Surface Physicochemical Characterization of Shepherd’s Purse (Capsella bursa-pastoris) by Inverse Gas Chromatography

Birol Isik

1 Yildiz Technical University, Faculty of Arts & Sciences, Department of Chemistry, Esenler, Istanbul, 34220, Turkey.

Abstract: Shepherd’s purse (Capsella bursa-pastoris) is one of the plants widely utilized in conventional medicine and can grow in different parts of the world. The determination of the surface properties of a solid material is extremely important for the industrial use of the material and the improvement of material properties. Therefore, in this study, this plant was used as a stationary phase, and its surface characterization was performed by inverse gas chromatography technique. In this context, firstly, the plant was prepared with several pretreatments to be used in the experimental tests. The V_n values were found from the retention data obtained by passing organic solvents over the plant filled into the chromatographic column in the temperature range of 303.2–328.2 K and linear retention diagrams were drawn. The γ^2 of the plant was calculated according to Schultz, Dorris-Gray, and Donnet-Park methods, and the suitability of the methods was compared. The ΔG^Δ values were calculated with the data obtained from the Schultz method, and the ΔH^Δ values were calculated using these data. The acidity and basicity of the plant surface were examined. According to the k_D/k_A value (0.93), it was determined that the surface of the plant was acidic.

Keywords: Adsorption, surface properties, inverse gas chromatography, shepherd’s purse.

Cite this: Isik B. Surface Physicochemical Characterization of Shepherd’s Purse (Capsella bursa-pastoris) by Inverse Gas Chromatography. JOTCSA. 2023;10(4):1071-80.

DOI: https://doi.org/10.18596/jotcsa.1278025

*Corresponding author’s E-mail: 19birol91@gmail.com, isikb@yildiz.edu.tr

1. INTRODUCTION

A popular technique for analyzing volatiles is gas chromatography, which combines a stationary phase with known properties and an inert mobile phase. Several different types of volatile chemicals can be examined using gas chromatography (1–3). Nevertheless, this technique cannot be used to analyze large molecular weights and non-volatile components such as lignocellulosic materials (4), clays (5), liquid crystals (6), polymers (7), and composites (8). To examine such compounds, inverse gas chromatography (IGC) was improved for the task (9–11).

Unlike traditional gas chromatography, the IGC method analyzes solid materials by passing them through a chromatographic column loaded with known-property volatile solvents. The IGC approach uses retention data from experimental research to characterize the physicochemical properties of solid materials in a simple, rapid, reliable, and generally low-cost manner (12–14). The IGC approach allows for the study of both infinite dilution and restricted concentration. The parameters surface energy, acidity-basicity constants, adsorption enthalpy, entropy, and Gibbs free energy can all be obtained by doing experimental tests at infinite dilution (15,16).

The development of a solid material’s qualities and optimum efficiency all depend heavily on the surface properties of the material that will be used in various industrial applications. Surface-free energy in particular is crucial for the processing and use of materials. This energy plays a crucial role in the identification, assessment, and development of material surface characteristics such as ornamentation, wetting capacity, adhesion, and coating (17,18). Measurements of liquid adsorption, flow micro-calorimetry, and contact angle can all be used to calculate the surface energy of solid materials (19,20). Researchers have recently favored the IGC methodology over these methods, however, because it is simpler to use, has higher efficiency, and produces data with higher accuracy.
This is because determining surface energy using these methods is rather limited and complex. The IGC method also determines whether the material’s surface is acidic or alkaline. The material surface’s acidity or basicity offers crucial preliminary data for assessing the adsorption behavior of the materials and choosing the right pollutant to maximize the efficiency of the adsorption process. Several techniques, including pH_{pzc} determination, zeta potential tests, and the Boehm titration method, can be used to determine the acidity or alkalinity of the material surface. The IGC approach, however, offers straightforward and quick findings and enables the evaluation of several surface properties in addition to acidity and alkalinity parameters (21–23).

