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Abstract
Several models based on discrete and continuous fields have been proposed to comprehend residential criminal dynamics. Thisstudy introduces a two-dimensional model to describe residential burglaries diffusion, employing Lévy flights dynamics. Acontinuous model is presented, introducing bidimensional fractional operator diffusion and its differences with the 1-dimensionalcase. Our results show, graphically, the hotspot’s existence solution in a 2-dimensional attractiveness field, even fractionalderivative order is modified. We also provide qualitative evidence that steady-state approximation in one dimension by seriesexpansion is insufficient to capture similar original system behavior. At least for the case where series coefficients have a linearrelationship with derivative order. Our results show, graphically, the hotspot’s existence solution in a 2-dimensional attractivenessfield, even if fractional derivative order is modified. Two dynamic regimes emerge in maximum and total attractiveness magnitudeas a result of fractional derivative changes, these regimes can be understood as considerations about different urban environments.Finally, we add a Law enforcement component, embodying the “Cops on dots” strategy; in the Laplacian diffusion dynamic, globalattractiveness levels are significantly reduced by Cops on dots policy but lose efficacy in Lévy flight-based diffusion regimen. Thefour-step Preditor-Corrector method is used for numerical integration, and the fractional operator is approximated, getting theadvantage of the spectral methods to approximate spatial derivatives in two dimensions.
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1 Introduction

The present work is motivated by the impact that insecurity produces for an urban area; evidently, there are different types of crimes,and each one must be studied to later design prevention policies. This work studies criminal agents’ displacement effect, specialized inhouse robbery, with the possibility of making long journeys in a short time, described by Lévy Flights in a two-dimensional environment.We consider that this way of describing criminal diffusion is more realistic than models based on conventional diffusion. Understandingthe mobility of certain social groups within an urban area is of great relevance for policymakers, especially displacements at specificgeographical locations detrimental to security and forming specific patterns [1]. Several of today’s models focus on the displacement ofresidential burglaries, this from the pioneering work by Short et al. [2, 3]. Both approximations show more significant criminal activityareas, known as hotspots. This work inspired numerous modifications, generalizations, and theoretical studies that described dynamical
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properties, as in references [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. In these models, a local random walk with a certain degree of statistical bias definesdiffusion dynamics among the criminal population. The core of model dynamics is that home thief’s agents have a higher stochasticalpreference for specific targets known as the highest attractive zones. Several studies have been used to assess the stability of certain kindsof solutions to crime phenomena, as presented in references [12, 13, 14, 15]. This dynamic belongs to the so-called reaction-diffusionmodels, which are known to comprise a broad set of spatial distribution patterns [16]. Biased Brownian motion displacement is the kernelof the agent version when the agents are sensitive to environmental gradients. In the continuum limit, this phenomenon is modeled by ofcross-diffusion equation. It is represented by Keller-Segel operator [17, 18]. One of the cross-diffusion attributes is that the incrementsrepresent a local displacement, where the criminal agent moves from site i to site j, and j is in the neighborhood of i. A more general modelallows agents to travel to sites outside the neighborhood. These models are known as non-local diffusion and belong to the so-calledanomalous diffusion models.
A non-local diffusion model would assume that criminals can make long jumps in a short time, thus moving towards more attractive areas.For example, motorized mobility is an influencing factor. The cause that house burglars would incur greater risk when leaving a familiararea may be due to real-time information received by other thieves. Sharing/receiving this information dynamically with other criminalsthey compete with may seem unlikely. However, Calvo et al. [19] provide an analysis of conditions under which different criminal agentsare likely to collaborate. According to this, it is established that, once a home robbery agent has moved away to a specific area, he again usesrandom walking as a strategy to locate a target. Chaturapruek et al. [6] propose that so-called Lévy flights can describe that above dynamic,where the probability distribution of jumps length of robbery agents follows an inverse power law distribution. Thus, criminal agentscan move from site i to j, where j is no longer part of the i neighborhood. Considering continuous limit, the fractional Laplacian operatorappears analogously to the fractional Gierer Meinhardt model [20]. A particular property of fractional operator hotspots solutions is thatthey decay algebraically. Chaohao et al. [11] show that if the jump length is truncated, then a version of the conventional Laplacian diffusionmodel is obtained. It is considered that criminal agents do not leave a specific area, and the unique modification occurs in the diffusioncoefficient. That study is carried out in one dimension for discrete and continuous cases; it also incorporates police effects on the criminal’sattractiveness perception. S. Crúz-García et al. [21] propose an alternative method to Lévy flights, applying stochastic interference to theJones et al. model [4], which contemplates large jumps from a small set of criminal agents at each time step. S. Crúz also found that ifpolice presence is increased numerically in central hotspots, they will fragment into smaller areas. Other studies are based on discreteagent algorithms that incorporate Lévy flights in two dimensions and analyze patterns formation, depending on the model’s parameters [22].
The police dissuasive influence is a multifaceted problem, and there are various proposals to be addressed, depending on the environmentalconditions and the police agency’s resources [23]. To illustrate this, the work of Jones [4] shows how police presence affects attractivenesswhen this is incorporated into the law enforcement scheme. Jones analyzes different strategies, among which Cops on the dots andPeripheral interdiction stand out; results from these studies depend on the urban environment’s characteristics. Camacho [9] also comparesthese two strategies with one based on region partitioning into smaller areas (beats), within which cops can move, although they are notable to cross borders. Law enforcement has also been incorporated into one-dimensional fractional diffusion [6], based on the cops on thedots strategy; however, the parameter of criminal density diffusion are modified. In his work, Chaohao [11] also incorporates two forms ofpolice agent’s motion, one governed by biased Brownian diffusion and the second by Lévy flights. The main difference is that police shiftsbased on Lévy flights reach the steady-state solution in a shorter time.
The present work shows a two-dimensional extension of the Chaturapruek continuous model, incorporating law enforcement with Cops ondots strategy. These models have been published at the agent level (discrete) for the two-dimensional case, using Lévy flights, for exampleBrantingham et. al. [1], but this work proposes a deduction for the continuous two-dimensional case based on the one already made byChaturapruek for one dimension. An interesting aspect is that it appears in our deduction, it is a new function that is the equivalent ofRiemman’s ζ for two dimensions, and that modifies the criminal diffusion coefficient. The main aim is to show numerically that hotspotsolutions in attractiveness bi-dimensional fields are preserved by varying derivative order (in not truncated Lévy flights) using a spectralapproximation to bi-dimensional fractional derivative operator. However, they may change shape or intensity. We also present criminalpopulation spatial distribution patterns that reveal a more complex dynamic than the attractiveness field and exhibit strong dependenceon the fractional order. The Cops on the dots strategy assumes that police officers have restricted movements, this differentiates themodeling behavior between house burglars with law enforcement. The investigatory police, who work within broader limits when apply-ing their authority, represent a group that Lévy’s flights might better model. However, in the present work, we do not consider this approach.
This paper is divided as follows; in Section 2, we introduce a model deduction for a two-dimensional problem. Subsection 2 presents thenumerical method for model integration. Section 3 presents a qualitative analysis for stationary solutions, using a simplified attractivenessversion in one dimension. A numerical sensitivity analysis of the model concerning the derivative order is performed in Section 4. InSection 5, we deduce the component that models law enforcement and present numerical results by changing fractional order, holding theCops on dots strategy. In the final of this manuscript, a nomenclature section is presented.
2 Continuum fractional model formulation

