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Abstract
This study proposes a novel mathematical model of COVID-19 and its qualitative properties. Asymptotic behavior of the proposedmodel with local and global stability analysis is investigated by considering the Lyapunov function. The mentioned model isglobally stable around the disease-endemic equilibrium point conditionally. For a better understanding of the disease propagationwith vaccination in the population, we split the population into five compartments: susceptible, exposed, infected, vaccinated,and recovered based on the fundamental Kermack-McKendrick model. He’s homotopy perturbation technique is used for thesemi-analytical solution of the suggested model. For the sake of justification, we present the numerical simulation with graphicalresults.
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1 Introduction

Most nations throughout the world have been afflicted by the COVID-19 outbreak, and their economy has suffered as a result. There havebeen several cases of infection, as well as the occurrence of subsequent infection waves that have resulted in a greater number of cases thanthe prior wave. Although various preventative techniques and other control measures have been used to restrict the disease’s spread, it isstill unknown when this lethal sickness will be eradicated from the community. COVID-19 is currently infecting and killing people in themajority of the world’s countries. The total number of infected cases recorded till September 4, 2021, was 220917130, including 4571624deaths, and 197441726 [1] people recovered from COVID-19 infection. Researchers, biologists, and medical professionals are constantlyattempting to develop efficient vaccines, preventions, and treatment measures for coronavirus infection management. Because there are somany different strains of this sickness, researchers are working to develop a more effective vaccine for infection prevention. According tothe literature, several study publications on the virus’s infection reduction have been written and published from various perspectives. Wehave a lot of models if we speak out that connected study on coronavirus using mathematical models. Mathematical models are the onlymeans to determine the infection’s peak and the best strategy to manage it.In [2], researchers studied COVID-19 using a mathematical model that included Susceptible S(t), Exposed E(t), Infected I(t), QuarantineQ(t), and Recovered R(t). The goals were to examine the stability and optimal management of the concerned mathematical model for both

➤ Received: 24.03.2022 ➤ Revised: 20.06.2022 ➤ Accepted: 21.06.2022 ➤ Published: 24.06.2022

88

https://orcid.org/0000-0003-2177-3806
https://orcid.org/0000-0001-8930-5326
https://orcid.org/0000-0002-1415-8760
https://orcid.org/0000-0002-0176-2758


Sinan et al. | 89

local and global stability using a third additive compound matrix technique, as well as to produce threshold values using a next-generationapproach. The author created a graphic representation of the anticipated outcomes which also used the homotopy perturbation approach forthe solution and for each population of the underlying model with control variables utilizing optimal control methods based on Pontryagin’smaximal Principle to control the spread of COVID-19 infection in a population. In [3], researchers implemented fractional calculus ona COVID-19 mathematical model and investigated local and global stability for the stabilization of the disease in a population with anapproximate solution using the Laplace-Adomian decomposition method. In [4], the authors examined the global view of the coronavirusmodel to real data from Ghana, as well as its cost-effective analysis with environmental changes. In [5], the authors proposed a nonlinearpredictive control model and its management for coronavirus infection. In [6], the authors modeled and explored the use of medicationresistance in coronavirus infection. In [7], the authors investigated the spread of coronavirus infection in China, as well as its modelingand prediction. In order to investigate the impact of lockdown in reducing coronavirus spread [8], the author examined a system of fivenonlinear fractional-order equations in the Caputo sense. The hypothesised coronavirus model under lockdown’s solutions were shown toexist and to be distinct using the fixed-point theorems of Schauder and Banach, respectively. Ulam-Hyers and generalised Ulam-Hyersframes for stability analysis were established.To simulate the transmission of disease, the authors [9] looked at the SIR model with a generic incidence rate function and a nonlinearrecovery rate. The influence of the health system affects the nonlinear recovery rate. The authors also established the model solution’sexistence, uniqueness and boundedness. They looked into the model’s many steady-state solutions, stability details, and reproductivenumber. The research demonstrates that the free steady state is unstable otherwise and locally stable when the reproduction number issmaller than unity. The backward bifurcation phenomenon is illustrated by the model. For the transmission dynamics of HIV epidemics,the authors [10] have developed a nonlinear SEI1I2R fractional order epidemic model. The generalised mean value theorem is used todetermine the model’s non-negative solution. In order to determine the disease status, we obtained the fundamental reproductive number
R0, which serves as a threshold parameter. Using the fractional Routh-Hurwitz stability criterion, the asymptotically stable outcomesof equilibria are explored. While this is going on, a suitable Lyapunov function is built to evaluate the global asymptotic stability of thedisease-free and endemic equilibrium point. In order to increase the concept of propagation delay, this research [11, 12] focuses on a delayedepidemic model with information-dependent vaccination.Researchers have delved deeply into the transmission of infectious diseases or concentrated on the differential model, which solelytakes into account the traits of infectious diseases themselves. The dynamic study of infectious illnesses based on vaccination rates hasnot received much attention. The authors [13] looked at a population model of the novel COVID-19 under ABC fractional order derivatives,and they also demonstrated enough evidence for the solution’s existence and uniqueness for the model under consideration. They alsodemonstrated that the model has at least one solution with a stable result. The author [14] showed in this work the potential of modelling thedynamics of SARS-CoV-2 infection as a helpful support tool for measuring the population’s level of compliance with the GIM and projectingthe impact of corrective measures. This book [15] helps with the preliminary results and is valuable to study in the field of mathematicalmodelling in public health biology or public health epidemiology. In [16], the author investigated COVID-19 epidemic has had a substantialinfluence on children and adolescents’ mental health, which should be of great concern to policymakers and practitioners around the world.This [17, 18, 19, 20, 21, 22] work examines a new mathematical model for the dynamics of Hepatitis-B virus transmission in a fractionalenvironment in light of asymptomatic carriers and vaccination classes. Because the authors took into account both the vaccination andasymptomatic caries, this new model is more advanced than the previous models proposed for the dynamics of the Hepatitis-B virus. Inthis study [23, 24], the dynamics of the COVID-19 epidemic in Pakistan were examined, and a mathematical model was developed. Itsfundamental and essential mathematical aspects, such as the existence and positivity of the system and its solution, were then supplied.Using fractional stability techniques, the detailed stability results for disease-free and disease-endemic equilibrium points are examinedon a local and global scale.For the dynamics of the Zika virus [25, 26] with a mutation that results in defects in newborns, a mathematical model has been devised.The threshold quantity at risk-free equilibrium and the equilibrium for Zika infection were also computed by the authors. Both locally andinternationally, the stability analysis at disease-free and disease-endemic equilibrium are computed. The authors [27, 28] examined amathematical model with slow and quick exposed cases and its impact on the model dynamics to comprehend the TB infections in the KParea of Pakistan. They also researched the fundamental math needed to model the fractional-order model. The model’s stability was thenexamined, and it was demonstrated that the TB model is both locally and globally asymptotically stable. The examination and analysisof the suggested drinking model must also be included by the authors, who also used stochastic system perturbation to determine thesolution’s existence and uniqueness as well as some drinking dynamics [29]. The authors have also come to some important conclusions onhow to control drinking habits at all stages, from risky to moderate and moderate to non-consumer. A discrete-time Bazykin-Berezovskayaprey-predator model’s complex dynamics were described in detail by the authors [30]. Additionally, they showed that the model has asingle positive interior fixed point (FPP). They also concentrated on the analytical and numerical bifurcation analysis of the interior fixedpoint FPP due to its biological significance.The scientists [31] looked at an SIR model for COVID-19 in Indonesia, taking into account parameters like immunisation, treatment,application of health protocols, and coronavirus burden. Additionally, they discovered that immunisation and the application of healthpractices significantly limit or stop the spread of COVID-19 in Indonesia. Similar to vaccination [32] and the application of health protocols,treatment can decrease or stop the pace of COVID-19 infection. However, its impact is not as great. This study [33] presents a novelstrategy for combating the COVID-19 epidemic. Using actual data from the United Kingdom, a fractional order pandemic model is created toinvestigate the spread of COVID-19 with and without the Omicron form and its connection to heart attacks. In [34], an optimal controlmodel has been developed in light of the potential controls that are thought to be successful. The World Health Organization’s (WHO)basic principles, such as immunisation of people, rapid testing, and early treatment of infected individuals by COVID-19, have been usedto consider the four control variables in the form of preventions. In [35], this study examines the mathematical modelling of COVID-19transmission at the fractional-order level. Using nonlinear analysis, they demonstrate the model’s existence and originality. The goal of thiswork [36] is to thoroughly study a mathematical model for computing the nonsingular fractional order derivative-based transmissibility ofa novel coronavirus (COVID-19) disease. By using the Krasnoselskii and Banach fixed point theorems, the existence and uniqueness of theproposed model have been ensured. Additionally, some stability outcomes of the Ulam-type have been developed.In [37], the researchers studied that there was a substantial but statistically minor rise in mental health symptoms before to andduring the COVID-19 pandemic in 2020, according to a study that sampled mostly European and North American people. Depressivesymptoms showed bigger and longer-lasting increases, compared to anxiety disorder symptoms and measures of general mental health



