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Abstract
This work uses the Marichev-Saigo-Maeda (MSM) fractional integral operator to achieve certain special fractional
integral inequalities for synchronous functions. Compared to the previously mentioned classical inequalities, the
inequalities reported in this study are more widespread. We also looked at several unique instances of these
inequalities involving the fractional operators of the Saigo, Erdelyi, and Kober, and Riemann-Liouville types.
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1. Introduction
Over the past forty years, the idea of fractional calculus has grown significantly in popularity and significance. This is

because it has distinguished uses in so many different branches of engineering and research. Mathematicians also use the
operators of the fractional calculus to break down the classical special functions into some more fundamental, well-known
special or elementary functions. This approach was followed by Samko et al. [1], and Kiryakova [2]. Following the ideas of
Lavoie, Osler and Tremblay [3], Kiryakova [4, 5] further demonstrated that almost all the special functions of mathematical
physics, can be represented as (generalized) fractional integrals or derivatives of the three elementary functions. Relations of
this kind also provide some alternative definitions for the special functions by means of Poisson type and Euler type integral
representations and Rodrigues type differential formulas. Mariusz Ciesielski [6] studied the fractional eigenvalue problem
by a numerical method when the fractional Sturm-Liouville equation is subjected to the mixed boundary conditions. The
non-integer order differential equation is discretized to the scheme with the symmetric matrix representing the action of the
numerically expressed composition of the left and the right Caputo derivatives. Kiryakova [7] pointed out few basic classical
results, combined with author’s ideas and developments, that show how one can do the task at once, in the rather general
case: for both operators of generalized fractional calculus and generalized hypergeometric functions. Thus, great part of the
results are well predicted and fall just as special cases of the discussed general scheme. Saigo et al. [8] demonstrated fractional
calculus operator associated with the H-function. Jahanshahi S. [9] introduced an algorithm for computing fractional integrals
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and derivatives and applied it for solving problems of the calculus of variations of fractional order.
Fractional integral inequalities (FIIs) and its applications have received considerable attention from researchers and mathe-

maticians during the past few decades. Recent research uses a variety of fractional integral operators and focuses on different
forms of Fractional integral inequalities (FIIs). (see, e.g., [10]-[16], [21]). Here the authors have established various types of
inequalities and some other results by utilizing the Saigo–Maedafractional integral operator.
Recently, Purohit and Raina [16] used Saigo fractional integral operators to investigate several integral inequalities of the
Chebyshev type and established the q-extensions of the major discoveries. In this paper, a few generalised integral inequalities
for synchronous functions connected to the Chebyshev functional are shown using the fractional hypergeometric operator
developed by Curiel and Galue [17]. The results attributed to Purohit and Raina [16] and Belarbi and Dahmani [18] are shown
below as particular cases of our findings.

2. Preliminaries
Definition: On [a,b], the two functions f and g are synchronous. if

(
f (x)− f (y)

)(
g(x)−g(y)

)
≥ 0, f or any x,y ∈ [a,b] (2.1)

Riemann-Liouville fractional integral operator:
Joseph Liouville (1832) introduced the Riemann Liouville integral operator which included the definition given by Bernhard
Riemann [15]. It is first significant definition which fulfilled almost all the requirements of a fractional calculus operator.
Named in honour of Riemann and Liouville, this operator is defined as

aIα
x f (x) =a D−α

x f (x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f (t)dt (2.2)

where a is arbitrary but fixed point.
The Riemann-Liouville operator [15] has its importance in physical science where it exists in the theory of linear ordinary
differential equations.