The two-dimensional model is deduced regarding an analogous formulation of a one-dimension problem by Chaturapruek [6]. The scenariooccurs in a lattice Ω with size N × N, and the lattice spacing is l = 1/N. To simplify, we initiate the model derivation without including lawenforcement. The position of each site d in Ω is represented by d = (d1, d2) ∈ R2. At site d and time t, there is an attractiveness Ad(t), whichis made of two components, Ad(t) = A0
d + Bd(t), where A0

d is the intrinsic attractiveness and Bd(t) is time-dependent attractiveness. Theevolution of Ad(t) depends on whatever occurs around it, i.e., a criminal agent can change attractiveness in a time interval δt by decidingwhether or not to attack a d site, and he does so with the probability
pd(t) = ϵAd(t)

1 + ϵAd(t) , (1)
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where ϵ > 0 represents the effectiveness of the attractiveness at site d. Therefore, an increase in Bd in the time interval δt depends on Ed(t),which indicates the number of criminal attacks on the same site during the same time interval
Bd(t + δt) = Bd(t) + θEd(t),

here θ is the enhancement in attractiveness for a single criminal agent. Without considering that a criminal attack can exert influence inneighborhood (broken window effect [24]), the expression for Bd(t) is
Bd(t + δt) = Bd(t)(1 – ωδt) + θEd(t),

where ω represents attractiveness decay rate. Permitting the inclusion of the diffusive term for attractiveness, we have
Bd(t + δt) = [(1 – η∗)Bd(t) + η∗

d′

∑
d′

Bd′ (t)](1 – ωδt) + θnd(t)pd(t), (2)

here η∗ > 0 represents of attractiveness influence in position d to its immediate neighbors d′, for this work, a regular Cartesian latticeis used, with d′ = 4. Therefore, replacing in Eq. (2) the number of criminal attacks on site d in the time interval δt with the number ofcriminals nd(t), also replacing the probability that they will attack pd(t) and take the limit l,δt → 0, keeping fixed the radius l2/δt, anda new parameter ϵ∗ = θδt, which represents the influence of the criminal presence in each position d, in a time interval (t, t + δt) (thedetailed derivation can be seen in the work of Short et al. [2]), we have
∂B(x, t)

∂t = η∗l2
4δt ∆B(x, t) – ωB(x, t) + ϵ∗ l2

δtρ(x, t)A(x, t), (3)
where ρ(x, t) = liml→0 nd(t)/l2 is the criminal density, and the position x ∈ [0, 1] × [0, 1] is defined as

x = (x1, x2) = lim
N→∞,l→0(d1l, d2l), d1, d2 ∈ [1, N].

For modeling criminal displacement agents in 2-D, we have the probability that a criminal will arrive at site d = (d1, d2) from i = (i1, i2),analogously to that defined by Chaohao et al. [11] for 1-D
qi→d(t) = wi→d∑

j∈Z2,j ̸=i wi→j
, (4)

the relative weight wi→d is defined as

wi→d(t) =


Ai(t)
lµ||i–d||µ , 1 ≤ ||i – d|| < ∞
0, other case , (5)

with || · || the Euclidean norm. Lévy flight is an anomalous diffusion, where the density function of jump length probability possesses analgebraic decay [20], so µ is the exponent of the underlying power law. Thus, can be expressed the following
∑

j∈Z2,j ̸=i
wi→j = ∑

j∈Z2,j ̸=i

Aj(t)
lµ||i – j||µ = ∑

j∈Z2,j ̸=i

Aj(t) – Ai(t)
lµ||i – j||µ + ∑

j∈Z2,j ̸=i

Ai(t)
lµ||i – j||µ . (6)

On the other hand, bearing in mind the Riemann sum definition, on the continuum limit l << 1 for D dimensions, the operator L can beexpressed as
Lf(x) = 1

lD

∫
y∈RD

f(y) – f(x)||y – x||µ dy ≈
∑

d∈ZD,d̸=i

f(y) – f(x)
lµ||y – x||µ . (7)

Eq. (7) can be compared with respect to the fractional operator definition in D dimensions [20]
–(–∆)sf(x) = CD,2s

∫
RD

f(y) – f(x)
||y – x||D+2s dy, CD,2s = 22s Γ((D + 2s)/2)

πD/2|Γ(–s)| , 0 < s, (8)
where f(x) : RD → R. To simplify notation, it is defined –(–∆)s = ∆s [6], therefore, is possible to relate L with ∆s as follows

Lf(x) = l–DCD,2s∆
sf(x), and µ = D + 2s. (9)

