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Abstract
We present a new and efficient algorithm to compute affine equivalences and symmetries
between two trigonometric curves in an arbitrary dimension. The algorithm benefits from
the power of invariance and polynomial gcd and factoring without solving any system
of equations. The algorithm is implemented in MAPLE, and extensive experimentations
demonstrating the efficiency of the method are given.
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1. Introduction
Detecting affine equivalences of two varieties implies checking whether the varieties are

the same in an affine setup, i.e., whether there exists a nonsingular affine transformation
that maps one of the varieties to the other. It is known [3, Introduction] that detect-
ing equivalences and symmetries of varieties in various geometries has been an attractive
problem because of its contribution to the fields like Pattern Recognition [9,18,20], Com-
puter Graphics [5,8,23], and Computer Vision [10,21,26]. Various approaches addressing
the problem of detecting equivalences and symmetries of certain varieties can be found in
some recent studies and references therein [1–4,6, 7, 11,13,14] .

In this paper we investigate the problem of detecting affine equivalences between two
trigonometric curves in arbitrary dimension. We refer reader to [4,15,16,27] for a detailed
insight about trigonometric curves. The problem is essentially solved in the paper by
Alcázar and Quintero [4]. The authors provide an efficient method similar to the ones
in [2, 3, 13]. However, it is essential that a method not only solves a problem completely
but is also simple and computationally efficient. Thus in this paper we aim to construct
a method that is simpler and more efficient than the existing ones. To do this we stick
to [4] until the step where they provide their main result about detecting equivalences. A
similar technique to the one given in this paper is first provided in [11], and the authors
demonstrate that the new method is simpler and more efficient than the existing ones.

Our method benefits from two notions: invariance and polynomial gcd and factorization.
First one is a natural consequence of the definition of geometry, i.e., the fact that geometry
is characterized by its invariants. Therefore, we first determine the invariants of the
affine geometry that are invariant under affine transformations, then we specialize them
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for trigonometric curves. Using these invariants, we reduce the problem to determining
reparametrizations which are linear Möbius transformations. This can be done by the
fact that Möbius transformation must be a factor of certain polynomial equalities (see
Eqs. (4.4) and (4.5)) formed by the invariants of the curves. Finally, we determine the
reparametrizations by the second main notion, i.e., polynomial gcd and factorization. To
determine the equivalence itself, unlike the other approaches, we use a simple matrix
multiplication without solving systems of equations.

The paper organized as follows. In Section 2 we gather some information about trigono-
metric curves and their affine equivalence. In Section 3, we characterize affine equivalences
of trigonometric curves in arbitrary dimension using the affine invariants. In Section 4, we
present our computational method and algorithm. We provide extensive tests to demon-
strate the efficiency of our algorithm for the special cases, where we deal with trigonometric
curves in the plane and space.

2. Preliminaries
An algebraic curve C ⊂ Rn is called a trigonometric curve if it can be parametrized by

a trigonometric parametrization [4, 16]

p(t) = (p1(t), p2(t), . . . , pn(t)), (2.1)

where

pi(t) =
mi∑
ℓ=0

[a(i)
ℓ cos(ℓt) + b

(i)
ℓ sin(ℓt)], t ∈ [0, 2π], i = 1, . . . , n. (2.2)

A trigonometric parametrization p is called simple if p is injective except for finitely
many parameters. Let p be a parametrization of a trigonometric curve C, then a simple
parametrization C̃ of the same curve C is called a simplification of p.

To construct our method, we need another representation of trigonometric curves called
rational complex parametrization [4, 16]. This can be done by the change of parameters
z = eit. In this case the parameter space becomes the unit circle S1 since z ∈ S1. Given a
trigonometric parametrization p(t) of a trigonometric curve C. Substituting the following
identities in p, which can be directly obtained by eit = cos t + i sin t and z̄ = 1

z ,

cos(kt) = z2k + 1
2zk

, sin(kt) = z2k − 1
2izk

, k ∈ Z,

we define a rational complex parametrization

p̃(z) = (p̃1(z), p̃2(z), . . . , p̃n(z)) , (2.3)

whose components are p̃i(z) = Pi(z)
zmi

, where Pi are complex polynomials of degree 2mi,
i ∈ {1, 2, . . . , n}, and z ∈ S1. Note that p̃ is a simplification of p since p̃ is a simple
parametrization of C.