Weyl Fractional Integral Operator:
The Weyl fractional integral operator [1] is defined as:

xW α
∞ f (x) =

1
Γ(α)

∫
∞

x
(t− x)α−1 f (t)dt; −∞ < x < ∞. (2.3)

and

−∞W α
x f (x) =

1
Γ(α)

∫ x

−∞

(x− t)α−1 f (t)dt; −∞ < x < ∞. (2.4)

Generalizing both the Riemann-Liouville operator [15] and the Weyl-operator [1], Oldham and Spanier [19] defined the familiar
differ-integral operator aDα

x as follows:

aDα
x =

1
Γ(−α)

∫ x

a
(x− t)−α−1 f (t)dt; Re(α)< 0

=
dm

dxm aDα−m
x f (x); 0 < Re(α)< a (2.5)

here ‘m’ is positive integer, α is complex and Re(α)> 0.
Erdelyi-Kober Operators:
Erdelyi and Hermann (1940) [20] introduced the fractional integral operators namely Erdelyi-Kober operators. These operators
are defined as follows:

Eα,η
0,x f (x) = Iα,0,η

0,x f (x) =
x−α−η

Γ(α)

∫ x

0
(x− t)α−1tη f (t)dt, Re(α)> 0. (2.6)
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and

Kα,η
x,∞ f (x) = Jα,0,η

x,∞ f (x) =
xη

Γ(α)

∫
∞

x
(t− x)α−1t−α−η f (t)dt, Re(α)> 0. (2.7)

when η = 0, [21] reduces to Riemann-Liouville operator, that is

I0,α
x f (x) = x−α

0 Iα
x f (x). (2.8)

and for η = 0, [16] reduces to Weyl operator, that is

K0,α
x f (x) = x−α

0 W α
x f (x). (2.9)

The Saigo’s Operator:
Saigo [22] introduced this operator after studying the Euler-Darboux equation [23], which is a partial differential equation with
boundary conditions.
For real numbers α > 0,β and η the Saigo operator, involving hypergeometric function is defined as [22]:

Iα,β ,η
0,x f (x) =

x−α−β

Γ(α)

∫ x

0
(x− t)α−1

2 F1(α +β ,η ;α;1− t
x
) f (t)dt

(
Iα,β ,η
0+ f

)
(x) =

(
d
dx

)k(
Iα+k,β−k,η−k
0+ f

)
(x)

For Re(α)≤ 0,k = [−Re(α)+1], it takes the form

Jα,β ,η
x,∞ f (x) =

1
Γ(α)

∫
∞

x
(t− x)α−1t−α−β

2 F1(α +β ,−η ;α;1− x
t
) f (t)dt, Re(α)> 0. (2.10)

(
Iα,β ,η
0− f

)
(x) =

(
−d
dx

)k(
Iα+k,β−k,η
0− f

)
(x), Re(α)≤ 0,k = [−Re(α)+1] (2.11)

(
Dα,β ,η

0+ f
)
(x) =

(
I−α,−β ,α+η

0+ f
)
(x) =

(
d
dx

)k(
I−α+k,−β−k,α+η−k
0+ f

)
(x) (2.12)

Re(α)> 0,k = [Re(α)+1](
Dα,β ,η

0− f
)
(x) =

(
I−α,−β ,α+η

0− f
)
(x) =

(
−d
dx

)k(
I−α+k,−β−k,α+η

0− f
)
(x) (2.13)

Re(α)> 0,k = [Re(α)+1]
The Saigo-Maeda Operator:
In 1996 Saigo-Maeda [23] extended the fractional integral operators defined by Saigo [22]. The generalized fractional integral
operators are defined as:

Iµ,µ ′,ν ,ν ′,η
0,x f (x) =

x−µ

Γ(η)

∫ x

0
(x− t)η−1t−µ ′F3(µ,µ

′,ν ,ν ′;η ;1− t
x

;1− x
t
) f (t)dt (2.14)

where µ,µ ′ > 0,Re(η)> 0,ν ,ν ′ are real number.(
Iµ,µ ′,ν ,ν ′,η
0+ f

)
(x) =

(
d
dx

)k(
Iµ,µ ′,ν+k,ν ′,η+k
0+ f

)
(x) (2.15)