For bi-dimensional case (D = 2) implies µ ∈ (2,∞) (4 coincide with the usual Laplacian operator). For cases where the order of thederivative s ∈ Z, the operator ∆s is a local property (conventional differentiability) and loses this local property when s is a non-integer[25]. A notable difference between cases 1 and 2-dimensions is explained in the following table:Prefactors 2 and 4 in Table 1 are a consequence of the characteristic symmetries of the corresponding dimension. Non-integer values in thenorm have their origin in diagonals that connect the point i with j.
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Type of neighbors D = 1 D = 2(i, j) |i – j| = ||i – j|| =first 1 1, √2second 2 2, √5, 2√2third 3 3, √10, √13, 3√2r-th r r, √r2 + 12, √r2 + 22, ..., r
√2∑

j∈ZD,j ̸=i
1||i–j||µ = 2 ∑∞

r=1 1
rµ 4 ∑∞

r=1 1[∑r
α=0

√(r2+α2)]µ
Table 1. The development in a series of accessible distances between the position i with j is shown.

Proposition 1 For µ ≥ 2 and r ≥ 1 the following inequality is satisfied:

1
rµ ≥

1
[∑r

α=0 √
r2 + α2]µ .

Proof 1 In essence, it is necessary to show rµ ≤ [∑r
α=0 √

r2 + α2]µ, in particular for µ ≥ 2 , expanding the series and factorizing terms, we need to
prove

r ≤
r∑

α=0
√

r2 + α2 = r
√

r
[ r(r + 1)(2r + 1)6

],

but, r(r + 1)(2r + 2)/6 = 1 + 22 + 32 . . . + r2 ≥ 1 and r ≥ 1, then
√

r
[ r(r + 1)(2r + 1)6

]
≥ 1,

therefore is satisfied rµ ≤ [∑r
α=0 √

r2 + α2]µ and the Proposition 1.

Using Proposition 1, it is possible to show
∞∑
r=1

1
rµ ≥

∞∑
r=1

1
[∑r

α=0
√(r2 + α2)]µ ,

thus, we can define
z(µ) = 2 ∞∑

r=1
1

rµ = 2ζ(µ), and Z(µ) = 4 ∞∑
r=1

1
[∑r

α=0
√(r2 + α2)]µ , (10)

where ζ(µ) is the Riemann function and Z(µ) is a new function adapted to the 2-dimensional case, and is satisfied 12 Z(µ)≤z(µ) for µ > 2,this implies that Z(µ) is well defined, therefore,
∑

j∈Z2,j ̸=i
wi→j = LAi(t) + l–µZ(µ)Ai(t),

so, the probability qi→d could be expressed in terms of L and Z = Z(µ)
qi→d = Ad(t)

||i – d||µ
( 1

ZAi(t) – LAi(t)lµ
Z2A2

i (t)
). (11)

The result of Eq. (11) is used below in Eq. (13). The derivation of the 2-D model, in essence, is the one developed by Chaturapruek [6] for 1-D,which is clearly explained. However, an outline of the deduction is shown below.
The criminal dynamics agents can be highly complex, so limiting the model’s scope is required. For this, the following assumptions areproposed:
• At position i for each time interval δt, two things are possible: (a) Each criminal commits a crime with probability Aiδt, (b) He moves toanother location direction that is biased by the attractiveness distribution field.• New criminals are being created everywhere, with a Γ spawn rate. This property allows a regular population of criminals to movecontinuously to more attractive places.• House burglars can only move from a site i to a site d by means of qi→d or otherwise be generated at d, at a rate Γ .• A portion λ, proportional to house burglars ni(t), can cease to operate, leaving without committing a crime.

Expression (12) models the criminal dynamics, established on previous assumptions, such that
nd(t + δt) = ∑

i∈Z2,i ̸=d
ni(t)(1 – Ai(t)δt) · qi→d – λnd(t)δt + Γδt, (12)
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subtracting nd(t) from both sides and dividing everything by δt, we have

nd(t + δt) – nd(t)
δt = 1

δt

[ ∑
i∈Z2,i ̸=d

ni(t)(1 – Ai(t)δt) · qi→d – nd(t)
]

– λnd(t) + Γ , (13)

considering only the term into the brackets of the previous equation, and replacing qi→d from Eq. (11)
∑

i∈Z2,i ̸=d
ni(t)(1 – Ai(t)δt)

[
Ad(t)

||i – d||µ
( 1

ZAi(t) – LAi(t)lµ
Z2Ai(t)2

)] – nd(t)

=Ad(t)
[( ∑

i∈Z2,i ̸=d

ni(t)
Ai(t) (1 – Ai(t)δt) 1||i – d||µZ

)
– nd(t)

Ad(t)
]

(14)

– ∑
i∈Z2,i ̸=d

ni(t)(1 – Ai(t)δt) Ad(t)
||i – d||µ

LAi(t)lµ
Z2A2

i (t) ,

based on the fact that nd(t) = ∑
i∈Z2,i ̸=d

ni(t)||i–d||µZ , truncating to order O(lµ,δt) and neglecting terms O(lµδt, l2µ) [6], we have

≈Ad(t) ∑
i∈Z2,i ̸=d

[ ni(t)
Ai(t) – nd(t)

Ad(t)
||i – d||µZ

– ni(t)
||i – d||µ

(LAi(t)lµ
A2

i (t)Z2
) – δt ni(t)

||i – d||µZ

]
,

using the right side of the definition of operator L in equation (7)
≈ Ad(t)

[
lµ
Z L

( nd(t)
Ad(t)

) – nd(t)LAd(t)lµ

A2
d(t)Z

– δtnd(t)
]

, (15)
substituting the last result (15) in Eq. (13), applying the limit l,δt → 0, and using Eq. (9) that relates the operator L, with ∆s, we have

nd(t + δt) – nd(t)
δt = lµ

δtZC2,2s

[
A(x, t)∆s( n(x, t)

A(x, t)
) – n(x, t)

A(x, t)∆s(A(x, t))
]

