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Abstract. In this study, we introduce two new classes Sk[E,F ;µ; γ] and

Tk(θ, µ, γ) of analytic functions using the general integral operator. For these

two classes, we study the majorization properties. Some applications of the
results are discussed in the form of corollaries.

1. Introduction and Definitions

The Majorization for two analytic functions u and v is defined as follows
(see [17])

u(ξ) ≺≺ v(ξ); (ξ ∈ D),

if there is an analytic function ψ(ξ), such that

|ψ(ξ)| ≤ 1 and u(ξ) = ψ(ξ) v(ξ); (ξ ∈ D), (1)

where D = {ξ ∈ C : |ξ| < 1} is an open unit disk.
The function u is subordinate to v and defined as u(ξ) ≺ v(ξ), if there is a schwarz
function w, that is analytic in D with |w(ξ)| < 1, w(0) = 0, ξ ∈ D such that
u(ξ) = v(w(ξ)), ξ ∈ D.

Thus, by combining subordination and majorization, we may define quasi-subordination
as follows:
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We say that the function u is quasi-subordinate relative to ϕ(z) to the function
v and defined as

(
See [19]

)
u(ξ) ≺q v(ξ); (ξ ∈ D).

If there are two analytic functions ψ(ξ) and w(ξ) in D such that u(ξ)
ψ(ξ) is analytic

and subordinate to v(ξ) in D and

|ψ(ξ)| ≤ 1 and w(0) = 0, |w(ξ)| ≤ 1; (ξ ∈ D),

satisfying
u(ξ) = ψ(ξ) v

(
w(ξ)

)
; (ξ ∈ D). (2)

Remark 1. (i) We have the conventional definition of subordination if we put
ψ(ξ) = 1 in (2).
(ii) We have the conventional definition of majorization if we put w(ξ) = ξ in (2).

Let A be the class of all functions of the form

f(ξ) = ξ +

∞∑
K=2

aK ξ
K ; (ξ ∈ D), (3)

which are analytic in open unit disk D, and consider Hs : A → A be an operator

such that
ξH′

s+1 (f)(ξ)

Hs+1 (f)(ξ) is analytic in D with

ξH ′
s+1 (f)(ξ)

Hs+1 (f)(ξ)

∣∣∣∣∣
ξ=0

= β + k + γ.

and satisfies

ξH ′
s+1 (f)(ξ) = kHs+1 (f)(ξ) +mHs (f)(ξ), ∀f ∈ A. (4)

for some γ, m, k ∈ C, and β is a real number with β > 0 (See [2]).

Remark 2. (i) If we take k = −n, m = n + 1, β = 1 − η, and γ = η + n for
some integers n > −1 and 0 ≤ η < 1, then the operator Hs reduced into the integral
operator In introduced by Liu and Noor in [16].
(ii) If we take k = −b, m = 1+b, µ = 1−α and γ = α+b, for b ∈ C\Z−

0 , 0 ≤ α < 1,
then the operator Hs reduced into the Srivastava-Attiya operator Js,b, (see [12]
and [20]).

Now, using the operatorHs, we express the following classes of analytic functions.

Definition 1. The function f ∈ A is stated to be in the class Sk[E,F ;µ; γ] if and
only if

1 +
1

µ

(
ξ
(
Hsf(ξ)

)′
Hsf(ξ)

− k − γ

)
≺ 1 + E ξ

1 + F ξ
, (5)

with k, γ ∈ C, µ ∈ C \ {0} and −1 ≤ F < E ≤ 1.
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If we take the value of k, m, β and γ as defined in Remark (1.2)(i), then this
class becomes Sn[E,F ;µ; η] which is defined by Liu and Noor in [16].
Again if we take the value of k, m, µ and γ as defined in Remark (1.2)(ii), then
this class becomes Hs, b, α(E, F ) which is defined by Kutbi and Attiya in [12].

Definition 2. The function f ∈ A is stated to be in the class Tk(θ, µ, γ) if and
only if

eiθ

µ+ k + γ

(
ξ
(
Hsf(ξ)

)′
Hsf(ξ)

)
≺ eξcosθ + isinθ; (ξ ∈ D), (6)

where k, γ ∈ C, µ ∈ C \ {0} and −Π
2 < θ < Π

2 .
If we take the value of k, m, β and γ as defined in Remark (1.2)(i), then this class
become as Tn[θ;µ; η].
If we take the value of k, m, µ and γ as defined in Remark (1.2)(ii), then this class
becomes Tb, α.

