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ABSTRACT

Tankless gas hot water users’ perceived comfort is severely affected by sudden changes deviating 
from the desired temperature. Water temperature instability due to overshoots and undershoots 
is the most common issue that appears mainly due to sudden changes in users’ water flow de-
mands and response delays inherent to the heating system. Classical controllers for heat cells 
have difficulties responding to temperature instability in a timely manner because they lack the 
capacity to anticipate the effects of sudden variations in water flow rate. Previous studies have 
reported the model predictive controller (MPC) with adaptive function strategy to provide the 
best response for stabilizing temperature, and its performance is a result of the predictive nature 
that allows for anticipating and correcting the negative effects on temperature from sudden flow 
rate variations. The present study aims to employ this strategy to a low-computational algorithm 
that can be embedded in low-cost hardware with limited computational and memory resources. 
The study’s motivation is to fill the space manufacturers have left in this regard by implementing 
low-cost optimal-performance microcontrollers for water heaters. The algorithm results show 
good agreement for the responses in temperature stabilization with experimental data.

Cite this article as: Ehtiwesh I. Low-computational adaptive MPC algorithmization strategy 
for overshoots and undershoots in instantaneous water heater stability. Seatific 2023;3:1:19–24.

1. INTRODUCTION

The use of hot water contributes to about 40% of the energy 
consumed in residential dwellings (Bourke et al., 2014) 
and is responsible for an important percentage of domestic 
energy consumption. Instantaneous gas heating systems are 
widely used for their advantages of not needing a reservoir 
and competitive use/consumption ratio. Tankless gas water 
heaters (TGWHs) have the highest sales and have become an 
efficient means of heating water with low carbon emissions 
(Bourke et al., 2014). Their advantages compared to storage 
heaters are their smaller size, continuous hot water flow, and 
longer estimated useful life (Yuill et al., 2010). However, they 
require more power to provide the proper flow capacity, 
which makes their control quite complex. Furthermore, users’ 

perceived comfort is severely affected by sudden changes in 
water temperature deviating from the desired temperature 
(Costa et al., 2016). Hot water temperature instability due to 
overshoots and undershoots is generally the most common 
drawback and mainly results from sudden changes in water 
flow and response delays inherent to the hot water device’s 
inability to make predictions using classical controllers 
(Costa et al., 2016). Figure 1 demonstrates the temperature 
overshoots and undershoots of a 58kW nominal power 
TGWH with respect to sudden changes in the water flowrate. 
In particular, this figure uses real data from an experimental 
laboratory test performed by the manufacturer with the use 
of a feed-forward proportional–integral–derivative (FFPID) 
controller for stabilizing the outlet hot water temperature 
at 60°C. Classical controllers rely on current and previous 
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measurements to regulate the system (Ehtiwesh & Durović, 
2009). However, temperature overshoots and undershoots 
are neither acceptable nor comfortable for users regarding 
unpredictable changes in the hot water flow rate and have 
become a safety issue in extreme scenarios.
Henze et al. (2009) addressed the development of a strategy 
aimed at water temperature control in tankless hot water 
devices. Their strategy uses a model-based predictive 
controller to reduce outlet temperature errors. A dynamic 
heat transfer model for an electric tank water heater was 
implemented within the predictive controller of the model. 
The controller was connected to a physical tank water 
heater prototype and showed effective control of the output 
temperature. An artificial neural network (ANN) controller 
was embedded into a low profile microcontroller for a 
commercial electric instantaneous water heater and resulted in 
a lower temperature peaks and recovery times compared to the 
classic PID controller (Laurencio-Molina and Salazar-Garcia 
2018). Takács et al.’s (2016) study showed the embedment of 
a model with predictive controller feedback laws into Python 
applications and developed a code-generation module for 
MATLAB’s Multi-Parametric Toolbox. The study reported 
that the Python algorithm can be encoded within just a 
couple of lines in the MATLAB environment. Wang et al. 
(2011) proposed a few controller schemes for improving the 
outlet temperature stabilization of TGWH systems with a 
fuzzy control system intended as a black box gain scheduler 
regarding the parameters of a PID controller. Haissig and 
Woessner (2000) studied an adaptive fuzzy control code that 
would adapt to changing conditions such as water flow rate 
and inlet water temperature and automatically adjust the 
feed-forward curves of the gas valve control. Xu et al. (2008) 
studied a dynamic neuro-fuzzy control system as a controller 
in gas water heaters. The controller comprises a fuzzy logic 
controller in the feedback configuration and two dynamic 
neural networks in the forward path. Ehtiwesh et al.’s (2021) 
previous study developed a classical controller (i.e., FFPID) 
and model predictive controller (MPC) for controlling 
TGWH systems. The classic design of MPC controllers 
is more complicated due to the behavior of the dominant 
nonlinear dynamics, which can lead to performance drops 
(Aliskan 2018). An adaptive predictive control strategy that 
provides a new linear model for each time interval under 
dynamic operating conditions has also been implemented. 
Adaptive MPCs make more accurate predictions for the 
next time interval in contrast to classic MPCs that employ 
a fixed internal model. However, TGWH manufacturers 
are open to implementing new controllers within low-cost 
microcontrollers possessing limited computational abilities 
and memory resources. Therefore, the present study aims to 
address the strategy of employing a low computational code 
that can be embedded in low-cost hardware following the 
developed adaptive MPC strategy.