We close this section by a result already proved in [4] which characterizes the repara-
metrizations of trigonometric curves.

Theorem 2.1 ([4]). Let p̃(z), q̃(z) be two rational parametrizations of a same trigono-
metric curve C, associated with two simple trigonometric parametrizations p(t), q(t) of
C. Then there exists a Möbius transformation φ such that q̃ = p̃ ◦ φ, and φ(z) = kz or
φ(z) = k

z , and k, z ∈ S1.

We refer the reader to [4] for a more detailed account regarding rational complex
parametrisations.
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3. Characterizing affine equivalences
Let C1 and C2 be two trigonometric curves in Rn. If there exist an affine transformation

f(x) = Ax+b, where b ∈ Rn and A is a nonsingular n×n matrix, such that f(C1) = C2,
then C1 and C2 are said to be affinely equivalent. If there exists an affine transformation
other than identity that leaves C1 invariant, then C1 is said to have an affine symmetry.
It is well known that if A is an orthogonal matrix, then f is called an isometry. In this
case, affine equivalences are reduced to Euclidean equivalences and affine symmetries are
called just symmetries.

In this paper, the curves we are dealing with are the trigonometric curves C1, C2, none of
them contained in a hyperplane of Rn, parametrized by rational complex parametrizations
p, q, respectively. Here we drop the tilde from p̃ for simplicity. Using this representation,
one can reduce the problem to the parameter space of the curves by the following theorem
which is proved in a previous approach dealing with the same problem [4].

Theorem 3.1 ([4]). Let C1, C2 be two trigonometric curves, none of them contained
in a hyperplane, defined by rational complex parametrizations p(z), q(z), with z ∈ S1,
respectively. If the curves are affinely equivalent then there exist a nonsingular n × n
matrix A, b ∈ Rn and a Möbius transformation φ(z) = kz or φ(z) = k

z with k ∈ S1 such
that Ap(z) + b = q(φ(z)).

Now we exploit the above theorem to find an affine invariants for the trigonometric
curves in an arbitrary dimension. In order to do that first we will try to get rid of the
action of affine transformations on rational complex parametrizations, i.e. we will build
rational functions of the parametrizations that are invariant under affinities.

Let x(z) = (x1(z), x2(z), . . . , xn(z)) and y(z) = (y1(z), y2(z), . . . , yn(z)) be two rational
complex parametrizations and assume that Ax + b = y with A nonsingular and b ∈ Rn.
We want to determine functions Fi that are rational in the components of x and its
derivatives with respect to z so that Fi(Ax+b) = Fi(x) for all nonsingular n×n matrices
A and vectors b ∈ Rn. Then the functions Fi provide a simple way to check whether x
and y satisfy the relation Ax+b = y using the fact that Fi(Ax+b) = Fi(y). The rational
functions satisfying Fi(Ax + b) = Fi(x) will be called affine invariants of trigonometric
curves.

We denote the determinant of the vectors x1, x2, · · · , xn ∈ Rn by ∥x1x2 · · · xn∥. For a
nonsingular n×n matrix A, it is well-known that ∥Ax1Ax2 · · · Axn∥ = det(A)∥x1x2 · · · xn∥.

We also denote derivatives of a parametrization x by x′, x′′, . . . , x(n), . . .. If Ax+b = y
then we have

Ax′ = y′

Ax′′ = y′′

... (3.1)

Ax(n) = y(n)

...