Numerous mathematicians have recently investigated various majorization prob-
lems for univalent and multivalent functions as well as meromorphic and multivalent
comprising distinct operators and different groups,

(
see [1], [6], [7], [8], [9], [10], [21],

[22]
)
.

The majorization problems of the classes Sk[E,F ;µ; γ] and Tk(θ, µ, γ) are ex-
plored in this study as follows:

2. Main Results

Theorem 1. Assume the function f ∈ A and that g ∈ Sk[E,F ;µ; γ]. If Hsf(ξ) is
majorized by Hsg(ξ) in D, then

|Hs−1 f(ξ)| ≤ |Hs−1 g(ξ)|, for |ξ| ≤ ϵ0, (7)

where the least positive root of following equation is ϵ0.

|µ(E − F ) + γ F |ϵ3 − (2|F |+ |γ|)ϵ2 −
[
2 + |µ(E − F ) + γ F |

]
ϵ

+ |γ| = 0, (8)

and −1 ≤ F < E ≤ 1, k, γ, m ∈ C, µ ∈ C \ {0}.

Proof. Since g ∈ Sk[E,F ;µ; γ] then, from (5) and definition of majorization

1 +
1

µ

(
ξ
(
H ′
sg(ξ)

)
Hsg(ξ)

− k − γ

)
=

1 + E w(ξ)

1 + F w(ξ)
,

with w(0) = 0 and |w(ξ)| ≤ |ξ| < 1, ∀ξ ∈ D.
Now, from the above equality

ξ
(
H ′
sg(ξ)

)
Hsg(ξ)

=
(k + γ) + (µ (E − F ) + (k + γ)F )w(ξ)

1 + F w(ξ)
. (9)



MAJORIZATION PROPERTY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS 125

Using the relation (4), that is,

ξ
(
H ′
sg(ξ)

)
= kHS g(ξ) +mHS−1 g(ξ),

for k, m ∈ C, we have from (9) as

HS−1 g(ξ)

Hs g(ξ)
=
γ +

(
µ(E − F ) + γ F

)
w(ξ)

m
(
1 + F w(ξ)

) ,

which implies that

|Hs g(ξ)| ≤
|m| (1 + |F | |ξ|) |HS−1 g(ξ)|
|γ| −

∣∣µ(E − F ) + γ F
∣∣ |ξ| . (10)

As Hs f(ξ) is majorized by HS g(ξ) in open unit disk D, then

Hsf(ξ) = ψ(ξ)Hsg(ξ). (11)

Multiplying (11) by ξ after differentiating with respect to ξ, we get

ξ
(
H ′
s f(ξ)

)
= ξ ψ(ξ)

(
H ′
s g(ξ)

)
+ ξ ψ

′
(ξ)Hs g(ξ),

on using relation (4), we have

m Hs−1 f(ξ) = ξ ψ
′
(ξ)Hs g(ξ) +mψ(ξ)Hs−1 g(ξ)

that implies

|m| |Hs−1 f(ξ)| ≤ |ξ| |ψ
′
(ξ)| |Hs g(ξ)|+ |m| |ψ(ξ)| |Hs−1 g(ξ)|. (12)

As a consequence, considering that the ψ (Schwarz function) meets the inequality,
(see [18])

|ψ
′
(ξ)| ≤ 1− |ψ(ξ)|2

1− |ξ|2
; (ξ ∈ D), (13)

on using (10) and (13) in (12), we have

|Hs−1 f(ξ)| ≤

[
|ξ|(1− |ψ(ξ)|2)(1 + |F | |ξ|)

(1− |ξ|2)
(
|γ| − |µ(E − F ) + γ F | |ξ|

) + |ψ(ξ)|

]
|Hs−1 g(ξ)|. (14)

Setting |ξ| = ϵ, |ψ(ξ)| = κ, then inequality (14) leads to

|Hs−1 f(ξ)| ≤
ζ(ϵ, κ) |Hs−1 g(ξ)|

(1− ϵ2)
(
|γ| − |µ(E − F ) + γ F | ϵ

) , (15)

where

ζ(ϵ, κ) = ϵ(1− κ2)(1 + |F |ϵ) + κ(1− ϵ2)
[
|γ| − |µ(E − F ) + γ F |ϵ

]
.