One plant that is commonly used in conventional medicine is the shepherd’s purse (Capsella bursa-pastoris), which is a global plant that may grow anywhere. Shepherd’s purse contains a wide variety of chemicals, including flavonoids, fatty acids, organic acids, amino acids, many trace elements, vitamins, and many other compounds. This plant can be widely used for antimicrobial, anti-inflammatory, antioxidant, cardiovascular, reproductive, anticancer, sedative, and other pharmacological fields and purposes (24–27). Shepherd’s purse can be utilized in many areas. Besides, as a lignocellulosic material, it has the potential to be used as an efficient sorbent for the removal of various organic contaminants and heavy metals from aqueous environments. For this purpose, it is extremely significant to investigate the surface properties of the shepherd’s purse plant.

In this work, the IGC method was used to determine the surface characteristics of the shepherd’s purse at infinite dilution. In this case, a chromatographic column was loaded with the powdered shepherd’s purse following specific pretreatments. The plant’s retention behavior was then evaluated by running various organic solvents through the column. Net retention volumes and linear retention diagrams were calculated using the retention information gleaned from the experimental research. The information obtained from these linear diagrams was used to determine the surface characteristics of the shepherd’s purse.

2. EXPERIMENTAL SECTION

2.1. Materials and methods

All chemicals were illustrated in Table 1. All chemicals were acquired from Sigma Aldrich and Merck, Inc. For the chromatographic investigations, a 0.5 m stainless steel column from Alltech Associates Inc. was employed. Furthermore, from Alltech Associates Inc., silanized glass wool was utilized to fill the column tips. As the mobile phase in the IGC investigations, high-purity inert helium (He) gas was used.

Table 1. The chemicals used in this work.

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Abbreviation</th>
<th>Source</th>
<th>CAS Registry Number</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane</td>
<td>Hx</td>
<td>Sigma Aldrich</td>
<td>110-54-3</td>
<td>≥99.7%</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>Hp</td>
<td>Sigma Aldrich</td>
<td>142-82-5</td>
<td>≥99.0%</td>
</tr>
<tr>
<td>n-Octane</td>
<td>O</td>
<td>Sigma Aldrich</td>
<td>111-65-9</td>
<td>≥99.0%</td>
</tr>
<tr>
<td>n-Nonane</td>
<td>N</td>
<td>Sigma Aldrich</td>
<td>111-84-2</td>
<td>≥99.0%</td>
</tr>
<tr>
<td>n-Decane</td>
<td>D</td>
<td>Sigma Aldrich</td>
<td>124-18-5</td>
<td>≥94.0%</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>THF</td>
<td>Sigma Aldrich</td>
<td>109-99-9</td>
<td>≥99.8%</td>
</tr>
<tr>
<td>Acetone</td>
<td>Ace</td>
<td>Sigma Aldrich</td>
<td>67-64-1</td>
<td>≥99.8%</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>EA</td>
<td>Sigma Aldrich</td>
<td>141-78-6</td>
<td>≥99.8%</td>
</tr>
<tr>
<td>Chloroform</td>
<td>TCM</td>
<td>Sigma Aldrich</td>
<td>67-66-3</td>
<td>≥99.8%</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>DCM</td>
<td>Sigma Aldrich</td>
<td>75-09-2</td>
<td>≥99.8%</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>DEE</td>
<td>Sigma Aldrich</td>
<td>60-29-7</td>
<td>≥97.5%</td>
</tr>
</tbody>
</table>

A thermal conductivity detector-equipped Agilent Technologies 6890N gas chromatograph was used to carry out the IGC studies. The temperature of the sample injection unit and detector of the gas chromatography device used throughout the studies is 523.2 K. Several organic solvents were applied to the prepared adsorbent using a 1 mL Hamilton syringe, and their retention behavior was examined. The air peak was also obtained using a Hamilton syringe of 10 mL. Each solvent and air injection received at least four successive injections for each set of measurements to ensure the correctness of the experimental data. Retention times were calculated based on the solvents’ behavior during retention on the stationary phase, and retention diagrams were drawn. The surface characteristics of the materials in the temperature range of 303.2–328.2 K were determined using these retention diagrams, and the results were evaluated. For infinite dilution, the probe (0.1 µL) was taken into the syringe and flushed into the air. Then, the air and probe retention times were calculated. For every set of measurements, each probe and air injection were received at least four consecutive times.

