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1. Introduction 

Over the past two decades, research on HCCI engines has 

been a topic of interest in both academia and industries 

since it has the advantages of both Spark Ignition (SI) 

and Compression Ignition (CI) engines air/fuel mixture is 

delivered into the cylinder with relatively low pumping 

losses in the throttle valve and auto ignited simultaneous-

ly in the combustion chamber thereby resulting in an in-

crease in the combustion efficiency. The heat transfer 

losses decrease due to the shorter combustion duration. 

Moreover, there was a substantial improvement in the 

thermal efficiency since the engine could be operated 

with higher compression ratios at leaner mixtures. There 

is a drastic decrease in Nitrogen oxides (NOx) and soot 

emissions due to these characteristics of HCCI engines 

[1-3]. Control of combustion phasing and combustion 

rate in HCCI engines are the current challenges faced 

which deter its application and implementation in com-

mercial vehicles. Furthermore, chemical reactions govern 

the combustion process due to fuel properties and ther-

modynamic properties of the mixture. Therefore, issues 

of misfire and knock are observed at low and full load 

conditions, respectively. This limits the operating range 

of HCCI engines. Parameters such as pre-heating the 

intake air [4,5], variable compression ratio [6,7], variable 

valve timing [8,9], different valve lift mechanisms[10], 

exhaust gas recirculation (EGR) [11-13] and increasing 

boost pressure [14] are applied in order to control HCCI 

combustion. Many investigations have been performed 

on alternative fuels having different octane and cetane 

numbers [15-17]. However, the operating region of HCCI 

engines could not be improved, especially at high engine 

loads, because there is no direct control mechanism of 

combustion phasing. Injection timing is yet another pa-

rameter in order to control the start of combustion and 

combustion phasing. Injection timing has remarkable 
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influence on obtaining homogeneous charge. Injection 

timing has a direct impact on the homogeneity of the 

mixture, vaporization of the fuel and start of auto-ignition 

[18-20]. Petit et al [21] studied the effect of injection 

timing on the heterogeneity of the mixture. Tests were 

performed with two different injection timings: early 

injection timing with 200 degree before TDC and late 

injection timing with 80 degree before TDC. Early injec-

tion timing produced a reasonably homogeneous mixture 

while late injection timing produced a stratified mixture. 

Therefore, the heterogeneity of the mixture could be var-

ied by changing the injection timing. Turkcan et al. [18] 

investigated the effect of second injection timing on the 

combustion and emissions characteristics of a direct in-

jection HCCI gasoline engine by using ethanol and meth-

anol blended gasoline fuel. Five different fuels (gasoline, 

E10, E20, M10 and M20) were studied at the same ener-

gy input by them. The test results show that the combus-

tion and emissions characteristics can be directly con-

trolled and HCCI operating range can be extended by the 

second fuel injection timing. The maximum cylinder gas 

pressure and rate of heat release significantly decreased 

and the start of combustion delayed with the retarding of 

the second fuel injection. Standing et al. [22] investigated 

the effects of injection timing and negative valve overlap 

on auto-ignition in a single cylinder direct injection en-

gine. They found that start of combustion was advanced 

with negative valve overlap at leaner mixtures. Moreo-

ver, early fuel injection resulted in a very homogeneous 

mixture thereby causing the mixture to ignite early and 

faster burn rates.  

In this study, the effects of injection timing on HCCI 

combustion characteristics were studied in a four stroke, 

four cylinder gasoline direct injection HCCI engine. 

Thus, the variations of in-cylinder pressure, heat release 

rate, normalized cumulative heat release rate, pressure 

rise rate, maximum pressure rise rate and combustion 

duration were investigated. 

 

2. Experimental Setup and Procedures 

All experiments were conducted at the Advanced Power 

System Research Center, Michigan Technological Uni-

versity. A 2.0 liter, 4 cylinder, four stroke, direct injec-

tion, GM Ecotec gasoline engine was converted to oper-

ate in HCCI mode. The test engine specifications are 

presented in Table 1. An external fuel pump and e-motor 

were used to provide high pressure fuel (up to 150 bar) 

for direct fuel injection. An air heater was fitted between 

throttle body and intake manifold to increase the intake 

air temperature. The engine load and speed were con-

trolled by a 460 HP GE adjustable speed AC dynamome-

ter. In-cylinder pressures were measured by 115A04 

model PCB piezo pressure transducers. The measured 

pressure data as voltage was amplified using 1104CA 

model DSP charge amplifier and then processed using 

ACAP combustion analysis system. 