Then, from (15)

|Hs−1 f(ξ)| ≤ T(ϵ, κ) |Hs−1 g(ξ)|, (16)
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where

T(ϵ, κ) =
ζ(ϵ, κ)

(1− ϵ2)
(
|γ| − |µ(E − F ) + γ F | ϵ

) , (17)

from relation (16), in an attempt to prove our result, we have to specify

ϵ0 = max
{
ϵ ∈ [0, 1); T(ϵ, κ) ≤ 1; ∀κ ∈ [0, 1]

}
= max

{
ϵ ∈ [0, 1); G(ϵ, κ) ≥ 0; ∀κ ∈ [0, 1]

}
,

where

G(ϵ, κ) =(1− ϵ2)(1− κ)
[
|γ| − |µ(E − F ) + γ F | ϵ

]
− ϵ(1− κ2)(1 + |F |ϵ).

A simple calculation shows that the G(ϵ, κ) ≥ 0 inequality is equivalent to

u(ϵ, κ) =
[
|γ| − |µ(E − F ) + γ F |ϵ

]
(1− ϵ2)

− ϵ(1 + κ)(1 + |F |ϵ) ≥ 0,

while the function u(ϵ, κ) has a least value at κ = 1, i.e.
min{u(ϵ, κ) : κ ∈ [0, 1]} = u(ϵ, 1) = v(ϵ),
where

v(ϵ) =|µ(E − F ) + γ F |ϵ3 − (2|F |+ |γ|)ϵ2

−
[
2 + |µ(E − F ) + γ F |

]
ϵ+ |γ| = 0,

it follows that v(ϵ) ≥ 0; ∀ϵ ∈ [0, ϵ0], where ϵ0 = ϵ0(µ, γ,E, F ) is the least positive
root of equation (8), which proves the conclusion of (7). □

Theorem 2. Assume the function f ∈ A and that g ∈ Tk(θ, µ, γ). If Hsf(ξ) is
majorized by Hsg(ξ) in D, therefore

|Hs−1f(ξ)| ≤ |Hs−1g(ξ)| for |ξ| ≤ ϵ1, (18)

where the least positive root of following equation is ϵ1.

ϵ2
(
|µ+k+γ| eϵ−|k|−|µ+γ||tanθ|

)
+2ϵ|secθ|−

(
|µ+k+γ| eϵ−|k|−|µ+γ||tanθ|

)
= 0,
(19)

and γ, k ∈ C, −Π
2 < θ < Π

2 , µ ∈ C \ {0}.

Proof. Since, g ∈ Tk(θ, µ, γ) then, from (1) and the subordination relation

eiθ

µ+ k + γ

(
ξ
(
H ′
s g(ξ)

)
Hsg(ξ)

)
= ew(ξ)cosθ + isinθ, (20)

with w(0) = 0 and |w(ξ)| ≤ 1 ∀ξ ∈ D.
From (20), we have

ξ H ′
s g(ξ)

Hsg(ξ)
= (µ+ k + γ)

(
ew(ξ) + itanθ

1 + itanθ

)
. (21)
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Now, using (4) in (21), for γ, m, k ∈ C and µ ∈ C \ {0}, we have the following.

Hs−1 g(ξ)

Hsg(ξ)
=

(µ+ k + γ) ew(ξ) − k + (γ + µ)itanθ

m(1 + itanθ)

which implies that

|Hsg(ξ)| ≤
|m| |secθ|(

|µ+ k + γ| e|ξ| − |k| − |µ+ γ||tanθ|
) |Hs−1 g(ξ)|. (22)

Now, since Hs f(ξ) is majorized by Hs g(ξ) in D, we have

Hsf(ξ) = ψ(ξ)Hsg(ξ). (23)

Multiplying (23) by ξ after differentiating with respect to ξ, we get

ξ
(
H ′
s f(ξ)

)
= ξ ψ(ξ)

(
H ′
s g(ξ)

)
+ ξ ψ

′
(ξ)Hs g(ξ),

on using relation (4), we have

m Hs−1 f(ξ) = ξ ψ
′
(ξ)Hs g(ξ) +mψ(ξ)Hs−1 g(ξ)

that implies

|m| |Hs−1 f(ξ)| ≤ |ξ| |ψ
′
(ξ)| |Hs g(ξ)|+ |m| |ψ(ξ)| |Hs−1 g(ξ)|. (24)

As a consequence, considering that the ψ (Schwarz function) meets the inequality,
(see [18])

|ψ
′
(ξ)| ≤ 1− |ψ(ξ)|2

1− |ξ|2
; (ξ ∈ D), (25)

using (22) and (25) in (24), we have

|Hs−1 f(ξ)| ≤

(
|ξ|(1− |ψ(ξ)|2)|secθ|

(1− |ξ|2)
(
|µ+ k + γ| e|ξ| − |k| − |µ+ γ||tanθ|

)+|ψ(ξ)|

)
|Hs−1 g(ξ)|.