2.2. Preparation of the Adsorbent and Chromatographic Column

Shepherd’s purse plants were bought from herbalists in Istanbul, Turkey, and then they were scrubbed clean of any dirt and dust. Then, to get rid of different pollutants and impurities, they were extensively cleaned with distilled water. At 383.2 K for 24 h, an oven was used to dry the completely washed plants (23,28). With a grinder, they were further ground to 80–100 mesh. For further research, the ground plants were dried again in an oven at 383.2 K for 48 h after being cleaned many times with distilled water. A stainless-steel chromatographic column was cut into 0.5 m in length. It was first washed with distilled
water and then with chromic acid to remove organic and inorganic contaminants. It was then cleaned again with distilled water and passed through acetone. After this process, it was dried in an oven at 383.2 K for 24 hours. Then, sorbent was filled into the column at approximately 0.6 g. After this process, the column ends were completely plugged with silanized glass wool.

3. RESULTS AND DISCUSSION

The interaction between the shepherd’s purse and organic solvents is determined by the retention time of the selected solvent. A net retention volume \((V_N) \) is calculated by the following equation (29,30):

\[
V_N = Q \times f \times (t_r - t_a) \times T/T_f
\]

(1)

Here, \(t_r \) and \(t_a \) are the retention times of solvents and air, respectively. \(Q \) is the volumetric flow rate, \(f \) is the James-Martin constant, \(T \) is the column temperature \((K)\), and \(T_f \) is the ambient temperature \((K)\).

Using the retention data of the solvents on the stationary phase (shepherd’s purse) in the column, \(V_N \) values were determined by equation (1) utilizing the data. Figure 1 illustrates linear retention diagrams.

By employing the \(V_N \) values derived by equation (1) with the aid of the raw data collected from the IGC tests, it is possible to determine the Gibbs free energy of adsorption \((\Delta \Gamma^D_a)\), which is a crucial parameter for the sorption process. The \(\Delta \Gamma^D_a \) values were calculated from the following equation (31–33):

\[
\Delta \Gamma^D_a = -R \times T \times \ln(V_N) + K
\]

(2)

The chemical composition, physical characteristics, and composition of solid materials can all affect how energetically active they are on the surface. Van der Waals interactions, which are weak, London forces, and strong interactions like acid-base and polar interactions are what cause the interactions between the solid material and organic solvent to occur (34). The dispersive surface energy \(\gamma^D \) is a result of the weak interaction between the solid material and solvent molecules. There are several ways to compute the \(\gamma^D \) values, including the Dorris-Gray (equation (3)) (35), Donnet-Park (36–38), and Schultz (equation (4)) (39) approaches.

\[
-\Delta G_{[\text{CH}_2]} = 2 \times N_A \times a_{[\text{CH}_2]} \times \left(\gamma^D \times \gamma_{[\text{CH}_2]} \right)^{0.5}
\]

(3)

Here, \(\Delta G_{[\text{CH}_2]} \) is the Gibbs free energy of a surface including only the -CH\(_2\) group, calculated according to equation (5). \(a_{[\text{CH}_2]} \) refers to the surface area of the -CH\(_2\) group \((0.06 \text{ nm}^2)\). “\(a^\prime \)” refers to the cross-sectional area of solvents, and \(\gamma^D \) refers to the dispersive energy of solvents. These values were taken from the literature and are presented in Table 2.

\[
\gamma_{[\text{CH}_2]}^D = -R \times T \times \ln \left(\frac{V_{[\text{CH}_2]}}{V_{N, n+1}} \right)
\]

(5)

\[
\gamma_{[\text{CH}_2]} = 35.6 - 0.058 \times t
\]

(6)

\[
\gamma_{[\text{CH}_2]} = 35.6 - 0.058 \times (t - 20)
\]

(7)

Here, \(t \) refers to the column temperature. \(V_{N,n} \) and \(V_{N,n+1} \) refer to the net retention volumes of \(n \)-alkanes consisting of a \(n \) and \(n+1 \) carbon atoms, respectively.