Table 1. Engine Specifications 

 

Engine Specification Value/Description 

Engine model GM Ecotec LHU Gen I 

Bore x Stroke [mm]  86 x 86  

Cylinder number 4 

Displacement volume [L] 2.0  

Compression ratio [-] 9.2:1 

Connecting rod length [mm]  145.5  

Max power [kW@6000 rpm] 270  

Fuel injection system Gasoline Direct Injection 

Valve system DOHC 4 Valves  

 

An encoder with a resolution of one degree was used 

to obtain crank angle measurements. The Merriam 

MDT500 air flow measurement system was used to 

measure the intake air mass flow rate. Fuel mass flow 

rate was measured using the 1700 model Micro Motion 

flow meter. A schematic of the experimental engine setup 

is shown in Fig.1. HCCI engine was controlled by 

dSPACE MicroAutoBox and RapidPro units. A 

MATLAB Simulink model was developed for the engine 

management system that includes control of injectors, 

spark plugs, variable valve timing, throttle body, high 

pressure fuel pump and EGR valve. dSPACE units also 

measure lambda, crank angle, intake and exhaust cam 

positions, fuel rail pressure, throttle body position, and 

EGR valve position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Schematic view of the experimental setup 

All experiments were performed at six different injec-

tion starting angle which are 270, 180, 90, 60, 30 and 20 

bTDC crank angle degree using n-heptane as the fuel. All 
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tests were conducted at constant engine speed, intake 

temperature, injection pressure and full load conditions. 

In addition, all tests were performed at constant injection 

duration. Table 2 shows the test conditions. 

 

Table 2. Test conditions 
 
Test Parameters Value/Description 

Engine Speed [rpm] 1000  

Injection Pressure [bar] 100  

Injection Starting Angle [ CA, 
bTDC] 

270, 180, 90, 60, 30, 20  

Fuel Type n-heptane 

Intake Valve Open. Angle [CA, 
bTDC] 

25.5 

Exhaust. Valve Clos. Angle 
[CA, bTDC] 

22  

Throttle Body Position [%] 100  

Intake Air Temperature [ºC] 80  

Lambda [-] 1.8 

Flow mass flow rate [mgr/cycle] 16.18 ±0.18 

 

3. Results and Discussion 
 

Temperature and composition of the charge during the 

compression stroke has a predominant effect on HCCI 

combustion. In Low temperature combustion (LTC) re-

gimes such as HCCI, the combustion characteristics are 

much different from other combustion modes. Control of 

HCCI combustion is one of the primary challenges. 

However recent studies have shown that injection timing 

could be commonly used in order to control HCCI com-

bustion, since it directly impacts the homogeneity of the 

mixture, start of combustion and combustion process. So, 

the effects of injection timing on HCCI combustion must 

be investigated in detail for better understanding of the 

causalities. Figure 2 shows the variations of in-cylinder 

pressure at different SOI versus crank angle. Maximum 

in-cylinder pressure of 4733 kPa at 2 ̊CA bTDC was ob-

tained when the fuel was injected at 270 ̊ CA bTDC 

whereas it reduced to 3368 kPa at 20 C̊A when the fuel 

was injected 20 ̊CA bTDC. It was seen that the maxi-

mum in-cylinder pressure increased and it was obtained 

earlier in case of early injection timing. Early fuel injec-

tion gives rise to higher homogeneity and better mixing 

of the charge mixture. Moreover, early injection gives 

sufficient time for the fuel to vaporize and also improves 

combustion stability [23,24]. In case of advancing injec-

tion timing, the increase of maximum in-cylinder pres-

sure can be explained by the fact that all fuel energy is 

released at a small interval of crank angle with more ho-

mogeneous charge mixture. SOC is retarded and large 

part of combustion occurs in the expansion stroke when 

the fuel is injected towards the end of compression 

stroke. This results in a drop in the maximum in-cylinder 

pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The variations of in-cylinder pressure at different SOI 
versus crank angle 

Figure 3(a) depicts the variations of heat release rate at 

different SOI versus crank angle. It was depicted from 

Figure 3(a) that two stage HCCI combustion was seen in 

case of early injection. If injection retarded towards the 

end of compression, it results in a single stage combus-

tion. This can be attributed to the fact that low tempera-

ture reactions could not occur at late injection timings 

and charge mixture is not homogeneous enough. As the 

injection is advanced, maximum heat release rate is ob-

tained earlier at limited range of crank angle. In contrast, 

maximum heat release rate is determined in expansion 

stroke at late injection timing. So, maximum heat release 

rate decreases. Advancing injection timing leads to ob-

tain auto-ignition conditions earlier in combustion cham-

ber. Figure 3(b) shows the variations of normalized cu-

mulative heat release at different SOI versus crank angle. 

