters are given in Table 1 and are used in the computation of the calcium profile.

Table 1. Values of physical parameters [5, 6, 7, 66]
Parameters Values of parameters
Diffusion coefficient (DCa) 200-300 (µm2/s)Buffer associate rate (k+) 75 (µM–1s–1)Concentration of protein ([Bi]∞) 100-360 (µM)Intracellular sodium ([Na+])i 12 (mM)Extracellular sodium ([Na+])o 145 (mM)Intracellular calcium ([Ca2+])i 0.1 (µM)Extracellular calcium ([Ca2+])o 1.8 (mM)Source amplitude of calcium (σCa) 1.4 (µM–1s–1)Faraday’s constant (F) 96485 (C/mol)Gas constant (R) 8.314 (J)Temperature (T) 310 (oK)Membrane potential (Vm) -0.06 (V)

The solution (43) of the modified calcium model (14) in form of Hilfer fractional derivative is used to obtain a graphical calcium profile forlow and high proteins level and sodium calcium exchanger. The calcium profile simulated for the values DCa = 250µm2/s, low protein level[Bi]∞ = 120µM, high protein level [Bi]∞ = 340µM and for various values ofα in Figures 1 to 6. Figures 1-3 show variations of calciumversus time for different biophysical parameters whereas Figures 4-6 show variations of calcium versus position for different biophysicalparameters.
In Figure 1 we show calcium profile versus time near the source x = 0 for the low level of proteins level and presence of sodium calciumexchanger. The calcium profile is high for the lower values of fractional order up to 0.35 seconds then the calcium profile is high for thehigher values ofα and after 0.7 seconds the calcium profile achieves the steady level.
Figure 2 shows calcium profile versus time near the source x = 0 for a high level of proteins and presence of sodium calcium exchanger. Theprofile suddenly attains the peak near 0.1 second due to high level of proteins then decrease gradually to attain a steady level. The peaklevel of calcium profile in figure 2 is less compared to figure 1. This happened due to high proteins reacting with calcium in cytosol andproducing calcium dependent protein that reduce the peak values of calcium profile and protect the neuron cells from the high level ofcalcium. A high level of calcium for large periods is toxic for cells and generates the symptoms of Parkinson’s disease.
Figure 3 represents the calcium profile versus time for the low level of proteins level and absence of sodium calcium exchanger. The profilegradually rise and achieved a peak value due to low protein level. The profile attains more peak values as compared to Figure 1 due to theabsence of sodium calcium exchanger as it removed the calcium from the cells against sodium. Thus the presence of sodium calcium
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Figure 1. Calcium profile versus time for low amount of proteins at different values ofα
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Figure 2. Calcium profile versus time for high amount of proteins at different values ofα

exchanger plays a significant role in the presence of low proteins as high protein level reduces the significance of sodium calcium exchanger.
In Figure 4 we show calcium profile versus position for a t = 0.5 second at low proteins level and presence of sodium calcium exchanger. Thecalcium profile is high at the mouth of channels and slowly decrease as the position is increased. The profile is high for large values ofα inthe cells as the fractional order decreases the calcium profile also decreases and attains a steady level.
Figure 5 shows calcium profile versus position at t = 0.5 second for high proteins level and presence of sodium calcium exchanger. Theprofile is high at the mouth of the channel due to the high level of proteins then decreasing gradually to attain a steady level. The peak levelof calcium profile in figure 5 is less compared to figure 4. The physiological results for this are the same as given in figure 2 that is highlevel proteins react with calcium and produce calcium protein that reduces the calcium profile and protect the cells from toxic level andsymptoms of Parkinson’s disease.
Figure 6 shows calcium profile versus position for low proteins level and absence of sodium calcium exchanger. The profile is at a peaklevel at the beginning due to the absence of sodium calcium exchanger as it did not remove the free calcium from the cells. The absenceof sodium calcium exchanger and low proteins level results in an elevation in the calcium profile. It is observed that the sodium calciumexchanger is a good source of calcium flux to control the free calcium level in the cells and ultimately protect cells against Parkinson’s disease.
The obtained results (43) show that the modified calcium model (14) is a function of time, position and Hilfer fractional derivative. Also, thegraphical results show that the modified Hilfer calcium model provides a rich physical interpretation of a calcium model as compared to theclassical calcium model.
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Figure 3. Calcium profile versus time for low amount of proteins and in absence of sodium calcium exchanger at different values ofα
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Figure 4. Calcium profile versus position for low amount of proteins at different values ofα
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Figure 5. Calcium profile versus position for high amount of proteins at different values ofα
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Figure 6. Calcium profile versus position for low amount of proteins and in absence of sodium calcium exchanger at different values ofα

5 Conclusion

Hilfer fractional calcium model is a novel modification of the classical calcium model for neuron cells. We developed a Hilfer fractionalcalcium model to examine the role of calcium dependent protein, sodium calcium exchanger on calcium diffusion and related to Parkinson’sdisease. We obtained a closed form solution of the calcium model in the terms of Wright function and Mittag-Leffler function by using theSumudu transform technique and Hilfer fractional derivative. High level proteins react with the calcium in cytosol and produce calciumdependent proteins that reduce the peak values of calcium profile and protect the neuron cells from the high level of calcium. A high level ofcalcium for large periods is toxic for cells and generates the symptoms of Parkinson’s disease. The significant effect of sodium calciumexchanger has been observed for the low level of calcium dependent protein. The calcium dependent protein and sodium calcium exchangerplay a crucial role to control the calcium level in the cytosol. Thus the amalgamation of the calcium dependent protein and sodium calciumexchanger control the calcium level and provide protection to neuron cell from the toxicity produced by the Parkinsonic cells. Thus Hilfercalcium model provides a rich physical interpretation of a calcium model as compared to the classical calcium model. The present model canbe extended by considering the flux through various calcium channels, pumps, and receptors. A novel fractional model will be developed byconsidering the flux through all these parameters and expresses the obtained results with Parkinson’s disease.
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