Figure 2 displays \(RT \ln V_N \) linear graphs versus the carbon number of \(n \)-alkanes according to equation (7), used to calculate the \(\gamma^D \) values using the Dorris-Gray equation in equation (3).
Table 2. The values of \(a\) and \(\gamma_L^D\) for organic solvents \((29)\).

<table>
<thead>
<tr>
<th>Probes</th>
<th>(a) (x10^{-10} m^2)</th>
<th>(\gamma_L^D) (mJ/m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane (Hx)</td>
<td>51.5</td>
<td>18.4</td>
</tr>
<tr>
<td>n-Heptane (Hp)</td>
<td>57.0</td>
<td>20.3</td>
</tr>
<tr>
<td>n-Octane (O)</td>
<td>62.8</td>
<td>21.3</td>
</tr>
<tr>
<td>n-Nonane (N)</td>
<td>69.0</td>
<td>22.7</td>
</tr>
<tr>
<td>n-Decane (D)</td>
<td>75.0</td>
<td>23.4</td>
</tr>
<tr>
<td>Dichloromethane (DCM)</td>
<td>31.5</td>
<td>27.6</td>
</tr>
<tr>
<td>Chloroform (TCM)</td>
<td>44.0</td>
<td>25.9</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>45.0</td>
<td>22.5</td>
</tr>
<tr>
<td>Ethyl acetate (EA)</td>
<td>48.0</td>
<td>19.6</td>
</tr>
<tr>
<td>Acetone (Ace)</td>
<td>42.5</td>
<td>16.5</td>
</tr>
<tr>
<td>Diethyl ether (DEE)</td>
<td>47.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Table 3. Dispersive surface energy \((\gamma_S^D, \text{mJ/m}^2)\) values determined using the Dorris-Gray and Donnet-Park method of shepherd’s purse.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>(\gamma_{CH_2}) (mJ/m^2)</th>
<th>(-\Delta G_{ads}(CH_2)) (kJ/mol)</th>
<th>(\gamma_S^D) (mJ/m^2)</th>
<th>(\gamma_{CH_2}) (mJ/m^2)</th>
<th>(\gamma_S^D) (mJ/m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303.2</td>
<td>33.86</td>
<td>3.01</td>
<td>51.13</td>
<td>35.02</td>
<td>49.44</td>
</tr>
<tr>
<td>308.2</td>
<td>33.57</td>
<td>2.96</td>
<td>50.05</td>
<td>34.73</td>
<td>48.38</td>
</tr>
<tr>
<td>313.2</td>
<td>33.28</td>
<td>2.93</td>
<td>49.61</td>
<td>34.44</td>
<td>47.94</td>
</tr>
<tr>
<td>318.2</td>
<td>32.99</td>
<td>2.91</td>
<td>49.21</td>
<td>34.15</td>
<td>47.54</td>
</tr>
<tr>
<td>323.2</td>
<td>32.70</td>
<td>2.87</td>
<td>48.36</td>
<td>33.86</td>
<td>46.71</td>
</tr>
<tr>
<td>328.2</td>
<td>32.41</td>
<td>2.82</td>
<td>46.89</td>
<td>33.57</td>
<td>45.27</td>
</tr>
</tbody>
</table>

From Table 3, the \(\gamma_S^D\) values of the shepherd’s purse were found in the range of 51.13–46.89 mJ/m^2 by the Dorris-Gray method and in the range of 49.44–46.89 mJ/m^2 by the Donnet-Park method. It was observed that the \(\gamma_S^D\) values gradually decreased with increasing temperature. In this case, it can be concluded that the decrease in surface energy with increasing temperature may facilitate coating, wetting, and bonding to different surfaces at higher temperatures. Similar results were also found in the literature. Perez-Mendoza et al. calculated the surface energies of activated carbons and found that the surface energy decreased with increasing temperature \((40)\). Ocak et al. reported that the
surface energy of 5-((S)-3,7-dimethyloctyloxy)-2-[[4-(dodecyloxy)phenyl]imino]-methyl]phenol liquid crystal decreases with increasing temperature (15). Erol et al. reported that the dispersive surface energy of 4-[4-((S)-citronellyloxy) benzoyloxy] benzoic acid thermotropic liquid crystal decreases with increasing temperature (30). Sreekanth et al. reported that the dispersive surface energy of thiourea and melamine polymerized graphitic carbon nitride sheets decreases with increasing temperature (41). Similarly, Papadopoulou et al. reported that the dispersive surface energy of 1-butyl-1-ethylpiridinium bromide decreases with increasing temperature (42).