To form an n × n determinant whose columns are the vectors x(i), we need n different
derivative of x. It does not matter which ones of them are chosen, but for simplicity we
choose the ones with orders 1, 2, . . . , n. Then we see that

∥Ax′Ax′′ · · · Ax(n)∥ = det(A)∥x′x′′ · · · x(n)∥. (3.2)
Taking the relations in (3.1) into account and substituting them in (3.2), we get the

following relation
det(A)∥x′x′′ · · · x(n)∥ = ∥y′y′′ · · · y(n)∥. (3.3)
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Analogously, the derivatives x′, x′′, . . . , x(n−1), x(n+1) correspond to another relation

det(A)∥x′x′′ · · · x(n−1)x(n+1)∥ = ∥y′y′′ · · · y(n−1)y(n+1)∥. (3.4)

Assuming none of the determinants in (3.3) and (3.4) vanishes and dividing them side
by side, we get

∥x′x′′ · · · x(n−1)x(n+1)∥
∥x′x′′ · · · x(n)∥

= ∥y′y′′ · · · y(n−1)y(n+1)∥
∥y′y′′ · · · y(n)∥

. (3.5)

The above equality is the equality of a rational function evaluated on the parametriza-
tions x (left hand side) and y (right hand side). We denote this function by Fn, then (3.5)
can be written as Fn(x) = Fn(y). Thus the rational function Fn is an affine invariant,
since Fn satisfies Fn(Ax + b) = Fn(x). Consequently we have the observation that if
Ax + b = y then Fn(x) = Fn(y).

Using the procedure above and the derivative x(n+1), we can generate n other invariants
in the following way. Denote the determinant function ∥x′x′′ · · · x(n)∥ by ∆(x). Now, to
generate the rational function F1, replace the first column x′ of ∆(x) by x(n+1). Denote
the new determinant function by G1 := ∥x(n+1)x′′ · · · x(n)∥. Finally F1 = G1

∆
. We can

generalize this operation as follows. The replacement of ith column of ∆(x) by x(n+1) can
be denoted by the function Gi = ∥x′ · · · x(i−1)x(n+1)x(i+1) · · · x(n)∥ for i ∈ {2, . . . , n − 1}
with G1 and Gn defined as above. Thus we have a set I of affine invariant functions as

I :=
{

Fi = Gi

∆
: i ∈ {1, . . . , n}

}
. (3.6)

Note that if the curve C parametrized by the complex parametrization x(z) is not
contained in a hyperplane then ∆(x) is not identically zero [25]. So the invariant functions
in I are well-defined.

We see that if x, y are two complex parametrizations and I is the set of affine invariants
of them, then Fi(x) = Fi(y) for all i ∈ {1, . . . , n} is a necessary condition for Ax + b = y.
Now we will see that Fi(x) = Fi(y) is also a sufficient condition.

Let Fi(x) = Fi(y) for all i ∈ {1, . . . , n}. Let us denote the matrix function corresponding
to the determinant function ∆(x) by D(x) := [x′x′′ · · · x(n)]. Since det(D(x)) = δ(x) is
not identically zero, the matrix D(x) is nonsingular and hence (D(x))−1 is well defined.
Let us consider the matrix A := D(y)(D(x))−1. Differentiating the matrix A, i.e. the
product D(y)(D(x))−1, with respect to z yields

d(D(y)(D(x))−1)
dz

= dD(y)
dz

(D(x))−1 + D(y)d(D(x))−1

dz

= dD(y)
dz

(D(x))−1 − D(y)(D(x))−1 dD(x)
dz

(D(x))−1 (3.7)

= D(y)
(

(D(y))−1 dD(y)
dz

− (D(x))−1 dD(x)
dz

)
(D(x))−1.

For an unknown matrix U , assume that U = (D(x))−1 dD(x)
dz

. Then we get D(x)U =
dD(x)

dz
which corresponds to n systems of equations. Each of these systems has only one

solution, since det(D(x)) = ∆(x) is not identically zero. Each solution corresponds to one
column of the unknown matrix U . After solving the systems explicitly, we get
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U =



0 0 · · · 0 F1(x)

1 0 · · · 0 F2(x)

0 1 · · · 0 F3(x)
...

...
...

...
...