It was seen in Figure 3(b) that early fuel injection leads 

to earlier start of rising in cumulative heat release curve. 

For this reason, early fuel injection leads to higher ho-

mogeneity and better mixing of air-fuel mixture in the 

cylinder. Also, the fuel has enough time for vaporization. 

As the start of injection timing is fixed towards to TDC, 

cumulative heat release rate gets closer to the TDC. 

Therefore, the combustion phasing starts at an early 

crank angle and cumulative heat release curve was ad-

vanced. In HCCI engines, the crank angle which corre-

sponds to 50 % of cumulative heat release is very im-

portant for thermal efficiency. Especially, it should be 

nearly after TDC for higher thermal efficiency. If 50 % 

percentage of cumulative heat release is obtained earlier 

before TDC, thermal efficiency decreases due to nega-

tive work forced on piston. It can be seen in Figure 3(b) 

that, cumulative heat release decreases in 20-100 crank 

angle degree bTDC especially at early injection timings. 

This is because injected fuel into the cylinder at early 

crank angle vaporizes and absorbs a little amount of heat. 
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Figure 3 (a) The variations of heat release rate at different SOI 
versus crank angle (b) The variations of normalized cumulative 
heat release rate at different SOI versus crank angle. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 The variations of combustion duration versus SOI. 

Figure 4 shows the variations of combustion duration 

versus SOI. Combustion duration increased when SOI 

was retarded toward to TDC as seen in Figure 4, because 

there is no enough time to mix fuel molecules with oxy-

gen molecules resulting in more heterogeneous charge 

mixture.  

So, combustion duration is prolonged at late injection 

timing values. Short combustion duration was obtained 

at early injection timing due to the fact that the fuel mol-

ecules have enough time to match with oxygen mole-

cules and the mixture has enough homogeneity. Knock-

ing is also impacted by injection timing. Knocking oc-

curs due to the instantaneous release of heat due to fuel 

energy at smaller range of crank angle. Hence, pressure 

rise rate increased at higher levels. This undesirable situ-

ation causes damage to the engine parts and limits the 

HCCI operating range.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 (a) The variations of pressure rise ratio at different 

SOI versus crank angle (b) The variations of maximum pres-

sure rise ratio versus SOI 

 

Figure 5(a) and 5(b) show the variation of pressure rise rate 

and maximum pressure rise rate at different injection timing. 

Maximum pressure rise rate of 1091 kPa/ ºCA at 6 ºCA bTDC 

was obtained when SOI was fixed at 180 ºCA bTDC. Similarly, 

maximum pressure rise rate was obtained as 375 kPa/ ºCA at 

7ºCA bTDC when SOI was fixed at 20 ºCA bTDC. Maximum 

pressure rise rate was advanced and increased with the advance 

of injection timing. In addition, heat is released at smaller 

range of crank angle and more homogeneous charge mixture is 

obtained with the advance of injection timing. Pressure oscilla-

tions are observed at earlier injection timings as shown in Fig-

ure 2. Moreover, the temperature and pressure of mixture are 

lower with earlier injection timing. It means that the auto-

ignition of cooler charge mixture is very difficult. Consequent-

ly, all charge mixture tends to participate auto-ignition chemi-

cal reactions spontaneously. It results in higher pressure rise 

ratio.   
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4. Conclusions 

The aim of this study is to investigate the injection 

timing on combustion characteristics in an early injection 

HCCI engine fueled with n-heptane. For this purpose, the 

test engine was run at constant engine speed, injection 

pressure and lambda at different injection timing includ-

ing 270, 180, 90, 60, 30, 20 ºCA bTDC. The test results 

showed that maximum in-cylinder pressure was obtained 

earlier when injection timing was altered from 20 ºCA to 

270 ºCA bTDC. It was also seen that single stage HCCI 

combustion was observed and combustion duration in-

creased as soon as injection timing is closed to TDC. The 

test results also showed that maximum pressure rise rate 

was obtained as 1091 kPa/ºCA at 6 ºCA bTDC when the 

injection was performed 180 ºCA bTDC. This case 

shows the knocking tendency at earlier injection timing. 

It was seen hat HCCI combustion could be controlled via 

injection timing and stable HCCI combustion occurred. 

It also causes to extend HCCI operating range at higher 

engine loads. 
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