Re(η)> 0,k = [−(Re(η)+1]

Iµ,µ ′,ν ,ν ′,η
x,∞ f (x) =

x−µ

Γ(η)

∫
∞

x
(t− x)η−1t−µ F3(µ,µ

′,ν ,ν ′;η ;1− x
t

;1− t
x
) f (t)dt, (2.16)
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where µ,µ ′ > 0,Re(η)> 0,ν ,ν ′ are real number.(
Iµ,µ ′,ν ,ν ′,η
0− f

)
(x) =

(
−d
dx

)k(
Iµ,µ ′,ν ,ν ′+k,η+k
0− f

)
(x) (2.17)

where Re(η)≤ 0,k = [−(Re(η)+1](
Dµ,µ ′,ν ,ν ′,η

0+ f
)
(x) =

(
I−µ ′,−µ,−ν ′,−ν ,η
0+ f

)
(x) =

(
I−µ ′,−µ,−ν ′+k,−ν ,η+k
0+ f

)
(x) (2.18)

where R(η)> 0,k = [Re(η)+1](
Dµ,µ ′,ν ,ν ′,η

0− f
)
(x) =

(
I−µ ′,−µ,−ν ′,−ν ,η
0− f

)
(x) =

(
−d
dx

)k(
I−µ ′,−µ,−ν ′,−ν+k,−η+k
0+ f

)
(x) (2.19)

where µ,µ ′,ν ,ν ′,η ∈C,(R(η)> 0) and x > 0, Re(η)> 0,k = [Re(η)+1] and F3(.) is Appell′s f unction.

3. Main Results
Theorem 3.1. Assume u and v are two positive integrable and synchronous mappings on [0,∞]. Suppose there exists four

positive integrable mappings m1,m2,n1 and n2 such that:

0 < m1(t)≤ u(t)≤ m2(t), and 0 < n1(t)≤ v(t)≤ n2(t) (t ∈ [0,x],x > 0) (3.1)

then the following inequality holds true:

Ka,b
0,y {n1n2u2}x×Ka,b

0,y {m1m2v2}x≤ 1
4

(
Ka,b

0,y {(m1n1 +m2n2)uv}

)2

. (3.2)

Proof: By using the relations that are given in (3.1), for t ∈ [0,x], for all x > 0, we can easily have:(
m2(t)
n1(t)

− u(t)
v(t)

)
≥ 0. (3.3)

(
u(t)
v(t)
− m1(t)

n2(t)

)
≥ 0. (3.4)

On multiplying equations (3.3) and (3.4) we get,(
m1(t)n1(t)+m2(t)n2(t)

)
u(t)v(t)≥ n1(t)n2(t)u2(t)+m1(t)m2(t)v2(t). (3.5)

Consider the following function F(x, t) defined by:

F(x, t) =
y−a−b

Γ(a)
tb(y− t)a−1 (3.6)

Then multiplying both sides of (3.5) by F(y, t) and integrate w.r.t to t from 0 to x and using definition (2.6)

Ea,b
0,x {(m1n1 +m2n2)uv}x≥ Ea,b

0,x {n1n2u2}x+Ea,b
0,x {m1m2v2}x.

Using A.M-G.M inequality , we get

Ea,b
0,x {(m1n1 +m2n2)uv}x≥ 2

√
Ea,b

0,x {n1n2u2}x×Ea,b
0,x {m1m2v2}x.
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Further on simplifying above equation, we get

Ea,b
0,y {n1n2u2}x×Ea,b

0,y {m1m2v2}x≤ 1
4

(
Ea,b

0,y {(m1n1 +m2n2)uv}

)2

.