0 0 · · · 1 Fn(x)


. (3.8)

The same process works also for an unknown matrix V so that V = (D(y))−1 dD(y)
dz

.

Thus the systems D(y)V = dD(y)
dz

yields the solution

V =



0 0 · · · 0 F1(y)

1 0 · · · 0 F2(y)

0 1 · · · 0 F3(y)
...

...
...

...
...

0 0 · · · 1 Fn(y)


. (3.9)

By our assumption, Fi(x) = Fi(y), we get U = V . Substituting U = V in (3.7),
we conclude that dA

dz is zero matrix, i.e. A is a constant and non-singular matrix since
D(x) and D(y) are non-singular matrices. By A = D(y)(D(x))−1, it is written that
AD(x) = D(y). Using the equality of the first columns, we have Ax′ = y′. The last
differential equation yields Ax + b = y for a constant vector b ∈ Rn.

Now let us get back to our trigonometric curves C1 and C2 defined by complex para-
metrizations p(z) and q(z). By the above observation, writing x = p and y = q ◦ φ, the
following result follows.

Theorem 3.2. Let C1, C2 be two trigonometric curves, none of them contained in a
hyperplane, defined by rational complex parametrizations p(z), q(z), with z ∈ S1, respec-
tively. C1 and C2 are affinely equivalent if and only if there exist a Möbius transformation
φ(z) = kz or φ(z) = k

z with k ∈ S1 such that Fi(p) = Fi(q ◦ φ) for i ∈ {1, . . . , n}.

The idea is to expand the expression Fi(q ◦ φ) using the chain rule to see whether affine
invariants Fi commute with φ, that is, whether Fi(q ◦ φ) = Fi(q) ◦ φ. However we will
see that Fi(q ◦ φ) ̸= Fi(q) ◦ φ since k appears in all of the expressions. Thus, we will try
to eliminate k from the polynomial system Fi(p) = Fi(q ◦ φ) to check whether there exist
some other invariants which commute with φ. If they exist, they must satisfy a symmetric

form like Ap(z)
Bp(z)

= Aq(w)
Bq(w)

where w = φ(z) and p, q are complex parametrizations.

Let C1, C2 be two affinely equivalent trigonometric curves, none of them contained
in a hyperplane, defined by rational complex parametrizations p(z), q(z), with z ∈ S1,
respectively. By Theorem 3.2, there exist a Möbius transformation φ(z) = kz or φ(z) = k

z

with k ∈ S1 such that Fi(p) = Fi(q ◦φ) holds. Now we want to expand Fi(q ◦φ). However
we will compute the expansions only for the linear Möbius transformations, i.e., φ(z) = kz,
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since the other case can be reduced to the linear case. Let us explain how we can reduce
the case where φ(z) = k

z
.

If the curves are affinely equivalent, then Ap(z) + b = q(φ(z)), where φ(z) = kz or
φ(z) = k

z . Assume that we are in the case where φ(z) = k
z , then Ap(z) + b = q(k

z ) holds.
The latter also holds for a change of parameters z → 1

z , that is, Ap(1
z ) + b = q(kz).

Writing p̄(z) := p(1
z ), we have Ap̄(z) + b = q(kz) which is the linear case. Thus, below,

we can construct our method only for φ(z) = kz.
Let w := φ(z) = kz, we present the following lemma in which we prove a formula to

expand Fi(q(w)).

Lemma 3.3. For all i ∈ {1, . . . , n}, the following formula holds

Fi(p)(z) = kn+1−iFi(q)(w). (3.10)

Proof. We know that Fi(q(w)) = Gi(q(w))
∆(q(w))

. First we need to determine dm(q(w))
dzm

to

compute the determinants ∆ and Gi. Since w = kz and w′ = k, one can easily see, using
the chain rule, that

dm(q(w))
dzm

= kmq(m)(w),

where m is a non-negative integer.
Using the above, we can easily compute the determinants ∆(q(w)) and Gi(q(w)). Let

us first compute ∆(q(w)). Using the definition of ∆, we have

∆(q(w)) = ∥d(q(w))
dz

d2(q(w))
dz2 · · · dn(q(w))

dzn
∥

= ∥kq′(w)k2q′′(w) · · · knq(n)(w)∥

= k
n(n+1)

2 ∥q′(w)q′′(w) · · · q(n)(w)∥ = k
n(n+1)

2 ∆(q)(w).