90 | Mathematical Modelling and Numerical Simulation with Applications, 2022, Vol. 2, No. 2, 88–107

functioning, which showed lower changes. It will be critical to keep track of changes in mental health (especially depression) and ensurethat proper therapeutic therapy is accessible. The total rise in mental health symptoms was most evident in the first two months after theWHO proclaimed a pandemic (March 2020), before declining and returning to pre-pandemic levels by mid-2020 for most symptom kinds.In [38], the authors study COVID–19 with quarantine, isolation, and environmental viral load. They fitted the COVID–19 model to real dataand calculated the parameters.

Share of people vaccinated against COVID-19, Jun 18, 2022
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Figure 1. [39], The bar chart represents the vaccinated population with complete initial protocol and partly vaccinated for different countries

Daily new confirmed COVID-19 cases per million people, Jun 19, 2022
7-day rolling average. Due to limited testing, the number of confirmed cases is lower than the true number ofinfections.
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Figure 2. [39], The map of the world represents the confirmed cases of COVID–19
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Daily new confirmed COVID-19 cases & deaths per million people
7-day rolling average. Limited testing and challenges in the attribution of cause of death means the cases anddeaths counts may not be accurate.
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Figure 3. [39], The plots of confirmed and death cases per million people

Estimate of the effective reproduction rate (R) of COVID-19
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Figure 4. [39], The behaviour of basic reproduction number or reproductive rate R0 of COVID–19 for different countries. The reproduction rate represents the average number
of new infections caused by a single infected individual. If the rate is greater than 1, the infection is able to spread in the population. If it is below 1, the number of cases
occurring in the population will gradually decrease to zero
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COVID-19 cases, tests, positive rate, and reproduction rate
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Figure 5. [39], Gallery of charts for new cases, new tests, positive test rate, and reproductive rate. 7-day rolling average. Due to limited testing, the number of confirmed cases
is lower than the true number of infections. Comparisons across countries are affected by differences in testing policies and reporting methods
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Figure 6. [39], The case fatality rate (CFR) is the ratio between confirmed deaths and confirmed cases. Our rolling-average CFR is calculated as the ratio between the 7-day
average number of deaths and the 7-day average number of cases 10 days earlier.
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COVID-19 vaccine doses, ICU patients, and confirmed deaths
Limited testing and challenges in the attribution of cause of death means the cases and deaths counts may not beaccurate.