(26)
Setting |ξ| = ϵ, |ψ(ξ)| = κ (0 ≤ κ ≤ 1), then inequality (26) leads to

|Hs−1 f(ξ)| ≤
ζ1(ϵ, κ)

(1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

) |Hs−1 g(ξ)|, (27)

where

ζ1(ϵ, κ) = ϵ(1− κ2)|secθ|+ κ(1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

)
.

Then, from (27)

|Hs−1 f(ξ)| ≤ T1(ϵ, κ) |Hs−1 g(ξ)|, (28)

where

T1(ϵ, κ) =
ζ1(ϵ, κ)

(1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

) , (29)

From relation (28), in order to prove our result, we have to specify

ϵ1 = max
{
ϵ ∈ [0, 1); T1(ϵ, κ) ≤ 1 ∀κ ∈ [0, 1]

}
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= max
{
ϵ ∈ [0, 1); G1(ϵ, κ) ≥ 0 ∀κ ∈ [0, 1]

}
,

where

G1(ϵ, κ) = (1− ϵ2)(1− κ)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

)
− ϵ(1− κ2)|secθ|.

A quick calculation illustrates that the inequality G1(ϵ, κ) ≥ 0 is equivalent to

u1(ϵ, κ) = (1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

)
− ϵ(1 + κ)|secθ| ≥ 0,

while the function u1(ϵ, κ) takes its lowest value at κ = 1, that is,

min{u1(ϵ, κ) : κ ∈ [0, 1]} = u1(ϵ, 1) = v1(ϵ),

where

v1(ϵ) = (1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

)
− 2ϵ|secθ| = 0,

It follows that v2(ϵ) ≥ 0 ∀ϵ ∈ [0, ϵ1], where ϵ1 = ϵ1(θ, γ, µ, k) is the least positive
root of equation (19), which proves the conclusion of (18). □

3. Corollaries and Consequences

Corollary 1. Assume the function f ∈ A and that g ∈ Sn[E,F ;µ; η]. If In f(ξ) is
majorized by In g(ξ) in D, then

|In−1 f(ξ)| ≤ |In−1 g(ξ)| for |ξ| ≤ ϵ2, (30)

where the least positive root of following equation is ϵ2.∣∣µE+(n+η−µ)F
∣∣ϵ3−(2|F |+|n+η|

)
ϵ2−

(
2+|µE+(η+n−µ)F |

)
ϵ+|η+n| = 0, (31)

and −1 ≤ F < E ≤ 1, µ ∈ C \ {0}, n > −1, 0 ≤ η < 1,.

Corollary 2. Assume the function f ∈ A and that g ∈ Tn[θ;µ; η]. If In f(ξ) is
majorized by In g(ξ) in D, then

|In−1 f(ξ)| ≤ |In−1 g(ξ)| for |ξ| ≤ ϵ3, (32)

where the least positive root of following equation is ϵ3.

(|µ+η|eϵ−|n|−|µ+η+n||tanθ|)ϵ2−2|secθ|ϵ−(−|n|−|µ+η+n||tanθ|+|µ+η|eϵ) = 0,
(33)

and n > −1, 0 ≤ η < 1, −π
2 < θ < π

2 ..

Corollary 3. Assume the function f ∈ A and that g ∈ Hs, b, α(E, F ). If Js,b f(ξ)
is majorized by Js,b g(ξ) in D, then

|Js−1,b f(ξ)| ≤ |Js−1,b g(ξ)| for |ξ| ≤ ϵ4, (34)

where the least positive root of following equation is ϵ4.∣∣(1− α)E + (2α+ b− 1)
∣∣ϵ3 − (2|F |+ |α+ b|

)
ϵ2 −

(
2 + |(1− α)E + (2α+ b− 1)F |

)
ϵ

+ |α+ b| = 0, (35)

and −1 ≤ F < E ≤ 1, b ∈ C \ Z−
0 , 0 ≤ α < 1.
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Corollary 4. Assume the function f ∈ A and that g ∈ Tb, α. If Js,b f(ξ) is ma-
jorized by Js,b g(ξ) in D, then

|Js−1,b f(ξ)| ≤ |Js−1,b g(ξ)| for |ξ| ≤ ϵ5, (36)

where the least positive root of following equation is ϵ5.(
eϵ − |1 + b||tanθ| − |b|

)
ϵ2 + 2|secθ| ϵ−

(
eϵ − |b| − |1 + b||tanθ|

)
= 0, (37)

and b ∈ C \ Z−
0 , 0 ≤ α < 1, −π

2 < θ < π
2 .
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