(3.11)

Again, using the definition of Gi, for i ∈ {1, . . . , n}, we get

Gi(q(w)) = ∥d(q(w))
dz

· · · di−1(q(w))
dzi−1

dn+1(q(w))
dzn+1

di+1(q(w))
dzi+1 · · · dn(q(w))

dzn
∥

= ∥kq′(w) · · · ki−1q(i−1)(w)kn+1q(n+1)(w)ki+1q(i+1)(w) · · · knq(n)(w)∥

= k
n(n+1)

2 +n+1−i∥q′(w) · · · q(i−1)(w)q(n+1)(w)q(i+1)(w) · · · q(n)(w)∥

= k
n(n+1)

2 +n+1−iGi(q)(w).

(3.12)

Finally, dividing Eq. (3.12) by Eq. (3.11), we have

Fi(q(w)) = kn+1−iFi(q)(w).

□

By Lemma 3.3, the last equation of the system (3.10), i.e. the equation corresponding

to i = n is Fn(q(w)) = kFn(q)(w). If we isolate k in the latter, we have k = Fn(q(w))
Fn(q)(w)

.

Substituting this in the system (3.10), for all i ∈ {1, . . . , n − 1}, we get

Fi(q(w)) = F n+1−i
n (q(w))

F n+1−i
n (q)(w)

Fi(q)(w), (3.13)

which yields, for i ∈ {1, . . . , n − 1},
Fi(q(w))

F n+1−i
n (q(w))

= Fi(q)(w)
F n+1−i

n (q)(w)
. (3.14)
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Let us have a closer look at the above system. If we define a rational function to be the

function Ki(q) := Fi(q)
F n+1−i

n (q)
, we rewrite Eq. (3.14) as

Ki(q(w)) := Ki(q)(w), (3.15)
where w = kz. The last system states that Ki which is a rational function of Fi does
commute with linear Möbius transformations. Thus we have

Theorem 3.4. Let C1, C2 be two trigonometric curves, none of them contained in a
hyperplane, defined by rational complex parametrizations p(z), q(z), with z ∈ S1, respec-
tively. Also let p̄(z) = p(1/z). C1 and C2 are affinely equivalent if and only if there
exists a function w := kz with k ∈ S1 satisfying Ki(p) = Ki(q)(w) or Ki(p̄) = Ki(q)(w)
for all i ∈ {1, . . . , n − 1} and such that D(q(w))(D(p))−1 or D(q(w))(D(p̄))−1 is a con-
stant matrix A and q(w) − Ap(z) or q(w) − Ap̄(z) is a constant vector b. Furthermore,
f(x) = Ax + b is an affine equivalence between C1 and C2.

Proof. (⇒) : Let the curves be affinely equivalent. Then we have Ap + b = q(w) or
Ap̄ + b = q(w). By Theorem 3.2 we have that Fi(p) = Fi(q(w)) or Fi(p̄) = Fi(q(w)) for
all i ∈ {1, . . . , n}. The latter yields, using Eq. (3.15), that Ki(p) = Ki(q)(w) or Ki(p̄) =
Ki(q)(w). (⇐) : Let w = kz be a Möbius transformation satisfying Ki(p) = Ki(q)(w)
or Ki(p̄) = Ki(q)(w), and making A = D(q(w))(D(p))−1 or A = D(q(w))(D(p̄))−1 a
constant matrix and b = q(w) − Ap or b = q(w) − Ap̄ a constant vector. By the proof of
Theorem 3.2, f(x) = Ax + b is an affinity between C1 and C2. □