World United States Canada China Russia Chile Mexico France Germany Italy
Singapore Portugal United Arab Emirates United Kingdom Indonesia Turkey India Brazil

Egypt Bangladesh Pakistan Iran Japan Thailand Philippines Nigeria Vietnam Ethiopia
Cuba

Vaccine doses (per 100)

Jan 27, 2020 Jun 19, 2022Feb 24, 2021
0

100

200

300
New cases (per 1M)

Jan 27, 2020 Jun 19, 2022Feb 24, 2021
0

2k

4k

6k

Patients in ICU (per 1M)

Jan 27, 2020 Jun 19, 2022Feb 24, 2021
0

50

100

150
New deaths (per 1M)

Jan 27, 2020 Jun 19, 2022Feb 24, 2021
0

10

20

Source: Official data collated by Our World in Data, Johns Hopkins University CSSE COVID-19 Data CC BY

Figure 7. [39], Gallery of charts for vaccine doses, new cases, patients in ICU and New deaths

According to [40], immunization is a global success story in terms of health and development, saving millions of lives each year. Vaccinesinteract with your body’s natural defenses to build protection, lowering your risk of contracting a disease. Your immune system reacts whenyou receive a vaccine. Vaccines for more than 20 life-threatening diseases are now available, allowing individuals of all ages to enjoy longer,healthier lives. Every year, vaccinations prevent 3.5-5 million fatalities from diseases such as diphtheria, tetanus, pertussis, influenza,and measles. Immunization is an indisputable human right and an important component of primary health care. It’s also one of the mostcost-effective health investments available. Vaccines are also essential for preventing and controlling outbreaks of infectious diseases. Theyare essential in the fight against antimicrobial resistance and support global health security. Despite significant advances, vaccine coveragehas plateaued in recent years, and in 2020, it may potentially decline for the first time in a decade. Over the last two years, the COVID-19pandemic and its aftermath have put pressure on health services, with 23 million children skipping vaccinations in 2020, 3.7 million morethan in 2019, and the largest amount since 2009. Preliminary data from 2021 reveal continuous disruption, but on the plus side, nearly allnations had implemented COVID-19 immunization by the end of 2021, and one billion doses of COVID-19 vaccine had been supplied viaCOVAX by early 2022. In this paper, we investigate the asymptotic behaviour of the model locally and globally at disease–free and endemicequilibrium points. For the global stability, Lyapunov function is considered. We also use the homotopy perturbation method (HPM) tosolve the non-linear dynamical system of COVID-19 semi-analytically. HPM approach was initially suggested by [41] and has since beenused to solve differential and integral equations in both linear and nonlinear scenarios by [42]. In [43], the authors used the HPM to solvethe nonlinear Kawahara partial differential equation semi–analytically. The HPM was used by the authors [44] to solve a set of partialdifferential equations. Without the use of linearization, transformation, discretization, or constrictive assumptions, the approach is useddirectly. We can get the conclusion that the HPM is very effective and powerful in locating analytical solutions for a variety of boundaryvalue problems. In [45] to solve the system of rabies transmission dynamics, for resolving the generalised Zakharov equations, the HPMis suggested by the authors [46]. With potential unknown constants that can be found by imposing the boundary and initial conditions,the initial approximations can be freely chosen. For the mathematical study of obtaining the solution of a first-order in-homogeneouspartial differential equation ux(x, y) + a(x, y)uy(x, y) + b(x, y)g(u) = f(x, y), a new homotopy technique is proposed [47]. This new method isdeveloped by combining the decomposition of a source function and the HPM.

COVID-19 mathematical model formulation

In this section, we modifying Susceptible, Infected, and Recovered (SIR) model [9, 31] for COVID-19 infection with the implementation ofthe vaccination class/compartment such that:
dS(t)

dt = –βS(t)I(t),
dI(t)

dt = βS(t)I(t) – γI(t),
dI(t)

dt = γI(t).
(1)

For mathematical modelling of the model, we provide the compartmental diagram below:
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Figure 8. Compartmental diagram of COVID–19 model

Based on the compartmental diagram (8), the following model is proposed:
dS(t)

dt = µ – qS(t)I(t) – (ω + a)S(t) + νR(t),
dE(t)

dt = qS(t)I(t) – (c + ω + a)E(t),
dI(t)

dt = cE(t) – (a + ω + x + z)I(t),
dV(t)

dt = aI(t) – (ω + y)V(t) + aE(t) + aS(t),
dR(t)

dt = xI(t) + yV(t) – (ω + ν)R(t),



(2)

with S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, V(0) ≥ 0, and R(0) ≥ 0. Also, here SEIVR represents Susceptible, Exposed, Infected, Vaccinated andRecovered compartments, respectively. Also, µ is the rate of recruitment, q is the rate of transmission, ω is the rate of natural death, a isthe rate of vaccination, ν is the rate of loss of immunity, c is the rate of infection of Exposed population, x is the recovery rate of Infectedpopulation, z is the death rate of Infected population due to the disease, y is the immunity of vaccinated population.

More assumptions

In order to build a new model, we must make assumptions in order to simplify reality. The Kermack–McKendrick model’s primary premiseis that diseased people are likewise contagious. The overall population size remains constant. There are only two types of death in thepopulation: natural death and death due to the disease. The population is open to accept new individuals from outside the existing population.The infected individuals can be recovered with hospitalization. The parameters of are non-negative and N(t) = S(t) + E(t) + I(t) + V(t) + R(t)where N(t) stands for the total population at the time t such that t ∈ Ω := [0, T] for T > 0.

2 Equilibrium points and their stability analysis

The disease–free equilibrium point is computed as:
E0 = (

S0, 0, 0, V0, R0) , (3)
where,

S0 = µ
(
νω + νy + ωy + ω2)

νω2 + ω2q + ω2y + ω3 – aνy + νωq + νωy + νqy + ωqy ,
V0 = aµ(ν + ω)

νω2 + ω2q + ω2y + ω3 – aνy + νωq + νωy + νqy + ωqy ,
R0 = aµy

νω2 + ω2q + ω2y + ω3 – aνy + νωq + νωy + νqy + ωqy .