– n(x, t)A(x, t) – λn(x, t) + Γ , (16)
in agree to equation (8) for the case D = 2

C2,2s = 22sΓ(s + 1)
π|Γ(–s)| ,

dividing Eq. (16) by l2, using the limit δt, l → 0, and the definition ρ(x, t) = liml→0 nd(t)/l2, we obtain the Lévy Flight Model approximationfor criminal density ρ(x, t), as shown in Eq. (18). On the other hand, from equation (3), is obtained directly Eq. (17) (using A(x, t) =
B(x, t) + A0(x)), as follows

∂A(x, t)
∂t = η∆(A(x, t) – A0(x)) – ω(A(x, t) – A0(x)) + ϵρ(x, t)A(x, t), (17)

∂ρ(x, t)
∂t = M

[
A(x, t)∆s

(
ρ(x, t)
A(x, t)

)
– ρ(x, t)

A(x, t)∆s(A(x, t))] – A(x, t)ρ(x, t) – λρ(x, t) + γ.
(18)

With the following definitions:
η = η∗l2

4δt , ϵ = ϵ∗l2, M = lµ–2
δtZC2,2s

, γ = Γ

l2 . (19)

Numerical integration

A straightforward way to approximate the two-dimensional fractional Laplacian operator is by Fast Fourier Transform (FFT) properties[26, 27]. The underlying factor that allows us to take advantage of the Fourier transform is that by projecting the fractional Laplacianoperator to the Fourier modes space, differential operations are transformed into algebraic operations, which is relatively simple to compute.Subsequently, the inverse transform is applied, thus completing the cycle to approximate the fractional operator. Therefore, the spectralapproximation [28] to ∆s is expressed as follows:
∆sA = real{F–12D

{ – (kx2s + ky2s)F2D{A}}},
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δt

µ = 3.0 ◦

µ = 2.5 ∗

(a)

eδt δt2|λi|

i

(b)

2.868

Figure 1. (a) Relative error approximation edt as function of δt = {0.5, 0.05, 0.01, 0.001} after integrating a time t = 200 using parameters defined in Fig. 2. (b) Values δt2|λi|,
i = 1 . . . N2 of discrete space operator of attractiveness. It can be seen that the stability condition δt2|λmax| < 2.868 is satisfied, with λmax = max{λi}.

F2D represents the Fourier transform in two dimensions, and kx, ky ∈ Z, are the wavenumbers in each orthogonal direction, respectively.Time derivatives (∂A/∂t, ∂ρ/∂t) are solved via a succession between an explicit and an implicit method, as explained below. Let
f(At,ρt) =

(
∂A(x,t)

∂t
∂ρ(x,t)

∂t

)
.

Step 1: A predictive step is made according to the explicit Adams-Bashforth method [29]
(Ãt+δt, ρ̃t+δt) = (At,ρt) + dt24

[55f(At,ρt)) – 59f(At–δt,ρt–δt) + 37f(At–2δt,ρt–2δt) – 9f(At–3δt,ρt–3δt)]. (20)
Step 2: A correction stage is now implemented, following the implicit Adams-Moulton method

(At+δt,ρt+δt) = (At,ρt) + dt24 [9f(Ãt+δt, ρ̃t+δt) + 19f(At,ρt) – 5f(At–δt,ρt–δt) + f(At–2δt,ρt–2δt)]. (21)
A successive combination at each time step into explicit (20), and implicit (21) integration procedure, conforms a four-step Predictor-Corrector method (PC4) [30]. Three additional steps are generated by applying a fourth-order Runge-Kutta method (RK4) to initiatethe integration process. The reason for using PC4 is because of its lower computational cost compared to RK4 [31]. However, existsalternatives, for example, the proposed by C. Tadjeran and M. Meerschaert [32], explicitly designed for fractional operators. To evaluatethe convergence of the numerical solution, the definition of relative error eδt = max{[At+δt – At]/At} is used. The calculations of eδtwith δt = {0.5, 0.05, 0.01, 0.001} are presented in graph (a) of Fig. 1 for µ = {2.5, 3}, the rest of parameters are defined in Fig. 2. Onemethod to determine spectral stability in time depending on partial differential equations is to calculate the eigenvalues λi, i = 1 . . . N2
of the spatial discretization of the operator ∆∗ = η∆ – ω + ϵρ(t, x) scaled by δt2 (two dimensions) [28]. Stability condition for PC4 is
δt2|λmax| < 720/251 ≈ 2.868 [33]. In graph (b) of Fig. 1, the eigenvalues of the discretization of the spatial operator of attractiveness Ascaled by δt2 are shown.
In Fig. 2 initial condition and numerical integration is shown. The parameter values are fixed in N = 256, dt = 1 × 10–3, integration t = 200,and η∗ = 3.94, λ = 0.05, ω = 0.05, Γ = 0.019, ϵ = 0.10. (a) Initial condition is an attractiveness random map, the initial burglaries density
ρ(x)0, is a homogeneous distribution fixed at 0.2 and boundary conditions are periodic. In (b) µ = 4.40 corresponds with s = 1.20. Maximumattractiveness intensity showed an increase compared to the initial condition, achieving a maximum of ≈ 0.8. (c) µ = 2.50 correspondingwith derivative order s = 0.25, in this case, dominate Lévy flights over Gaussian diffusion, it can be seen how attractiveness is concentratedin two principal regions (central hotspots) achieving a maximum of ≈ 1.6. The non-local effect of fractional operator explains that thisplays a relevant role in how the crime field influences attractiveness distribution.
The preceding numerical examples show relatively distant cases compared to the fractional order. The most relevant aspect is the formationof intense few hotspots (central hotspots) in issues where Lévy flights dominate. For example, this result has particular interest for modelingmetropolitan areas where attractiveness does not manifest homogeneous space of small hotspots distribution. Still, instead, a few hotspotsrise, as is usually the case with city centers, as shown in [21]. In the case of s ≈ 1 were recovered Laplacian diffusion results.
3 Approximate analysis for stationary solutions in one dimension