4. Detecting affine equivalences
In this section we will discuss how can we detect affine equivalences simply using The-

orem 3.4. Let us start by writing

Ki(p) = Pi

Qi
, Ki(p̃) = P̃i

Q̃i
, Ki(q) = Ri

Si
(4.1)

where Pi, Qi, P̃i, Q̃i, Ri, Si are univariate polynomials such that gcd(Pi, Qi) = gcd(P̃i, Q̃i) =
gcd(Ri, Si) = 1. Using Theorem 3.4 and (4.1), if two trigonometric curves, C1 and C2,
are affinely equivalent, then

Pi

Qi
= Ri

Si
, (4.2)

or
P̃i

Q̃i
= Ri

Si
. (4.3)

Clearing the denominators in (4.2) and (4.3), we get, for i ∈ {1, . . . , n − 1},
Φi(z, w) := Pi(z)Si(w) − Qi(z)Ri(w) = 0, (4.4)

or
Φ̃i(z, w) := P̃i(z)Si(w) − Q̃i(z)Ri(w) = 0. (4.5)

Since we need the common factors of Φi or Φ̃i for i ∈ {1, . . . , n − 1}, it is easy to check
their gcds. Thus, let us write

G(z, w) = gcd(Φ1(z, w), . . . , Φn−1(z, w)), (4.6)
and

G̃(z, w) = gcd(Φ̃1(z, w), . . . , Φ̃n−1(z, w)). (4.7)
Finally, we are going to look for a special factor ϕ(z, w) := w−kz of G and G̃. We provide

a simple proof for the following theorem which lets us compute the Möbius transformations
just by factoring a bivariate polynomial. Thus we have,
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Theorem 4.1. Let C1, C2 be two trigonometric curves, none of them contained in a hy-
perplane, defined by rational complex parametrizations p(z), q(z), with z ∈ S1, respectively.
Also let G and G̃ be as in (4.6) and (4.7). If C1 and C2 are affinely equivalent, then there
exists a function ϕ = w − kz such that ϕ divides G or G̃.

Proof. Let the curves be affinely equivalent. Then, by Theorem 3.4, there exists a Möbius
transformation φ(z) = kz satisfying Ki(p) = Ki(q)(φ) or Ki(p̄) = Ki(q)(φ). Let ϕ =
w − kz be the polynomial associated with φ. The zero set {(z, w) : w = kz} of ϕ
is contained in the set of points (z, w) satisfying Φi(z, w) or Φ̃i(z, w), since φ satisfies
Ki(p) = Ki(q)(w) or Ki(p̄) = Ki(q)(w). Finally, since ϕ is irreducible, Bézouts theorem
implies that ϕ divides Φi or Φ̃i, and therefore G or G̃ as well. □

The above result states that in order to compute φ, we need to compute both polyno-
mials G(z, w) and G̃(z, w), and look for the special factor ϕ by factoring them. This factor-
ization over the complex numbers can be done by a predefined function called AFactors
of the computer algebra system MAPLE™[22]. After determining φ, we can determine
whether φ corresponds to an affine equivalence by checking whether the matrix product
A = D(q(φ))(D(p))−1 or A = D(q(φ))(D(p̃))−1 is constant. If so, we can easily find
the translation by b = q(φ) − Ap or b = q(φ) − Ap̃. Ultimately, the following algorithm
follows.

Algorithm AffTrig

Input: Two trigonometric curves C1, C2 ⊂ Rn, none of them contained in a hyperplane,
given by the rational complex parametrizations p, q

Output: Either the list of Möbius transformations and affinities, or the warning: "The
curves are not affinely equivalent"

1: procedure AffTrig(p, q)
2: Compute the sets of factors F1,F2 of the polynomials G and G̃ which are defined

at (4.6) and (4.7).
3: Check F1,F2 to find the sets M1,M2 of special factor ϕ.
4: if M1 = ∅ and M2 = ∅ then return "The curves are not affinely equivalent."
5: else
6: Compute the set S of Möbius transformations corresponding to M1 ∪ M2
7: for φ ∈ M1 ∪ M2 do
8: Check if D(q(φ))D(p)−1 or D(q(φ))D(p̃)−1 is a constant matrix A.
9: In the affirmative case, set b = q(φ) − Ap or b = q(φ) − Ap̃ and return

the affinity defined by A and b, and the corresponding φ.
10: end for
11: end if
12: end procedure

Let us provide a detailed example in the three dimensional case, in which we can see
each step of the method.