The γ^D_S values were also calculated from the linear plots (Figure 3) from the Schultz method (Equation (4)). The results were listed in Table 4. As can be seen from Table 4, the γ^D_S values were found to decrease with increasing temperature in the Schultz method. The methods used for the calculation of the γ^D_S values were found to be compatible with each other. There is a difference between the three methods because the Schultz approach determines the surface area of hydrocarbon solvent molecules based on the assumption that they are spherical, which is usually stated as a constant (43).

Table 4. Dispersive surface energy (γ^D_S, mJ/m2) values obtained using the Schultz method of shepherd’s purse.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Schultz method</th>
</tr>
</thead>
<tbody>
<tr>
<td>303.2 K</td>
<td>49.21</td>
</tr>
<tr>
<td>308.2 K</td>
<td>47.75</td>
</tr>
<tr>
<td>313.2 K</td>
<td>46.92</td>
</tr>
<tr>
<td>318.2 K</td>
<td>46.13</td>
</tr>
<tr>
<td>323.2 K</td>
<td>44.93</td>
</tr>
<tr>
<td>328.2 K</td>
<td>43.18</td>
</tr>
</tbody>
</table>

Figure 3. The linear plots drawn between $a(\gamma^D_L)^{0.5}$ and $RT \ln V_N$ values according to the Schultz method.
Figure 4 shows the comparison and temperature dependence of the three different methods applied in this study to calculate the γ_S^D values. As can be seen in Figure 4, the γ_S^D values decreased with temperature in all three approaches. From all the results, the best correlation coefficient ($R^2 = 0.9822$) was found in the Schultz method. The correlation coefficients of the Dorris-Gray and Donnet-Park methods are also very close to each other.

![Figure 4. Variation of the γ_S^D values of shepherd’s purse with temperature, as obtained by the Schultz, Dorris-Gray, and Donnet-Park approaches.](image)

In the Schultz plots given in Figure 3, the specific Gibbs free energies (ΔG_A^S) of polar solvents were found from the distances of polar solvents to the linear line of n-alkanes and given in Table 5. From Table 5, the sorption process appears to be spontaneous. It was also found that $-\Delta G_A^S$ values decreased gradually with rising temperature.

Table 5. The $-\Delta G_A^S$ (kJ/mol) values of polar solvents onto shepherd’s purse.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>EA</th>
<th>Ace</th>
<th>DCM</th>
<th>TCM</th>
<th>THF</th>
<th>DEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>303.2</td>
<td>4.41</td>
<td>3.83</td>
<td>2.80</td>
<td>2.82</td>
<td>3.44</td>
<td>1.66</td>
</tr>
<tr>
<td>308.2</td>
<td>4.31</td>
<td>3.70</td>
<td>2.81</td>
<td>2.75</td>
<td>3.27</td>
<td>1.37</td>
</tr>
<tr>
<td>313.2</td>
<td>4.22</td>
<td>3.67</td>
<td>2.81</td>
<td>2.69</td>
<td>3.19</td>
<td>1.30</td>
</tr>
<tr>
<td>318.2</td>
<td>4.06</td>
<td>3.52</td>
<td>2.74</td>
<td>2.69</td>
<td>2.88</td>
<td>1.15</td>
</tr>
<tr>
<td>323.2</td>
<td>3.95</td>
<td>3.31</td>
<td>2.74</td>
<td>2.61</td>
<td>2.73</td>
<td>0.80</td>
</tr>
<tr>
<td>328.2</td>
<td>3.52</td>
<td>2.94</td>
<td>2.40</td>
<td>2.29</td>
<td>2.21</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Based on the $-\Delta G_A^S$ values presented in Table 5, the sorption enthalpy (ΔH_A^S) values were calculated using equation (8), which are then provided in Table 6 (14, 44).