(4)
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The basic reproduction number at the disease-free equilibrium point for the model (2) is computed below:
R0 = cqS0

(a + c + ω) (a + ω + x + z) , (5)
where,

S0 = µ
(
νω + νy + ωy + ω2)

νω2 + ω2q + ω2y + ω3 – aνy + νωq + νωy + νqy + ωqy . (6)

Theorem 1 The COVID-19 model at the disease-free equilibrium point E0 is locally asymptotically stable if R0 < 1, otherwise unstable.

Proof 1 The Jacobian matrix of the model (2) is computed as:

J(E0) =


–a – ω 0 –qS0 0 ν0 –a – c – ω qS0 0 00 c –a – ω – x – z 0 0
a a a –ω – y 00 0 x y –ν – ω

 . (7)

After a little simplification using the row reduction process, then the matrix (7) takes the form:

J(E0) =


–a–ω 0 –qS0 0 ν0 –a–c–ω qS0 0 00 0 cqS0–(a+ω+x+z)(a+c+ω) 0 00 0 [a(a+ω)–aqS0](a+c+ω)+qS0a(a+ω) –(ω+y)(a+ω)(a+c+ω) 00 0 x y –ν–ω

 . (8)

Clearly, we get all the eigenvalues such that λ1 = –a – ω, λ2 = –a – c – ω, λ3 = –ν – ω, λ4 = –(ω + y)(a + ω)(a + c + ω), and
λ5 = cqS0 – (a +ω+ x + z)(a + c +ω). As we see that the eigenvalues other thanλ5 are negative whileλ5 < 0 if cqS0 – (a +ω+ x + z)(a + c +ω) < 0
implies that cqS0 < (a +ω+ x + z)(a + c +ω) furthermore cqS0/(a +ω+ x + z)(a + c +ω) < 1 ⇒ R0 < 1. Hence the model (2) is locally asymptotically
stable around disease–free equilibrium point E0 if R0 < 1. This completes the proof.

Theorem 2 The COVID-19 model at the disease-endemic equilibrium point E∗ is locally asymptotically stable if R0 > 1, otherwise unstable.

Proof 2 The Jacobian matrix of the model (2) is computed as:

J(E∗) =


–a – ω – qI∗ 0 –qS∗ 0 ν

qI∗ –a – c – ω qS∗ 0 00 c –a – ω – x – z 0 0
a a a –ω – y 00 0 x y –ν – ω

 . (9)

Computing the characteristic equation of Jacobian matrix (9), such that:

λ5 + a1λ4 + a2λ3 + a3λ2 + a4λ + a5, (10)
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where, the coefficients are the following:

a1 = (3a + c + ν + 5ω + x + y + z + I∗q
) ,

a2 = (2ac + 3aν + 12aω + cν + 4cω + 2ax + 3ay + 2az + cx + cy + cz + 4νω + νx + 4ωx + νy + 4ωy

+ νz + 4ωz + xy + yz + 3a2 + 10ω2 + 2I∗aq + I∗cq – Scq + I∗νq + 4I∗ωq + Iqx + Iqy + Iqz),
a3 = (a2c + 3a2ν + 18aω2 + 9a2ω + 6cω2 + a2x + 3a2y + a2z + 6νω2 + 6ω2x

+ 6ω2y + 6ω2z + a3 + 10ω3 + 2acν + 6acω + acx + 2acy + acz + 9aνω + 3cνω + 2aνx
+ 6aωx + 2aνy + 9aωy + 2aνz + cνx + 6aωz + 3cωx + cνy + 3cωy + cνz + 3cωz

+ 2axy + 2ayz + cxy + 3νωx + cyz + 3νωy + 3νωz + νxy + 3ωxy + νyz + 3ωyz + I∗a2q

+ 6I∗ω2q + I∗νqx + 3I∗ωqx + I∗νqy + 3I∗ωqy + I∗νqz
+ 3I∗ωqz + I∗qxy + I∗qyz + I∗acq – Sacq + 2I∗aνq + 6I∗aωq + I∗cνq
+ 3I∗cωq + I∗aqx + 2I∗aqy + I∗aqz + I∗cqx – Scνq + I∗cqy – 3Scωq + I∗cqz + 3I∗νωq – Scqy),

a4 = (a3ν + 12aω3 + 2a3ω + 4cω3 + a3y + 4νω3 + 4ω3x + 4ω3y + 4ω3z + 5ω4
+ 9a2ω2 + a2νx + 6aω2x + 2a2ωx + a2νy + 9aω2y + 6a2ωy + a2νz + 6aω2z + 3cω2x

+ 2a2ωz + 3cω2y + 3cω2z + a2xy + a2yz + 3νω2x + 3νω2y + 3νω2z + 3ω2xy + 3ω2yz

+ 4I∗ω3q + a2cν + 6acω2 + 2a2cω + a2cy + 9aνω2 + 6a2νω + 3cνω2 + 4acνω
+ acνx + 2acωx + acνy + 4acωy + acνz + 2acωz + acxy + 4aνωx + acyz + 4aνωy + 4aνωz + 2cνωx
+ 2cνωy + 2cνωz + aνxy + 4aωxy + aνyz + cνxy + 4aωyz + 2cωxy + cνyz + 2cωyz + 2νωxy