For some nonlinear phenomena under specific continuity conditions, can be done a study through a power series approximation. This ideais based on the assumption that solutions are analytical functions concerning some of their parameters. The series length is infinite, but an
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(a) Initial condition

A(x, t = 200)

(b) s = 1.20

A(x, t = 200)

(a) s = 0.25

A(x, t = 200)

Figure 2. (a) Initial condition and (b-c) final state after integrating equations (17), (18) for a time t = 200. Boundary conditions are periodic for both examples. The parameters
are fixed in N = 256, η∗ = 3.94, λ = 0.05, ω = 0.05, Γ = 0.019 and ϵ = 0.10. Case (b) µ = 4.40 corresponding with s = 1.20, the number of hotspots has been reduced
compared to the initial condition, but the magnitude of the intensity has increased. (c) µ = 2.50 equivalent to s = 0.25, in this instance Lévy flights (anomalous diffusion),
dominate over Laplacian diffusion, the formation of hotspots with a mayor intensity is observed (respect to (b)). These can be explained as the non-spatial locality effect of
the fractional operator, which allows the crime density field ρ to have a more significant influence on the appearance of a few high-intensity hotspots in the attractiveness A.

approximate model is obtained by truncating to a specific power order. The precision radius is usually a function of the power order trimmedin the series. Expanding series analysis is applied to estimate the local phenomenology of the original system through an approximatemodel. There are studies using series expansion on stationary solutions for the Short model [2, 7, 10]. Other studies have also been made toassess their stability [3, 8, 15, 34] and bifurcation analysis [35, 36]. Our study proposes a series expansion analysis, considering the densityhome burglaries field as an analytical function of attractiveness. A comparable analysis is undertaken in reference [6], although the ansatzfor expansion is different from the one suggested here, as shown below. Using equation (17) in the steady-state i.e. ∂A/∂t = 0, also, considerspecial case A0 = α̃ (constant in all Ω), we propose
η∆A – ωA + ϵAρ(A) + ωα̃ = 0, and ρ(A) = ∞∑

i=0
β̃i(s)Ai. (22)

Replacing ρ(A), dividing by η, and ordering by powers of A, we have
∆A – (ω – ϵβ̃0)

η
A + ϵβ̃1

η
A2 + ϵβ̃2

η
A3 + . . . = –ωα̃

η
,

renaming the coefficients, as β1 = (ω–ϵβ̃0)
η , for i ≥ 2 βi = ϵβ̃i–1

η and α = ωα̃
η , therefore,

∆A – β1(s)A + β2(s)A2 + β3(s)A3 + . . . = –α.
For qualitative analysis, we will work on one dimension (∆A = Axx), and the last expression is truncated to the third power in A. Whichprovides us with a non-homogeneous and non-linear ordinary differential equation

Axx – β1(s)A + β2(s)A2 + β3(s)A3 = –α. (23)
For the analysis, we propose changing the second-order differential equation (23) for two first-order equations, as follows:

Ax = M,
Mx = β1(s)A – β2(s)A2 – β3A3 – α. (24)

One further approximation is required to introduce the functional relationship between βi=1,2,3, with respect to the derivative order s. Ina small disturbances scheme (concerning intrinsic attractiveness), a linear relationship is suggested for the three functions, such that
βi(s) = ais. Fig. 3 presents the numerical solution for this approximation level. In Fig. 3 (a) the configuration space M(x) vs A(x) is plottedfor several values of derivative order s ∈ [0.2, 1.4]. In Fig. 3 (b) Solution of eqs. (24) is shown with coefficients a1 = 100, a2 = 8, a3 = 8,which resemble spike solutions. (c) For the complete model (eqs. (17)-(18) in 1-Dimension) is shown M(x) vs A(x), with parameters
η = 3.874, ω = 0.05, λ = 0.09, Γ = 5 × 10–6, ϵ = 0.04, s ∈ [0.2, 1.4], the initial conditions are A(x, 0) = (1 – cos(2πx)), ρ(x, 0) = 0.1 and thesubjacent attractiveness α = A0(x) = 0.1. (d) Are shown solutions of A(x, t = 200), for different derivative order values s ∈ [0.2, 1.4]. In subFigs. (a)-(d), curves with the maximum amplitude correspond with lower values of s, and the amplitude decrease when s is incremented.Visually, it can be seen that the behavior of the real and approximate solutions are qualitatively different. By tuning the parameters in theapproximate model, the amplitude and width of the curves can be adjusted, however, to modify the shape of the curve a different model isrequired. With this observation, we can say that an approximation by a few terms is not enough to capture the dynamic of the attractivenessrepresented by Eq. (17). Also, the linear relationship between the coefficients βi=1,2,3 and the order of the derivative s, seems not to beadequate to approximate the behavior of the system.
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M(x)

A(x)

s = 0.2

s = 1.4

(a)

A(x)

x(b)

s = 0.2

s = 1.4

(a)
M(x)

A(x)(c)

s = 0.2

s = 1.4

A(x)

x(d)

s = 0.2

s = 1.4

Figure 3. Graphical comparison between complete (eqs. (17) and (18) in 1-dimension) and approximated model (Eq. (24)). (a) Evolution of different derivative order values
s ∈ [0.2, 1.4] for M(x) = ∂A(x)/∂x vs A(x). (b) Spatial distribution of A(x) for s ∈ [0.2, 1.4]. (c) Solution of the complete model (eqs. (17), (18) in 1-dimension) for derivative
order s ∈ [0.2, 1.4]. (d) Spatial distribution of the solution A(x, t = 200) for s ∈ [0.2, 1.4]. The parameters of the approximation (Eq. (24)) are βi(s) = ais with a1 = 100, a2 = 8,
a3 = 8. Parameters of the eqs. (17) and (18) are η = 3.874, ω = 0.05, λ = 0.09, Γ = 5 × 10–6, ϵ = 0.04 and α = A0(x) = 0.1. It is appreciated that an approximation of a few
terms and linear relations of the βi=1,2,3 coefficients and s does not consistently capture the dynamics of the complete model. However, the relation between curve amplitude
and fractional derivative is represented in a qualitative way.
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A(x, t = 200)