2. MODELING

The developed model (Ehtiwesh et al., 2021) is based on a real 
residential and commercial tankless water heater: the Hydro 

4600 F WTD10-4KME 23 JU, a non-condensing model rated 
at 22kW of thermal power and a thermal efficiency of 0.86. 
The system incorporates several sensors such as a carbon 
monoxide detector, type K thermocouples and RTD Pt100 
temperature probes, a pressure sensor, and a water flow 
meter that enables measuring of the variables utilized in the 
feedback loop of the control systems. The heat cell contains 
a gas combustion burner and heat exchanger to heat up the 
water using water condensation in the flue gases. The system 
is a semi-empirical nonlinear model with the following energy 
balance equation regarding the distributed parameter model:
C dT⁄dt =Q

.
 +m. cp,w (Tin-T) (1)

where C is the thermal capacitance defined as a coupling 
constant based on the energy conservation law:

C=(mw cp,w+mm cp,m) (2)

Q
.
 is the thermal power utilized in the heat cell, T is the 

heat cell temperature, m. is the mass flow rate (ρV
. 
), V

. 
is the 

volumetric flowrate, mw is mass, and cp is the heat capacity 
ρ is water density. With this simplification, Eq. 1 can be 
rewritten as follows:

dT/dt=(Q
.
 +ρV

. 
 cp,w (Tin-T))/(mw cp,w+mm cp,m) (3)

The model inputs are the thermal power (controller 
output) and the disturbance in the water flowrate, with the 
produced water temperature being the model output. The 
delay associated with thermal power delivery is considered 
to be a constant input time delay. The outlet delay varies 
with time based on the velocity of the water and the pipe 
section as presented in Eq. 4, where ri is the orifice radius 
and Li is circuit length inside the heat exchanger. Implicit 
dead-time compensation is utilized to employ the time 
delay, which varies with the flowrate as: 

tdelay =π  rı
2 Lı/V

. 
(4)

2.1. Case studies
Water temperature instability from overshoots and 
undershoots is the most common disadvantage of TGWHs 

Figure 1. Experimental data of a 58kW TGWHs heat cell 
(Costa et al., 2016).
TGWH: Tankless gas water heater.
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and mainly occur due to sudden changes in users’ water flow 
demand and the response delays inherent to the heating 
system. Classical controllers for heat cells have difficulties 
responding to temperature instability in a timely manner 
because they lack the ability to anticipate the effects of sudden 
variations in the water flow rate. Ehtiwesh et al.’s (2021) 
previous study carried out a comparative analysis of model-
based predictive controls with and without adaptive function 
and classical controllers (i.e., FFPIDs) with regard to TGWH 
controllers. Model predictive control (MPC) is a feedback 
control scheme that relies on a model, an optimization 
solver, a receding horizon control, and optimization of a 
quadratic programming (QP) problem (Li et al., 2015). The 
future outputs of a decided horizon (prediction horizon) 
are predicted at each instant. These predicted outputs 
depend on the preceding output and input and on future 
control signals. The linear quadratic function is employed 
as a controller performance criterion in order to obtain a 
smooth and rapid response with minimal error and limited 
strain on operation. The quadratic programming problem 
optimizes the objective (i.e., cost function) as a nonnegative 
measure. The weights are adjusted to tune the controller, and 
the constraints are the physical bounds on the manipulated 
variables (MVs) and the model output parameters, and 
a discrete linear time-invariant (LTI) state space model is 
used to predict the response within the prediction horizon. 
The parameter estimation and subsequent validation are 
performed with an associated optimization platform using a 
discrete state space model. The undisclosed parameters have 
been identified using the experimental virtual test (Quintã et 
al., 2022). In addition, by reason of the dominant nonlinear 
dynamics in TGWH behavior, an adaptive predictive control 
strategy has also been studied (Ehtiwesh et al., 2021). The 
adaptive strategy provides a novel linear model at each time 
step regarding changes in dynamic operating conditions. 
Therefore, adaptive MPC offers more accurate predictions 
for the new time step. Altogether, the adaptive function 
resizes and updates the state space system of the model’s 
parts according to flow rate changes and integrates time 
delays, which are absorbed as discrete states. The adaptive 
MPC presents superior performance regarding temperature 
stability in the event of sudden water flow variations.