+ 2νωyz + I∗a2νq + 6I∗aω2q + 2I∗a2ωq + 3I∗cω2q + I∗a2qy

– 3Scω2q + 3I∗νω2q + 3I∗ω2qx + 3I∗ω2qy + 3I∗ω2qz + I∗acνq
+ 2I∗acωq – Sacνq + I∗acqy – 2Sacωq + 4I∗aνωq + 2I∗cνωq – Sacqy + I∗aνqx
+ 2I∗aωqx + I∗aνqy + 4I∗aωqy + I∗aνqz + 2I∗aωqz + 2I∗cωqx + I∗cνqy
– 2Scνωq + 2I∗cωqy + I∗cνqz + 2I∗cωqz + I∗aqxy + I∗aqyz + I∗cqxy – Scνqy
– 2Scωqy + 2I∗νωqx + I∗cqyz + 2I∗νωqy + 2I∗νωqz + I∗νqxy + 2I∗ωqxy + I∗νqyz + 2I∗ωqyz),

a5 = 3aω4 + cω4 + νω4 + ω4x + ω4y + ω4z + ω5 + 3a2ω3 + a3ω2 + 2aω3x + 3aω3y

+ a3ωy + 2aω3z + cω3x + cω3y + cω3z + νω3x + νω3y + νω3z + ω3xy + ω3yz

+ a2cω2 + 3a2νω2 + a2ω2x + 3a2ω2y + a2ω2z + I∗ω4q + 2acω3 + 3aνω3 + a3νω + cνω3
+ 2I∗aω3q + I∗cω3q – Scω3q + I∗νω3q + I∗ω3qx + 2acνω2 + a2cνω + I∗ω3qy

+ I∗ω3qz + acω2x + 2acω2y + a2cωy + acω2z + 2aνω2x + a2νωx + 2aνω2y + a2νωy

+ 2aνω2z + cνω2x + a2νωz + cνω2y + cνω2z + 2aω2xy + a2ωxy + 2aω2yz + cω2xy + a2ωyz

+ cω2yz + νω2xy + νω2yz + I∗a2ω2q + acνωx + acνωy + acνωz + acωxy + acωyz + aνωxy

+ aνωyz + cνωxy + cνωyz + I∗acω2q – Sacω2q + 2I∗aνω2q + I∗a2νωq

+ I∗cνω2q + I∗aω2qx + 2I∗aω2qy + I∗a2ωqy + I∗aω2qz + I∗cω2qx – Scνω2q

+ I∗cω2qy + I∗cω2qz – Scω2qy + I∗νω2qx + I∗νω2qy + I∗νω2qz

+ I∗ω2qxy + I∗ω2qyz + I∗acνωq – Sacνωq + I∗acωqy – Sacωqy + I∗aνωqx
+ I∗aνωqy + I∗aνωqz + I∗cνωqy + I∗cνωqz + I∗aωqxy + I∗aωqyz
+ I∗cωqxy – Scνωqy + I∗cνqyz + I∗cωqyz + I∗νωqxy + I∗νωqyz.



(11)

Apparently, for positive endemic equilibrium point E∗ (S∗, E∗, I∗, V∗, R∗) is locally asymptotically stable [48] if the following inequalities are
satisfied

det1 = a5 > 0, det2 =
∣∣∣∣∣∣∣

a1 1
a3 a2

∣∣∣∣∣∣∣ > 0, det3 =
∣∣∣∣∣∣∣∣∣∣∣

a1 1 0
a3 a2 a1
0 a4 a3

∣∣∣∣∣∣∣∣∣∣∣
> 0, and det4 =

∣∣∣∣∣∣∣∣∣
a1 1 0 0
a3 a2 a1 1
a5 a4 a3 a20 0 a5 a4

∣∣∣∣∣∣∣∣∣
> 0. (12)

Considering the coefficients (11) of the characteristic equation (10), the Routh–Hurwitz criterion [49] is satisfied because all of the coefficients are
positive and inequalities (12) are satisfied. As a result, all the eigenvalues are negative or have negative real parts and R0 > 1. Hence, the model is
locally asymptotically stable around the disease-endemic equilibrium point, E∗.

3 Global stability analysis

For the endemic Lyapunov function, {S, E, I, V, R}, L̇ < 0 is the endemic equilibrium E∗.
Theorem 3 [10, 11, 15] If R0 > 1 , the endemic equilibrium point E∗ of the model (2) is globally asymptotically stable otherwise unstable.
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Proof 3 For proof, the Lyapunov function can be written as

L
(

S∗, E∗, I∗, V∗, R∗) =(
S – S∗ – S∗ log S∗

S

) + (
E – E∗ – E∗ log E∗

E

) + (
V – V∗ – V∗ log V∗

V

)
+ (

I – I∗ – I∗ log I∗
I

) + (
R – R∗ – R∗ log R∗

R

) . (13)

Therefore, applying the derivative respect to t on both sides yields

dL
dt = (S – S∗

S

)
Ṡ + (E – E∗

E

)
Ė + ( I – I∗

I

)
İ + (V – V∗

V

)
V̇ + (R – R∗

R

)
Ṙ, (14)

which implies that

dL
dt = (S – S∗

S

)(
µ – qS(t)I(t) – (ω + a)S(t) + νR(t))

+ (E – E∗

E

)(
qS(t)I(t) – (c + ω + a)E(t))

+ ( I – I∗
I

)(
cE(t) – (a + ω + x + z)I(t))

+ (V – IV∗

V

)(
aI(t) – (ω + y)V(t) + aE(t) + aS(t))

+ (R – R∗

R

)(
xI(t) + yV(t) – (ω + ν)R(t)) .



(15)

Furthermore,

dL
dt = µ – µS∗

S – qI
S (S – S∗)2 + q

S I∗(S – S∗)2 – (ω + a)
S (S – S∗)2 + νR – νR∗ – VS∗R

S + VS∗R∗

S

– qE∗I∗
E + qSI – qS∗I – qE∗I∗S∗

E – (c + ω + a)
E (E – E∗)2 + cI∗E

I – cE∗I∗
I

+ cE – cE∗ – (a + ω + x + z) (I – I∗)2
I + aI – aI∗ – aVI∗

V – aV∗I∗
V – (ω + y) (V – V∗)2

V

+ aE – aE∗ – aV∗E
V – aE∗V∗

V .