Example 4.2. Consider the trigonometric curves defined by the rational complex para-
metrizations

p(z) =



(1 + 2i)z4 + 2z2 + 1 − 2i
2z2

(−1 + i)z4 − 1 − i
2z2

(2 − 2i)z2 + 2 + 2i
2z


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q(z) =



−(11 + 7i)z4 + (−6 + 6i)z3 − 10z2 − (6 + 6i)z − 11 + 7i
2z2

−(1 + 2i)z4 + (8 − 8i)z3 − 2z2 + (8 + 8i)z − 1 + 2i
2z2

3z4 + 4z2 + 3
2z2


The computation of G and G̃ yields

G(z, w) = w2 − z2,

G̃(z, w) = w2 + z2.

While G admits the following special factors

ϕ1(z, w) = w − z,

ϕ2(z, w) = w + z,

factoring G̃, we get the following two special factors

ϕ3(z, w) = w − iz,

ϕ4(z, w) = w + iz,

which yield the following four Möbius transformations

φ1(z) = z,

φ2(z) = −z,

φ3(z) = iz,

φ4(z) = −iz.

φ1 corresponds to the affine transformation f1(x) = A1x + b1, where

A1 =


−6 5 −3

−1 0 4

1 −2 0


, b1 =


1

0

1


,

φ2 corresponds to the affine transformation f2(x) = A2x + b2, where

A2 =


−6 5 3

−1 0 −4

1 −2 0


, b2 =


1

0

1


,

φ3 corresponds to the affine transformation f3(x) = A3x + b3, where

A3 =



4
3

−29
3

−3

−1
3

−4
3

4

−1 2 0


, b3 =


−19

3
−2

3
3


,
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and φ4 corresponds to the affine transformation f4(x) = A4x + b4, where

A4 =



4
3

−29
3

3

−1
3

−4
3

−4

−1 2 0


, b4 =


−19

3
−2

3
3


.

The whole computation of this example took 0.125 seconds.

5. Experimentation
In this section we provide some examples to illustrate and compare the performance of

the method. In the first subsection, we consider the plane case, where we compute (affine)
symmetries of well-known Lissajous curves with a rational frequency ratio. In the second
subsection we consider the space curves, where we provide a comprehensive table in which
we compare our algorithm with the previous one [4]. All of these examples are computed
in the computer algebra system MAPLE [22], and executed in a PC with a 1.70 GHz Intel
Core i5 processor and 6 GB RAM. MAPLE worksheets and codes are accessible in [12].

5.1. Plane case: Symmetries of Lissajous curves
A Lissajous curve is a harmonic curve given by the parametric form [17,19,24]

x(t) =

a sin(αt + δ)

b sin(βt)

 , (5.1)

where a, b, α, β, δ are constants. a
b is called the frequency ratio. If the frequency ratio

is rational, then the corresponding Lissajous curve is algebraic. Hence the curve can be
parametrized by

x(t) =

a sin(mt + δ)

b sin(nt)

 , (5.2)

where m and n are integers. In this case, we can rewrite the above parametrization as

x(t) =

a1 sin(mt) + a2 cos(mt)

b sin(nt)

 , (5.3)

where a1 = a cos(δ) and a2 = a sin(δ). The last representation is clearly a trigonometric
parametrization. From there, we can represent an algebraic Lissajous curve with a rational
complex parametrization, using eit = z,

p(z) =


µz2m + µ̄

2zm

b
z2n − 1

2izn

 , (5.4)

where µ1 = a2 − a1i, and µ̄ is the complex conjugate of µ.
We prepare 3 sets of examples to test the method for detecting symmetries for {µ =