(a) s = 0.17

A(x, t = 200)

(b) s = 0.25

A(x, t = 200)

(c) s = 0.29

ρ(x, t = 200)

(d) s = 0.17

ρ(x, t = 200)

(e) s = 0.25

ρ(x, t = 200)

(f) s = 0.29

Figure 4. Numerical attractiveness solution A(x, t), after integrating for t = 200. (a), (b) and (c) represent the attractiveness field for s = {0.17, 0.25, 0.29} respectively. Figures
(d), (e) and (f) correspond to the criminal density distribution field for (a), (b) and (c) respectively. The three scenarios show in the attractiveness field a hotspot’s existence,
coupled spacially with hotspots in the criminal density field. For case (a)-(d), the attractiveness hotspots have a localized and intense dot at the center, and the criminal
density field exhibits similar behavior. In (b)-(d) appears an intense ring around the center of the hotspot. Those phenomena occur in attractiveness and criminal density
fields. In figures (c) -(f), the attractiveness increases marginally concerning the previous cases. The hotspots in crime density are less intense than (a)-(c) and (b)-(e).

4 Numerical analysis of fractional order in 2-dimensions

Using the integration method explained in Subsection 2, several bi-dimensional scenarios were calculated, while varying s. The initialcondition A0(x) for all cases is composed of an array with 4 × 4 Gaussian distributions on the domain Ω = [0, 1] × [0, 1] and periodicboundary conditions. In Fig. 4, the final state is shown after integrating by t = 200 for s = {0.19, 0.25, 0.29}, with parameters η = 3.947∗,
ω = 0.05, λ = 0.05, Γ = 0.0019, ϵ = 0.10. As observed in Figs (a)-(c) (attractiveness) and (d)-(f) (density criminal agents), exist differentbehavior regimes for values of s < 0.45, which is where the Lévy flights dominate over conventional diffusion. Although there are not quitesignificant changes in the attractiveness hotspots magnitude in (a)-(c), there are more noticeable changes in criminal agents densitydistribution (d)-(f). To explain this change is necessary to understand criminal density dynamics, as we hypothesized below. In the spaceof criminal density, Figs. (d)-(f) a descending difference in the magnitude of the hotspot can be observed, while s increases, simultaneouslythe hotspot base becomes wider. The hypothesis is that stochastic flights are longer and directed to the most attractive areas, with greaterprecision, while s < 1. When derivative order s increases, Lévy flights exist, but now they compete with Laplacian diffusion.
In agreement with numerical observations (Fig. 4), there are two-dimensional periodic solutions for different derivative order values
s. However, there are considerable differences between them, analogous to the one-dimensional case reported by Chaturapruek et al.[6]. The magnitude and spatial distribution of the attractiveness field and the criminal density constitute most of these differences. Theresults interpretation is that for s < 1, the fractional operator ∆s manifests its non-local nature. From graphs of Fig. 4, the maximumattractiveness intensity variation is observed by changing parameter s. The two-dimensional system solutions are determined numericallyfor s ∈ [0.17, 1.20]. To analyse results, we determine global properties max[A]/ max[A0] (max for all x on Ω), as a function of s.
In Fig. 5 it is observed how the total attractiveness I[As], defined in equation (25) shifts with respect to the total attractiveness of the initialcondition I[A0]. In graphs (a) and (b) of Fig. 5, both properties are shown, as well as the integration time t = 200. Graph (a) for s < 0.5corresponds to a regime where Lévy flights dominate Laplacian diffusion. The Maximum attractiveness reaches high values comparedto the rest of the graph. The region 0.5 < s shows max As/ max A0 has small variations, but it shows a local maximum at s ≈ 1. In graphs(a)-(b), it is observed that in the case s > 0.5, the attractiveness magnitude remains low (respect to the case s < 0.5) and continues withthis trend, for s explored in this experiment. The hypothesis to explain these two regimens is a behavior change between them from Lévyflights diffusion to one where the Laplacian diffusion has relevant effects or dominates. As a result of the analysis of graphs, it can be saidthat in an environment where criminal agents have high mobility, attractiveness increases significantly for usual Laplacian diffusion.

I[As] = ∫
Ω

As(x, t = Tc)dx and I[A0] = ∫
Ω

A0(x)dx. (25)
In Fig. 5 the substantial increase in both global attractiveness properties, for values of s < 0.45 reveals a significant criminal population isleaving its neighborhood and is continually moving to the most attractive areas. This mechanism is reinforced by a cyclical process and
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max[As]/ max[A0]

s(a)

I[As]/I[A0]

s(b)

Figure 5. In both graphs the parameters are fixed at Tc = 200, η = 3.947, ω = 0.05, λ = 0.05, Γ = 0.0019, ϵ = 0.10 and s ∈ [0.17, 1.20]. (a) Evolution of max[As]/ max[A0],
which measures the maximum attractiveness values in Ω. Graph (b) shows I[As]/I[A0], which represents a total attractiveness measurement in Ω. As the previous graph,
this shows two attractiveness regimes with a transition zone between them, for the same values of Ω, although, there is a significant decrease when s = 1, which corresponds
to the usual Laplacian diffusion. In both graphs, there is evidently a region for values of s < 0.4 where essentially there is great attractiveness, both at the maximum intensity
level, as in case (a), and global attractiveness, as in case (b). The explanation for this increase in attractiveness relates to greater mobility among the criminal population.

is only limited by local diffusion. In fact, for s ≲ 0.37, the numerical solutions show a remarkable increase, as local criminal diffusion isnot enough to delocalize the high attractiveness concentration, and the integration process is numerically unstable. Another excitingaspect is the apparition of a local maximum for s ≈ 1 because evidence of a substantial change occurs within the usual Laplacian diffusionregime (for the case s = 1, the conventional definition of the Laplacian operator is used) in this regime, an intense local diffusion increasethe attractiveness. In Fig. 5 (b) is shown the total attractiveness on Ω, it has a similar trend to that of the graph (a), that is, the globalattractiveness also changes as a function of s.
5 Law enforcement of fractional bi-dimensional model