(16)

Now, Eq. (16) can be written in the form of:

dL
dt = 𭟋 – α, (17)

where,

𭟋 = µ + q
S I∗(S – S∗)2 + νR + VS∗R∗

S + qSI + cI∗E
I + cE + aI + aE, (18)

and

α = –µS∗
S – qI

S (S – S∗)2 – (ω + a)
S (S – S∗)2 – νR∗ – VS∗R

S

– qE∗I∗
E – qS∗I – qE∗I∗S∗

E – (c + ω + a)
E (E – E∗)2 – cE∗I∗

I

– cE∗ – (a + ω + x + z) (I – I∗)2
I – aI∗ – aVI∗

V – aV∗I∗
V

– (ω + y) (V – V∗)2
V – aE∗ – aV∗E

V – aE∗V∗

V .


(19)

Eventually, if 𭟋 < α then dL
dt < 0 while using S = S∗, E = E∗, I = I∗, V = V∗, and R = R∗, 0 = 𭟋 – α implies that dL

dt = 0. Also, for the suggested model
(2) we are looking the largest compact invariant set

{(S∗, E∗, I∗, V∗, R∗) ∈ Ω : dL
dt = 0} is the endemic equilibrium point E∗ = (S∗, E∗, I∗, V∗, R∗)

of the considered model. Thus, the model (2) is stable in Ω if R0 > 1 and 𭟋 < α.

4 Homotopy perturbation method

Consider a general type problem given by
A(µ) – f(r) = 0, r ∈ Ω, (20)
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with the boundary conditions as
β

(
µ, ∂µ

∂n

) = 0, r ∈ Γ , (21)
where A is a general differential operator, β is a boundary operator, f(r) is a known analytic function, and Γ is the boundary of the domain
Ω. The operator A is divided into linear part L and nonlinear part N. Therefore, (20) can be written as

L(µ) + N(u) – f(r) = 0. (22)
By HPM, we can construct a homotopy as

v(r, s) : Ω × [0, 1] → R, (23)
satisfying

H(v, s) = (1 – s)[L(v) – L(µ)] + s[A(v – f(r))] = 0, (24)
which is also equivalent to

H(v, s) = L(v) – L (µ0) + sL (v0) + s[N(v) – f(r)] = 0, (25)
where s ∈ [0; 1] is an embedding parameter, and µ0 is the initial approximation of the given equation that satisfies the boundary conditions;we have

H(v, 0) = L(v) – L (µ0) = 0,
H(v, 1) = A(v) – f(r) = 0. (26)

Keeping these points, we construct the required solution to equation (22) as
v = v0 + s1v1 + s2v2 + s3v3 + · · · . (27)

Furthermore, by taking the limit as p → 1 in the approximation equation (27), one has
lim
s→1 v = lim

s→1 v0 + s1v1 + s2v2 + s3v3 + · · · , (28)
which yields

v = v0 + v1 + v2 + v3 + · · · . (29)
Equation (29) represents the semianalytic solution of the problem equation (20).

5 Approximate solution of the proposed COVID-19 model

Applying homotopy on the model (2)
DS(t) – DS(0) = s[µ – qS(t)I(t) – (ω + a)S(t) + νR(t)],
DE(t) – DE(0) = s[qS(t)I(t) – (c + ω + a)E(t)],
DI(t) – DI(0) = s[cE(t) – (a + ω + x + z)I(t)],

DV(t) – DV(0) = s[aI(t) – (ω + y)V(t) + aE(t) + aS(t)],
DR(t) – DR(0) = s[xI(t) + yV(t) – (ω + ν)R(t)].


(30)

Assume series solution to the model (2), such that
S(t) = S(0) + sS1(t) + s2S2(t) + s3S3(t) + · · · ,
E(t) = E(0) + sE1(t) + s2E2(t) + s3E3(t) + · · · ,
I(t) = I(0) + sI1(t) + s2I2(t) + s3I3(t) + · · · ,

V(t) = V(0) + sV1(t) + s2V2(t) + s3V3(t) + · · · ,
R(t) = R(0) + sR1(t) + s2R2(t) + s3R3(t) + · · · .


(31)

Now by comparison we get s0, s1, s2, · · · by using system of equations (31) in (30), we have:
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Zeroth-order problem

s0 := DS(0) = DS0,
s0 := DE(0) = DE0,
s0 := DI(0) = DI0,
s0 := DV(0) = DV0,
s0 := DR(0) = DR0.


(32)

First-order problem

s1 := DS1 = µ – qS(0)I(0) – (ω + a)S(0) + νR(0),
s1 := DE1 = qS(0)I(0) – (c + ω + a)E(0),
s1 := DI1 = cE(0) – (a + ω + x + z)I(0),
s1 := DV1 = aI(0) – (ω + y)V(0) + aE(0) + aS(0),
s1 := DR1 = xI(0) + yV(0) – (ω + ν)R(0).


(33)

Second-order problem

s2 := DS2 = –qS1(t)I1(t) – (ω + a)S1(t) + νR1(t),
s2 := DE2 = qS1(t)I1(t) – (c + ω + a)E1(t),
s2 := DI2 = cE1(t) – (a + ω + x + z)I1(t),
s2 := DV2 = aI1(t) – (ω + y)V1(t) + aE1(t) + aS1(t),
s2 := DR2 = xI1(t) + yV1(t) – (ω + ν)R1(t).


(34)

Third-order problem

s3 := DS3 = –qS2(t)I2(t) – (ω + a)S2(t) + νR2(t),
s3 := DE3 = qS2(t)I2(t) – (c + ω + a)E2(t),
s3 := DI3 = cE2(t) – (a + ω + x + z)I2(t),
s3 := DV3 = aI2(t) – (ω + y)V2(t) + aE2(t) + aS2(t),
s3 := DR3 = xI2(t) + yV2(t) – (ω + ν)R2(t).

...



(35)

nth-order problem

s(n+1) := DS(n+1) = –qS(n)(t)I(n)(t) – (ω + a)S(n)(t) + νR(n)(t),
s(n+1) := DE(n+1) = qS(n)(t)I(n)(t) – (c + ω + a)E(n)(t),
s(n+1) := DI(n+1) = cE(n)(t) – (a + ω + x + z)I(n)(t),
s(n+1) := DV(n+1) = aI(n)(t) – (ω + y)V(n)(t) + aE(n)(t) + aS(n)(t),
s(n+1) := DR(n+1) = xI(n)(t) + yV(n)(t) – (ω + ν)R(n)(t).