4, b = 1}, {µ = 4i, b = 1}, and {µ = 3 + 4i, b = 1}. In these cases, the classes of rational
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complex parametrizations are

p(z) =

2z2m + 1
zm

z2n − 1
2izn

 , p(z) =

2i
z2m − 1

zm

z2n − 1
2izn

 , p(z) =


(3 + 4i)z2m + (3 − 4i)

2zm

z2n − 1
2izn

 . (5.5)

In each of these cases, we generate three curves for {m = 2, n = 3}, {m = 8, n = 3}, and
{m = 10, n = 9}.

The first class of examples. We illustrate the curves in Fig. 1. Table 1 corresponds
to the computation times to detect symmetries of algebraic Lissajous curves in the
first set of examples.

Figure 1. Graphs of Lissajous curves for the first class of examples.

m, n t

2, 3 0.187

8, 3 0.093

10, 9 0.649

Table 1. Computation times in seconds for detecting symmetries in the first class
of examples.

The second class of examples. We illustrate the curves in Fig. 2. Table 2 cor-
responds to the computation times to detect symmetries of algebraic Lissajous
curves in the first set of examples.

Figure 2. Graphs of Lissajous curves for the second class of examples.
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m, n t

2, 3 0.093

8, 3 0.141

10, 9 0.156

Table 2. Computation times in seconds for detecting symmetries in the second
class of examples.

The third class of examples. We illustrate the curves in Fig. 3. Table 3 corresponds
to the computation times to detect symmetries of algebraic Lissajous curves in the
first set of examples.

Figure 3. Graphs of Lissajous curves for the third class of examples.

m, n t

2, 3 0.516

8, 3 1.797

10, 9 4.094

Table 3. Computation times in seconds for detecting symmetries in the third
class of examples.

In each cases, our algorithm can determine the symmetries in at most 4.094 seconds.
While, in all examples in the first and second classes, the algorithm returns 4 symmetries,
it returns 2 symmetries in the examples of the third class.

5.2. Space case
In this subsection, we aim to test various space curves that are randomly generated and

to compare our algorithm with the one given in [4]. In order to do that, we constructed a
random trigonometric example generator in MAPLE, using chebyshev polynomials, and
implemented the algorithm given in [4] since the authors provide no implementation and
timings.

We first generate a random rational complex parametrization corresponding to a random
trigonometric parametrization of a given degree. The coefficients of these parametrizations
are chosen randomly between −16 and 16. Once we generate the parametrization, we
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apply the following affine transformation to the randomly generated parametrization to
get another parametrization:

f(x) =


1 −1 0

2 0 1

−1 2 3


x +


0

1

−1


.

Finally we compose the latter with the Möbius transformation φ(z) = iz. Then we have
two randomly generated trigonometric curves, given in rational complex form, which are
affinely equivalent. Table 4 presents the computation times consumed to compute affine
equivalences between the randomly generated curves, where t1 and t2 denote computa-
tion time for our algorithm and the algorithm in [4], respectively. One can see that our
algorithm works better than the existing one.

degree t1 t2

4 0.285 0.375

6 1.219 1.969

8 4.625 17.812

10 7.328 88.188

12 10.937 133.969

Table 4. Computation times in seconds for detecting affine equivalences of ran-
domly generated trigonometric curves in 3D case

6. Conclusion
We have presented an algorithm, improving the algorithm in [4], computing affine equiv-

alences between two trigonometric curves in an arbitrary dimension. Unlike existing algo-
rithms, our method uses polynomial factoring instead polynomial system solving. How-
ever, similar to existing algorithms, our algorithm needs rational complex parametrizations
as input. We have implemented our algorithm and the algorithm in [4] in Maple to present
its performance, and to compare the algorithms mentioned in this paper. We provide ev-
idences to show that our algorithm improves the previous results provided for the same
problem. Due to the method we constructed here, experimentation section supports that
our algorithm is simpler and works faster than the existing algorithms.
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