How police officers engage with the attractiveness field is fundamental to the model dynamics. As mentioned before, there are several lawenforcement strategies for Laplacian diffusion, and each one produces different results [4, 9, 11], particularly in the work of N. Rodriguez[37], a complete study is made of different patterns on hotspot policing. The usual Laplacian diffusion models primarily represent these,and those fractional models represent only one dimension. Two main components maintain the incorporation of police officers: (a)Displacement dynamics over the environment, i.e., displacement rules. (b) The way criminals interact with the environment; what makescriminals perceive particular sites as less attractive. The strategy applied in this work is cops on the dots, considering this as a typical lawenforcement example. Therefore, police agents’ existence modifies criminal attractiveness perception in the following way
Ãd(t) = e–χkd(t)Ad(t), (26)

where χ > 0 represents police influence on criminal perception. The probability that a criminal agent performs an attack on the site d ∈ Ωat time t + δt is expressed as
p̃d(t) = ϵÃd(t)

1 + ϵÃd(t) .
A similar deduction to that described by the equations (1) and (3), is made, for attractiveness in the police presence A(x, t), and residentialburglaries ρ(x, t). In the continuous limit, we have

∂A(x, t)
∂t = η∆A(x, t) – ω(A(x, t) – A0) + ϵθÃ(x, t)ρ(x, t). (27)

In the case of ρ(x, t), the attractiveness change, expressed in equation (26), is exhibited in a variety of probability qi,d to go from a site i to din a (t, t + δt) period, as follows:
qi→d = wi→d∑

d∈Z,d̸=i wi→d
,

where the weight wi→d is defined as
wi→d = Ãd(t)

lµ||i – d||µ ,
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and the sum of the weights is
∑

d∈Z2,d̸=i
wi→d = ∑

d∈Z2,d̸=i

Ãd(t) – Ãi(t)
lµ||i – d||µ + ∑

d∈Z2,d̸=i

Ãi(t)
lµ||i – d||µ .

Using equation (9) for the operator L, and with a similar deduction to that shown in section 2, then we have:
∂ρ(x, t)

∂t = D
[

Ã(x, t)∆s
(

ρ(x, t)
A(x, t)

)
– ρ(x, t)

Ã(x, t)∆s(Ã(x, t))] – Ã(x, t)ρ(x, t) + γ. (28)
Values for D and γ are specified in equation (19). A relevant aspect of the cops on the dots strategy is that those police officers are biasedtowards the most attractive areas. These phenomena generate a masking effect that reduces the attractiveness perception of criminalsconcerning specific places, thus forcing them to move to less attractive areas or disappear from the scene without ever committing a crime.The probability that a police officer will move from site i to site d is

qi→d(t) = Ad(t)∑
i∼d Ai(t) ,

the expected number k of police agents at site d over time t + δt is expressed as
kd(t + δt) = ∑

ki(t)qi→d(t).
Chaohao [11] make a similar deduction for the continuous limit, which, if adapted to the two-dimensional case, can be expressed as:

∂k
∂t = D̃∇ ·

[
∇k – 2k

A ∇A
], (29)

where D̃ = ωD. The equations (27)-(29) represent the fractional diffusion model with law enforcement, which will be used for thesimulations below. The model parameters were set in Tc = 200, η∗ = 3.94, λ = 0.05, ω = 0.05, Γ = 0.019, ϵ = 0.15, s ∈ [0.17, 1.20] andthe effect of the law enforcement χ = 0.0, 0.86, 3.86. Similar to the section 4, the maximum and the attractiveness total sum over Ω, isdetermined integrating and divided by the maximum and the total sum, respectively, of the initial condition A0.
A relevant aspect to the law enforcement incorporate, then integration of the system (Eqs. (27)-(29)) becomes unstable for s < 0.5, althoughit also depends on the value of χ. This phenomenon is notorious because the system shows a large ring formation around the hotspot centerbefore blowing up.
In Fig. 6 (a) the max[As]/ max[A0] for χ = 0.0, 0.86, 3.86 indicated with blue, green and red colors respectively, are shown. The missingpoints correspond to the cases with law enforcement χ = 0.96, 3.86 and, it is where the model could not be integrated numerically for atime t = 200 as observed for values s < 0.45, the maximum attractiveness magnitude, grows with the police presence, at least for case
χ = 0.86, i.e., attenuation in the attractiveness by law enforcement was expected, but in a nonintuitive response of the system, it wasincreased (s < 0.45). Reading this result is not easy and possibly not unique, but one interpretation is that criminal agents move relativelyeasily to hotspots, while police officers move by Laplacian diffusion and therefore are slower. Thus, the police agents slowly concentrate onsome hotspots, but the criminals can create new hot zones without allowing the police agents to react adequately. For values s > 0.45, themaximum attractiveness is reduced by the police presence, which is an expected result. Fig. (b), representing the total attractiveness in
Ω, shows similar behavior to Fig. (a). A rapid criminal diffusion based on Lévy flights, and a slow police response, have increased globalattractiveness levels. It can be concluded that both graphs in Fig. 6 show two types of attractiveness response to law enforcement: First, fora certain intensity of Lévy flights, the attractiveness increases with the law enforcement, and second, the attractiveness is attenuated whenthe criminal diffusion is comparable to the police diffusion. It shows that different surveillance strategies should be evaluated to find aneffective response of police agents to avoid criminal attacks.
Fig. 7 (a)-(b) presents stable attractiveness results A(x, t = 200), for the values of s = 0.31 with χ = 0.86 and s = 0.45 with χ = 3.86respectively. These results correspond to the first points on the left of the graphs in Fig. 6 with χ > 0. In (a), a ring with less angularsymmetry is shown, and the intensity of attractiveness drops suddenly for a critical radius. In addition, isolated spots are observed insidethe ring. In numerical tests for values of s < 0.31, these isolated points grow without limit. The attractiveness dynamic resulting in thespatial distribution observed in (a) is difficult to explain. However, a hypothesis is that a weak police presence in an environment of highcriminal mobility fragments usual hotspots into a more complex structure. In Fig. (b), conventional hotspots are observed, the deterrentpolice influence can be appreciated too, in the attractiveness magnitude. However, a symmetry break has occurred. The upper right cornerhotspot began to grow more than the rest. For s < 0.45 and χ = 3.86, structures similar to case (a) appear, but they blow up before theintegration time reaches t = 200.
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max[As]/ max[A0]

s(a)