$$-\frac{\Delta G_A^S}{T} = -\frac{\Delta H_A^S}{T} + \Delta S_A^S$$ \hspace{1cm} (8)

As seen in Table 6, the sorption process was found to be exothermic. The ΔH_A^S values for polar solvents follow the order of magnitude $\text{THF}>\text{DEE}>\text{EA}>\text{Ace}>\text{TCM}>\text{DCM}$. Here, THF ($DN = 84.4, AN = 2.1$) interacts better with acidic surfaces since it is a relatively basic solvent. On the contrary, since DCM ($DN = 0.0, AN = 16.4$) is a relatively acidic solvent, it interacts more with basic surfaces (45–47).

Table 6. $-\Delta H_A^S$ (kJ/mol) values of shepherd’s purse for the polar solvents.

<table>
<thead>
<tr>
<th>Polar Solvents</th>
<th>Ace</th>
<th>EA</th>
<th>THF</th>
<th>DCM</th>
<th>TCM</th>
<th>DEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\Delta H_A^S$ (kJ/mol)</td>
<td>13.72</td>
<td>14.17</td>
<td>17.36</td>
<td>6.64</td>
<td>8.05</td>
<td>16.63</td>
</tr>
</tbody>
</table>
Polar solvents were used to determine details regarding the surface acidity or basicity of the shepherd’s purse. According to the method suggested by Gutmann, the behavior of acidity or basicity can be analyzed using the following equation (48,49). The $-\Delta H^\circ_A$ values given in Table 6 were used to calculate the acidity or basicity character.

$$-\Delta H^\circ_A = K_A \times (DN) + K_D \times (AN^*)$$

(9)

Here, DN and AN^* refer to the donor and acceptor numbers, respectively. K_A and K_D refer to the acidity and basicity constants, respectively. If the $K_D/K_A > 1$, the sorbent surface is basic. If the $K_D/K_A < 1$, the sorbent surface is acidic.

Figure 5 shows the linear plot to calculate the acidity-basicity constants. From the slope and intercept of this linear plot, K_A and K_D values were calculated, respectively. Accordingly, the K_A value was found to be 0.189 and the K_D value was found to be 0.1847. The K_D/K_A value calculated by using these values was found to be 0.93. According to this value, it can be said that the surface of the shepherd’s purse has an acidic character. This study provides preliminary information about which type of pollutant to choose for sorption studies.

![Figure 5](image-url)

Figure 5. The plot of $-\Delta H^\circ_A/AN^*$ vs DN/AN^* of shepherd’s purse.

4. CONCLUSION

In the current work, the stationary phase of the shepherd’s purse was generated, and its surface properties were assessed using the IGC approach at infinite dilution. The retention diagrams were obtained between 303.2 and 328.2 K, and then calculations were made based on these diagrams to determine the γ^D_x, ΔH°_A, ΔG°_A, and K_A and K_D constants. The γ^D_x values of shepherd’s purse were ranging from 51.13 to 46.89 mJ/m2 (Dorris-Gray), 49.44 to 45.47 mJ/m2 (Donnet-Park), and 49.21 to 43.18 mJ/m2 (Schultz). These values were shown to be high and to decrease linearly with the increasing temperature. $K_D/K_A = 0.93$ indicate that the surface of the shepherd’s purse has an acidic behavior. The process of solvents adsorbing on the shepherd’s purse was found to be exothermic based on the results of enthalpy measurements. According to these results, preliminary information can be obtained about which type of pollutant should be removed from aqueous solutions when shepherd’s purse is used as an adsorbent. Since the shepherd’s purse surface is acidic, it can be concluded that functional groups that may show acidic properties may be present on the surface, and cationic pollutants can be removed from wastewater.

5. CONFLICT OF INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

6. REFERENCES

27. Alizadeh H, Club YR, Branch A, Jafari B, Babae T. The Study of Antibacterial Effect of Capsella Bursa-

44. İskİ B, Çakar F, Cankurtaran O. The study on cholesteryl chlorofominate liquid crystal for separation of isomers and determination of its surface properties. Sep Sci Technol [Internet]. 2022 Nov 22;57(17):2843–51. Available from: <URL>.

1079