2.2. Algorithm approach
Undoubtedly, the adaptive MPC strategy outputs the 
best behavior compared to the other aforementioned 
strategies that have been studied. Notwithstanding, TGWH 
manufacturers demand these controller strategies be 
implementable in low-cost microcontrollers with limited 
computational and memory resources. Therefore, the 
present study aims to address the potential for developing 
a low computational code that can be embedded into low-
cost hardware based on the developed state-of-the-art 
adaptive MPC. The algorithm has been encoded without 
using pre-made functions and toolboxes in order to be easily 
encoded within any compiler, with Python possessing the 
embedded computational capability in minimal hardware 
devices based on device limitations. Embedding provides 

applications with the capability to perform some of the 
functionality, Python more so than Matlab, C, or C++. 
This can be utilized for many goals, such as allowing users 
to tailor the application to their requirements by creating 
certain scripts within Python. The algorithm encompasses 
two main parts: the first aims to create the plant model in 
which the mathematical model is defined, linearized, and 
discretized and to define the parameters, with uncertain 
parameters being defined explicitly. The second part involves 
configuring the MPC controller, which encompasses the 
following three steps including the adaptive function:

1.  Measure values,

2. Solve the constrained optimization problem, and

3.  Update the states and the controller output.

The first step (i.e., measure values) calls for the ordinary 
subroutine to use the information obtained by the plant 
model to define the values being measured. Three values 
are required: 1) current time (t0), which is calculated as a 
function of the sample time (Ts) and the current iteration; 
2) the manipulated variable (u0), which is the vector 
containing the predicted thermal power in the previous 
iteration (i.e., system input) where the new vector will be an 
initial state in the optimization problem; and 3) the system 
response (x0), which is the current state of the system (i.e., 
outlet temperature). In addition, the TGWH plant needs 
further information to simulate real dynamics, such as: 

i. Flow rate. The differential equation used in the MPC 
model for calculating the future thermal power is based 
on the flow rate. The current flow rate value is read by 
the differential equation and adapts its dynamics like 
the real system.

ii. Delays. Input and output delays are simulated using the 
variables’ input delay and predicted values. 

Due to this study’s aim of embedding an MPC controller 
into low-computational microcontrollers, ensuring a linear 
model is a preferred strategy. Therefore, the study considers 
approximating the nonlinear functions in the proximity of 
the steady state operating point using a first-order Taylor 
series expansion that neglects the terms after the first 
partial derivatives. Eq. 3 is linearized around the operation 
point, namely, (Q0,V

.
0, dT0) and converted to a state-space 

representation (Eq. 5). The inputs are the power (manipulated 
variable) and the flow rate (measured disturbance), with the 
temperature deviation (dT=T-Tin) being the output.

x.= x + y=xc c[- -[ [] ] ],
ρcp,wV

.
0 ρcp,wdT01 u1

u2c  (5)

The constrained optimization problem (Step 2) is solved 
using the MPC model, where the cost function is the 
quadratic error between the reference signal (50°C) and 
the MPC response using the constrained power inputs. The 
constraints over the action control are that the input power is 
limited from 0 to 1 (1 implying 100%). The solver calculates 
the coming sequence of manipulated variables via the control 
horizon, and the first value of the sequence is directed to the 
actuator for the following step. During the following time 
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step, the state values are recalculated and advanced based 
on sensory information and applied manipulated variables. 
Optimization is repeated to estimate the optimal future 
sequence of the manipulated variables using the prediction 
horizon. The final step aims to prove the predicted input and 
uses the optimization function “fmincon”, which is an inbuilt 
function for solving optimization problems by defining the 
minimum of a constrained nonlinear multivariable function. 
The function toolbox defined as a nonlinear programming 
solver (Eq. 6), realizes the minimum of a specified problem 
(MathWorks, 2021) as:
min

x    f (x)   subject to

C(x) ≤ 0, ceq(x)=0, A x ≤ b, Aeq x = beq, lb ≤ x ≤ ub (6)

where b and beq are null initializing vectors, A and Aeq are 
null initializing matrices, C(x) and ceq(x) are functions that 
return vectors, f(x) is a cost function that returns a scalar, lb 
and ub are the lower and upper limit constraints vectors whose 
values are narrowed by the function, and f(x), C(x), and ceq(x) 
are nonlinear functions. The final step also aims to update 
the states and the controller’s output alongside the incoming 
iterations in order to prove the predicted inputs by including 
the system delays. The adaptive function resizes and updates 
the state space system of the model elements according to 
the flow rate changes and integrates the time delays that have 
been absorbed as discrete states. The time delay is calculated 
using Eq. 4 and absorbed in the discretization LTI state-space 
model by replacing time delays with poles at the phase shift 
(z=0) and a delay of the sampling period using the same 
sampling poles at z=0. The capability to keep track of delays 
makes the state space the best suited one for the model and for 
analyzing the delay effects in control systems. Assuming that 
the model is described by the subsequent uncertain discrete 
time-linear system with dead-time:

x(k+1) = A x(k) + B u(k-d) + w(k), y(k) = C x(k) (7)

where x(k) є Rn is the current state, u(k) є Rm is the current 
control input, w(k) є Rn is a bounded vector of disturbance, 
y(k) є Rp is a linear combination of the states that identifies 
the desired output, k denotes the current sampling instant 
and d represents the nominal dead-time. Mostly, for 
simple cases, the time invariant linear systems without 
disturbances (w(k)=0) and dead-time (d=0) (Santos et al. 
2012), an augmented used model is presented in (Astrom 
and Wittenmark 1997), incorporating the dead-time effect 
such as a dead-beat dynamics to achieve a “dead-time free” 
using implicit dead-time compensation as:

Γ(k+1)=AΓ Γ(k)+BΓ u(k), y(k)=CΓ Γ (k) (8)

With

Γ(k) = (x(k)' u(k-d)' u(k-d+1)'  … u(k-2) u(k-1)')';

The strategy is to store the past control actions in Γ(k) 
Rn+d.m until the time they can actually be considered. 
Therefore, Γ(k+1) depends only on Γ(k) and u(k) being able 
to directly describe the stabilizing elements.

3. RESULTS

The algorithm predictions have been validated using the 
results from the model developed in Ehtiwesh et al.’s (2021) 
previous study. The comparison has been implemented at 
the linearized flow rate of 10 L/m and sample time of 1 sec. 
The predictions are in extremely close agreement (Fig. 2).
Figure 3 presents a comparison between the experimental 
results Quinta et al. (2022) presented and the algorithm 
predictions of the experiment carried out for open-loop 
tests at constant flowrate with a sequence of fast changes 
in the applied thermal power (32%, 50%, and 100%). The 
predictions are in a good agreement, with the steady-state 
values being essentially coincident, despite small differences 
being observed during the transient segments. Figure 4 
shows the overshoots and undershoots in temperature 
stability that appear between the 40s-60s mark in the event 
of sudden variations in water flow around the 34s mark, 
with a total simulation time of 100s. The flow rate varies 
sharply from 10 to 3 L/min, and the water temperature 
causes negligible overshoots and undershoots. Figure 5 

Figure 2. Comparison of the algorithm and MATLAB 
model predictions at a constant flow rate (10L/m).

Figure 3. Experimental and algorithm predictions (water 
temperature) for a sequence of thermal.
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presents the simulation at various flow rates, with the 
manipulated variable of power being maximized in the 
initial stage before being switched to a steady-state value.
The power behavior shows an almost step-like transition 
from the upper value of the power to the steady-state value in 
all cases, resulting in faster temperature stabilization without 
overshoots or oscillations. Figure 6 presents the simulation 
at variable flow rates for sampling times of 250ms and 
1000ms. The water flow rate changes sharply from 10L/min 
to 3L/min and back to 10 L/min, and the water temperature 
again shows negligible overshoots and undershoots.

The differences in the quality is presented in the controller 
signals (i.e., power). A tradeoff occurs between that frequency 
and Ts, with the frequency of the control signal being greater 
at Ts=250ms compared to Ts=1000ms. The reason for the zero 

signals between 33s-41s is due to the model having input and 
output delays where the internal delay is neglected. In fact, 
this behavior is the most difficult to overcome. The delay is 
approximately 10 seconds. This behavior matches the incline 
in the temperature output at the 42s mark.

6. CONCLUSION

Water temperature instability takes place mainly because 
of the nonlinearities and time-varying delays associated 
with TGWH systems. The MPC controller with adaptive 
function displayed excellent performance regarding 
temperature stabilization for sudden changes in flow rate. 
However, its employment required high computational 
resources and memory space and therefore needed 
expensive hardware. Because of this, the current study 
has developed a low-computational algorithm with the 
ability to be embedded in low-cost microcontrollers. 
The results of the findings demonstrate good agreement 
with the previously developed MATLAB/Simulink model 
and other experimental data. In conclusion, an adaptive 
model predictive control strategy can be a good solution 
for fulfilling the objective of reducing the time sampling to 
the 250ms rate that generally used by manufacturers with 
regard to improving water temperature instability due to 
overshoots and undershoots in TGWH devices.
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