∗ χ = 0.00
◦ χ = 0.86
× χ = 3.86

I[As]/I[A0]

s(b)

∗ χ = 0.00
◦ χ = 0.86
× χ = 3.86

Figure 6. In both graphs the parameters are fixed in Tc = 200, η = 3.94, λ = 0.05, ω = 0.05, Γ = 0.019, ϵ = 0.15, s ∈ [0.17, 1.20]. (a) Evolution of max[As]/ max[A0] (A0 is the
initial condition), Which is a measure of the maximum attractiveness values in Ω, for χ = 0.0, 0.86, 3.86. Graph (b) shows I[As]/I[A0], which represents a measure of total
attractiveness in Ω to χ = 0.0, 0.86, 3.86. Like the previous graph, the existence of two attractiveness regimes exists, the first (s < 0.45) is dominated by Lévy flights, and the
second (s > 0.45) corresponds to a more conventional diffusion.

A(x, t)

(a)

ρ(x, t)

(b)
Figure 7. Spatial distribution for the χ = 3.86 and s = 0.31 cases, the rest of the parameters are those specified in Fig. 6. (a) Field of attractiveness: A type of hotspot with a
shape that varies from the classic one (circular) is visible. (b) The result of the integration is a more conventional hotspot distribution, however, some hotspots have started to
grow more than others.
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6 Conclusions

We have made a numerical study of the fractional model for the bi-dimensional case of home thieves dynamics, incorporating the police effectand using the Cops on dots strategy. The fractional operator was approximated through two-dimensional Fourier transform properties. It isobserved that applying a Predictor-Corrector 4 schedule to a random initial attractiveness distribution, the number and hotspot magnitudeare related to the derivative order s of the fractional operator. In a 1-dimensional scenario, stationary solutions analysis found that a seriesexpansion and linear relations between series coefficients with derivative order are not adequate to approximate the functional relationshipbetween attractiveness and criminal density population, inclusive for the small attractiveness amplitudes. A global properties analysis ismade, the maximum and total attractiveness were used as estimators of the system evolution. The results from 2-dimensional scenariosreveal two regions with highly contrasting attractiveness behavior. The hypothesis is that Lévy flights dominate the powerful attractivenessregion when derivative order (s < 0.45 super diffusive regimen). In the interval s ∈ [0.45, 0.5], the dynamics combine the impact of Lévyflights with Laplacian diffusion. An appreciable variation emerges due to a smooth change in global maximums attractiveness for s = 1; It isexplained by the functional form of the coefficient Ds. Still, the interpretation is that the local diffusion of criminal agents is based entirelyon Brownian motion and produces its maximum effect on attractiveness. Incorporating dissuasive police effect into the model, maximumsand total attractiveness are significantly reduced for s > 0.5. In case s < 0.5, which corresponds to a regimen where Lévy flights coexistor dominate, it is observed that surveillance type cops on the dots increase attractiveness levels in localized areas, with a more complexstructure than hotspots. Also, it is interesting that the police presence induces an abrupt change in the system’s evolution concerning thederivative order (s < 0.5). Numerical results with police influence showed an attractiveness distribution with a different symmetry than theclassical hotspots with circular symmetry. However, a more detailed study is required to determine its dynamical properties. Extending thefractional model to the 2-dimensional case brings us closer to a possible application in realistic urban environments, implementing anoptimal control investigation. Furthermore, it can be adequate for government agencies to identify attractive home zones and implementoptimal surveillance strategies.
Nomenclature

Ω 2-dimension lattice
N Size of Ω in each dimension
l Lattice space
d Position in coordinates (d1, d2), d1, d2 = 1l, 2l, . . . Nl
t time
Ad(t) Attractiveness at position d at time t
A0

d Intrinsic attractiveness at site d
Bd(t) Time t dependent attractiveness at site d
δt Minimal time interval
Pd(t) Probability of a criminal attack at site d in time δt
ϵ Effectiveness of the attractiveness at site d
Ed(t) Number of criminal attacks on site d during a time δt
θ Enhancement in attractiveness for a single criminal agent attack
ω Attractiveness time decay rate
η∗ Attractiveness influence in position d to its immediate neighbors
d′ Number of neighbors of position d
nd(t) Number of criminals at site d at time t
ϵ∗ Influence of the criminal presence in each position d
ρ(x, t) Criminal density in position x at time t
x Position in 2-dimension domain x = (x1, x2)
D Dimension
qi→d(t) Probability that a criminal will arrive at site d from i at time δt
wi→d Relative weight of going from site i to site d
µ Exponent of the underlying power law in the Lévy distribution
L Conventional fractional operator
∆s Fractional operator derived from Lévy flight diffusion
s Fractional order s > 0
ζ(µ) Riemann function
Z(µ) Adapted function to the 2-dimensional fractional case
Γ Crime population growth rate across all sites
λ Rate of house burglars leaving without committing a crime in δt time
A(x, t) Attractiveness in position x = (x1, x2) at time t
A0(x) Initial condition of attractiveness
η Rescaled attractiveness diffusion
γ Rescaled Crime population growth rate
M Criminal fractional diffusion
I[As] Total attractiveness in [0, 1] × [0, 1]
Ãd(t) Modified criminal attractiveness perception
χ Police influence on criminal perception
kd(t) Expected police agents at site d at time t
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