(36)

Next, system of equations (33) becomes:
S1(t) = (µ – qS0I0 – (ω + a)S0 + νR0)t,
E1(t) = (qS0I0 – (c + ω + a)E0)t,
I1(t) = (cE0 – (a + ω + x + z)I0)t,

V1(t) = (aI0 – (ω + y)V0 + aE0 + aS0)t,
R1(t) = (xI0 + yV0 – (ω + ν)R0)t.


(37)
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Next, system of equations (34) becomes:
S2(t) = (–q(E0c – I0(a + ω + x + z))(µ + R0ν – S0(a + ω) – I0S0q))t3

+ (ν(I0x + V0y – R0(ν + ω)) – (a + ω)(µ + R0ν – S0(a + ω) – I0S0q))t2,
E2(t) = (q(E0c – I0(a + ω + x + z))(µ + R0ν – S0(a + ω) – I0S0q))t3

+ ((E0(a + c + ω) – I0S0q)(a + c + ω))t2,
I2(t) = (–(E0c – I0(a + ω + x + z))(a + ω + x + z) – c(E0(a + c + ω) – I0S0q))t2,

V2(t) = (a(E0c – I0(a + ω + x + z)) – a(E0(a + c + ω) – I0S0q) – (ω + y)(E0a

+ I0a + S0a – V0(ω + y)) + a(µ + R0ν – S0(a + ω) – I0S0q))t2,
R2(t) = (x(E0c – I0(a + ω + x + z)) – (ν + ω)(I0x + V0y – R0(ν + ω))

+ y(E0a + I0a + S0a – V0(ω + y)))t2.



(38)

Next, system of equations (35) becomes:
S3(t) = (–q2α5α2α3)t6 + (qα1α2)t5 + (q(a + ω)α5α3)t4 + (ν(xα5 – (ν + ω)α4

+ y(E0a + I0a + S0a – V0(ω + y))) – (a + ω)α1)t3,
 (39)

where,
α1 = να4 – (a + ω)α3,
α2 = α5(a + ω + x + z) + c(E0(a + c + ω) – I0S0q),
α3 = µ + R0ν – S0(a + ω) – I0S0q,
α4 = I0x + V0y – R0(ν + ω),
α5 = E0c – I0(a + ω + x + z).


(40)

E3(t) = (q2κ3κ2κ1)t6 + (–q(ν(I0x + V0y – R0(ν + ω)) – (a + ω)κ1)κ2)t5
+ (–qκ3(a + c + ω)κ1)t4 + (–κ4(a + c + ω)2)t3, (41)

where,
κ1 = µ + R0ν – S0(a + ω) – I0S0q,
κ2 = κ3(a + ω + x + z) + cκ4,
κ3 = E0c – I0(a + ω + x + z),
κ4 = E0(a + c + ω) – I0S0q.


(42)

I3(t) = (cqτ2(µ + R0ν – S0(a + ω) – I0S0q))t4 + ((τ2(a + ω + x + z) + cτ1)(a + ω + x + z) + cτ1(a + c + ω))t3, (43)
where,

τ1 = E0(a + c + ω) – I0S0q,
τ2 = E0c – I0(a + ω + x + z). (44)

V3(t) = (a(ν(I0x + V0y – R0(ν + ω)) – (a + ω)ϕ2) – a(ϕ3(a + ω + x + z) + cϕ1)
+ (ω + y)((ω + y)(E0a + I0a + S0a – V0(ω + y)) + aϕ1 – aϕ3 – aϕ2) + aϕ1(a + c + ω))t3, (45)

where,
ϕ1 = E0(a + c + ω) – I0S0q,
ϕ2 = µ + R0ν – S0(a + ω) – I0S0q,
ϕ3 = E0c – I0(a + ω + x + z).

 (46)

R3(t) = (–y((ω + y)σ2 + aσ3 – aσ1 – a(µ + R0ν – S0(a + ω) – I0S0q)) – (ν + ω)(xσ1
– (ν + ω)(I0x + V0y – R0(ν + ω)) + yσ2) – x(σ1(a + ω + x + z) + cσ3))t3, (47)
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where,
σ1 = E0c – I0(a + ω + x + z),
σ2 = E0a + I0a + S0a – V0(ω + y),
σ3 = E0(a + c + ω) – I0S0q.

 (48)

The resultant solution to model (2) is obtained as:
S(t) = (–q2α5α2α3)t6 + (qα1α2)t5 + (q(a + ω)α5α3)t4 + (ν(xα5 – (ν + ω)α4

+ y(E0a + I0a + S0a – V0(ω + y))) – (a + ω)α1 – qα5α3)t3 + α1t2 + α3t + S0,
E(t) = (q2κ3κ2κ1)t6 + (–q(ν(I0x + V0y – R0(ν + ω)) – (a + ω)κ1)κ2)t5 + (–qκ3(a + c + ω)κ1)t4

+ (qκ3κ1 – κ4(a + c + ω)2)t3 + (κ4(a + c + ω))t2 + (I0S0q – κ5)t + E0,
I(t) = (cqτ1(µ + R0ν – S0(a + ω) – I0S0q))t4 + ((τ1(a + ω + x + z) + cτ2)(a + ω + x + z)

+ cτ2(a + c + ω))t3 + (–τ1(a + ω + x + z) – cτ2)t2 + τ1t + I0,
V(t) = (a(ν(I0x + V0y – R0(ν + ω)) – (a + ω)ϕ3) – a(ϕ4(a + ω + x + z) + cϕ1)

+ (ω + y)((ω + y)ϕ2 + aϕ1 – aϕ4 – aϕ3) + aϕ1(a + c + ω))t3 + (aϕ4 – aϕ1
– (ω + y)ϕ2 + aϕ3)t2 + ϕ2t + V0,

R(t) = (–y((ω + y)σ4 + aσ1 – aσ3 – a(µ + R0ν – S0(a + ω) – I0S0q)) – (ν + ω)σ2
– x(σ3(a + ω + x + z) + cσ1))t3 + σ2t2 + σ5t + R0.