This complete proof of the theorem.
Theorem 3.2. Assume u and v are two positive integrable and synchronous mappings on [0,∞]. Suppose there exists four

positive integrable mappings m1,m2,n1 and n2 such that:

0 < m1(t)≤ u(t)≤ m2(t), and 0 < n1(t)≤ v(t)≤ n2(t) (t ∈ [0,x],x > 0) (3.7)

then the following inequality holds true:

Iα,α ′,β ,β ′,γ
0+ {n1n2u2}x× Iα,α ′,β ,β ′,γ

0+ {m1m2v2}x≤ 1
4

(
Iα,α ′,β ,β ′,γ
0+ {(m1n1 +m2n2)uv}

)2

. (3.8)

Proof: By using the relations that are given in (3.7), for t ∈ [0,x],∀x > 0,we can easily have:(
m2(t)
n1(t)

− u(t)
v(t)

)
≥ 0. (3.9)

(
u(t)
v(t)
− m1(t)

n2(t)

)
≥ 0. (3.10)

On multiplying equations (3.9) and (3.10) we get,(
m1(t)n1(t)+m2(t)n2(t)

)
u(t)v(t)≥ n1(t)n2(t)u2(t)+m1(t)m2(t)v2(t). (3.11)

Consider the following function F(x, t) defined by:

F(x, t) =
x−α

Γ(γ)
(x− t)γ−1F3

(
α,α ′,β ,β ′;γ;1− x

t
,1− t

x

)
. (3.12)

Then multiplying both sides of (3.11) by F(x, t) and integrate w.r.t to t from 0 to x and using definition (2.14)

Iα,α ′,β ,β ′,γ
0+ {(m1n1 +m2n2)uv}x≥ Iα,α ′,β ,β ′,γ

0+ {n1n2u2}x+ Iα,α ′,β ,β ′,γ
0+ {m1m2v2}x. (3.13)

Using A.M-G.M inequality, that is

(a+b)
2

≥
√

ab, a,b ∈ R

we get

Iα,α ′,β ,β ′,γ
0+ {(m1n1 +m2n2)uv}x≥ 2

√
Iα,α ′,β ,β ′,γ
0+ {n1n2u2}x× Iα,α ′,β ,β ′,γ

0+ {m1m2v2}x.

Further on simplifying above equation, we get

Iα,α ′,β ,β ′,γ
0+ {n1n2u2}x× Iα,α ′,β ,β ′,γ

0+ {m1m2v2}x≤ 1
4

(
Iα,α ′,β ,β ′,γ
0+ {(m1n1 +m2n2)uv}

)2

.

This completes the proof.
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4. Special Cases
In this section, we discuss some of the important special cases of the main results established above.

Corollary (1): If we take β ′ = γ = 0 in the theorems (3.2) we get well known results based on Saigo type fractional operator
reported in [24], which is as follows:

Iα,α ′,β
0+ {n1n2u2}x× Iα,α ′,β

0+ {m1m2v2}x≤ 1
4

(
Iα,α ′,β
0+ {(m1n1 +m2n2)uv}

)2

(4.1)

Corollary (2): If we take, α ′ = 0 in the Corollary (1), we get well known results based on Erdelyi-Kober type fractional
operator reported in [11].

Kα,β
0+ {n1n2u2}x×Kα,β

0+ {m1m2v2}x≤ 1
4

(
Kα,β

0+ {(m1n1 +m2n2)uv}

)2

(4.2)

Corollary (3): If we take, β = 0 in the Corollary (2), we get well known results based on Riemann-Liouville type fractional
operator reported in [24].

Rα

0+{n1n2u2}x×Rα

0+{m1m2v2}x≤ 1
4

(
Rα

0+{(m1n1 +m2n2)uv}

)2

(4.3)

5. Results and Discussions
We conclude our investigation by stating that the findings presented in this paper are all original and significant. First, using

a Saigo-Maeda type fractional integral operator, we have created a number of inequalities and generated a number of special
cases for the operators namely Saigo type fractional operator, Erdelyi - Kober type fractional operator and Riemann-Liouville
type fractional operator.
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