(49)

Furthermore, we present the following plots based on solution (49) in the graphical justification such that:
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Figure 9. The plot shows the numerical simulation of susceptible human population, S(t).



102 | Mathematical Modelling and Numerical Simulation with Applications, 2022, Vol. 2, No. 2, 88–107

0 10 20 30 40 50 60

t

0

10

20

30

40

50

60

70

80

E
x
p
o
s
e
d
 H

u
m

a
n
 P

o
p
u
la

ti
o
n

Figure 10. The plot shows the numerical simulation of exposed human population, E(t).
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Figure 11. The plot shows the numerical simulation of infected human population, I(t).
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Figure 12. The plot shows the numerical simulation of vaccinated human population, V(t).
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Figure 13. The plot shows the numerical simulation of recovered human population, R(t).
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Figure 14. The plot shows the numerical simulation of susceptible human population, R(t) with asymptotic stability graphically.
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Figure 15. The plot shows the numerical simulation of exposed human population, E(t) with asymptotic stability graphically.



104 | Mathematical Modelling and Numerical Simulation with Applications, 2022, Vol. 2, No. 2, 88–107

0 2 4 6 8 10 12 14 16 18 20

t

0

5

10

15

20

25

30

35

40

45

50

In
fe

c
te

d
 H

u
m

a
n
 P

o
p
u
la

ti
o
n

Figure 16. The plot shows the numerical simulation of infected human population, I(t) with asymptotic stability graphically.
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Figure 17. The plot shows the numerical simulation of vaccinated human population, V(t) with asymptotic stability graphically.
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Figure 18. The plot shows the numerical simulation of recovered human population, R(t) with asymptotic stability graphically.
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Table 1. Table of description and initial condition of compartment of population
Symbol of Compartment Description of Compartment Initial Condition
S(t) Susceptible Human Population N – (E + I + V + R)
E(t) Exposed Human Population 10
I(t) Infected Human Population 20
V(t) Vaccinated Human Population 30
R(t) Recovered Human Population 0
N Total Population 200

Table 2. Table of description and values of parameters
Symbol Description of Parameter Unit Value
ω Natural Death Rate day–1 167.7×365
µ Recruitment Rate day–1 ω × N
q Transmission rate day–1 0.2784
a Vaccination Rate day–1 0.5
ν Lose of Immunity in Recovered Population day–1 0.1
c Rate of Infection of Exposed Population day–1 0.23
x Recovery Rate of Infected Population day–1 0.05
y Recovery Rate of Vaccinated Population day–1 0.15
z Death Rate of Infected Population due to COVID–19 Infection day–1 0.32

6 Results and discussion

We discuss the outcomes of the stability analysis of COVID–19 at both disease-free and endemic equilibrium points, the spread of theinfection is asymptotically stable locally and globally under certain conditions such that 𭟋 < α. For global stability analysis the Lyapunovfunction is used at disease free and endemic equilibrium points. The Lyapunov function is negative is 𭟋 < α so it means that the spread ofinfection will be stable and will not be spread in the population so it cannot lead to a pandemic. After the recent invention of the vaccination,we implemented the vaccinated individuals compartment V(t) also the Figure (12) which is the graphical behaviour. We discuss theoutcomes of the Homotopy Perturbation Method by applying it to the COVID–19 model, (2). In Figure (9), the dynamics of susceptiblehuman population ion has been shown in which the population decreases with time due to the large transmission b and vaccination arates. In Figure (10), the plot shows the dynamics of the Exposed Human population in which the population increased in the first weekwhile then decreased asymptotically. In Figure (11), in the first two weeks, the prevalence increased due to the higher rate of transmissionand infectivity, and then the disease disappeared from the population thus the prevalence decreasing to zero. In Figures (12) and (13),the dynamics of the Vaccinated and Recovered populations have been shown. While the Figures (14), (15), (16), (17), and (18) give theasymptotically stable behaviour of Susceptible, Exposed, Infected, Vaccinated, and Recovered Populations, respectively by varying theinitial conditions for each class of the model (2).
7 Conclusion

In this paper, we studied the stability of the COVID–19 model which is locally and globally asymptotically stable around the disease-free andendemic equilibrium points by having negative eigenvalues at both disease-free and endemic equilibrium points satisfying Routh–Hurwitzcriterion. Global stability is investigated with the help of Lyapunov function. The disease is locally asymptotically stable at disease–freeequilibrium point if R0 < 1 while unstable if R0 > 1 likewise, at endemic–equilibrium point if R0 > 1 while unstable if R0 < 1. Looking for thebehaviour of the vaccination in population, it has a positive impact on population and ability to protect the population from re–infection andfuture pandemics. Individual vaccination, rapid diagnosis, and possibly early treatment are the most effective ways to prevent coronavirusinfection in the community. As is generally known, the COVID-19 infection has caused significant damage to human society, with manydeveloping countries experiencing significant financial losses. As a result, adequate individual vaccines and infection control should bea priority for less developed countries in order to sustain their populations and economies. On analyzing the semi-analytic solution ofthe COVID–19 models using the homotopy perturbation method, we have obtained that the homotopy perturbation method is efficient,powerful, and more accurate and is capable of obtaining a semi-analytic solution that is both linear and non–linear as well. This methodcan be applied to ordinary differential equations in integer-order and fractional orders too, partial differential equations, and boundaryvalue problems. The said method can be applied to the system of many differential equations and higher-order problems. In all scenarios,the solution can be obtained semi-analytically and more accurately.
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