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ABSTRACT 
 

Let (𝑋, 𝑑) be a finite metric space with elements 𝑃𝑖 , 𝑖 = 1, … , 𝑛 and with distances 𝑑𝑖𝑗: = 𝑑(𝑃𝑖 , 𝑃𝑗) for 𝑖, 𝑗 = 1, … , 𝑛. The 

“Gromov product” Δ𝑖𝑗𝑘, is defined as Δ𝑖𝑗𝑘 =
1

2
(𝑑𝑖𝑗 + 𝑑𝑖𝑘 − 𝑑𝑗𝑘). (𝑋, 𝑑) is called Δ-generic, if for each fixed 𝑖, the set of 

Gromov products has a unique least element, Δ𝑖𝑗𝑖𝑘𝑖
.  The Gromov product structure on a Δ-generic finite metric space (𝑋, 𝑑) 

is the map that assigns the edge 𝐸𝑗𝑖𝑘𝑖
 to 𝑃𝑖. A finite metric space is called “quadrangle generic”, if for all 4-point subsets 

{𝑃𝑖 , 𝑃𝑗 , 𝑃𝑘 , 𝑃𝑙}, the set  {𝑑𝑖𝑗 + 𝑑𝑘𝑙 , 𝑑𝑖𝑘 + 𝑑𝑗𝑙 , 𝑑𝑖𝑙 + 𝑑𝑗𝑘} has a unique maximal element. We define the “quadrangle structure” on 

a quadrangle generic finite metric space (𝑋, 𝑑) as the map that assigns to each 4-point subset of 𝑋, the pair of edges 

corresponding to the maximal element of the sums of the distances. Two metric spaces (𝑋, 𝑑) and (𝑋, 𝑑′) are said to be Δ-

equivalent (𝑄-equivalent), if the corresponding Gromov product (quadrangle) structures are the same up to a permutation of 𝑋. 

 

In this paper, Gromov product structures, quadrangle structures, optimal reductions and explicit parameterizations for 5-point 

spaces are obtained and compared with previous results in the literature. In the final part of this paper, we have used the Monte 

Carlo method to obtain the relative volume of each of the 5-point metric types inside the corresponding metric cone for 5-point 

spaces, meanwhile 102 different partitions of metric cone for 5-point spaces are derived, considering Gromov product 

structures. These 102 partitions, come in three symmetric classes forming three types of metrics for 5-point spaces. Thus, one 

can say that all the methods of classification given here or given before in the literature of finite metric spaces, give 3 types of 

metrics for 5-point spaces. 

 

Keywords: Finite metric spaces, Split metric decompositions, Gromov products, Quadrangle structures 
 

 

1. INTRODUCTION 
 

The notions of Gromov product structures, Δ-equivalence, quadrangle structures and 𝑄-equivalence 

have been defined in previous work [1]. Here, we present the applications of these notions to 5-point 

spaces. Basic definitions are quoted from [1]. 

 

Notation: Let (𝑋, 𝑑) be a finite metric space with 𝑛 elements 𝑃𝑖, 𝑖 = 1, … , 𝑛  (𝑛 ≥  3)  and let 𝑑𝑖𝑗 be 

the distance between 𝑃𝑖 and 𝑃𝑗. The elements of 𝑋 are also referred to as “vertices” or “nodes”. 𝐸𝑖𝑗 and 

𝑇𝑖𝑗𝑘 denote respectively an edge and a triangle with corresponding vertices. 

 

Gromov products:  The quantity Δ𝑖𝑗𝑘, defined as 

Δ𝑖𝑗𝑘 = Δ𝑖𝑘𝑗 =
1

2
(𝑑𝑖𝑗 + 𝑑𝑖𝑘 − 𝑑𝑗𝑘) 

is called the Gromov product of the triangle 𝑇𝑖𝑗𝑘 at the vertex 𝑃𝑖 [2]. 

https://orcid.org/0000-0002-6043-0833
https://orcid.org/0000-0003-2499-791X
https://orcid.org/0009-0007-6672-5214
https://orcid.org/0000-0002-2940-2236
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𝚫-generic metrics: A metric space is called Δ-generic, if for each 𝑃𝑖 the set of Gromov products Δ𝑖𝑗𝑘 

has a unique smallest element. 

 

Gromov product structures: Let (𝑋, 𝑑) be a Δ-generic finite metric space. Let 𝑃𝑖 ∈ 𝑋, and let Δ𝑖𝑗𝑘 be 

the minimal Gromov product at 𝑃𝑖, (𝑖 = 1, … , 𝑛). The function that assigns the edge 𝐸𝑗𝑘 to the vertex 𝑃𝑖 

is called the Gromov product structure on 𝑋. Two Δ-generic metric spaces (𝑋, 𝑑) and (𝑋, 𝑑′) are Δ-

equivalent, if the corresponding Gromov product structures are the same up to a permutation of 𝑋. 

 

The metric cone: The set 𝐶𝑛 of all pseudo-metrics 𝑑 = (𝑑𝑖𝑗) ∈ ℝ
(

𝑛
2

)
 on a given 𝑛-point set 𝑋, is called 

the metric cone.  

 

The metric fan: A decomposition of metric cone 𝐶𝑛 into some sub-cones defined as below is called the 

metric fan [3]. Consider the (
𝑛
2

) × n matrix 𝒜 where the rows are numbered by the edges as 

(1,2), (1,3), … , (1, 𝑛), (2,3), (2,4), … , (2, 𝑛), … , (𝑛 − 1, 𝑛) 

and the (𝑖, 𝑗)-row (𝑖 < 𝑗) is given by 𝑒𝑖 + 𝑒𝑗 = (0, … ,1, … ,1, … ,0) ∈ ℝ𝑛. Let ℬ be an invertible 𝑛 × 𝑛 

submatrix of 𝒜 and denote the [(
𝑛
2

) − 𝑛] ×  𝑛 matrix obtained by deleting ℬ from 𝒜 by ℬ′. Likewise, 

define 𝑑ℬ ∈  ℝ𝑛 by choosing the components of 𝑑 ∈  ℝ
(

𝑛
2

)
 corresponding to ℬ and 𝑑ℬ′ ∈  ℝ

(
𝑛
2

)−𝑛
 

corresponding to ℬ′. Now consider the following system of equations and inequalities for 𝑥 ∈  ℝ𝑛: 

ℬ𝑥 = 𝑑ℬ  and   ℬ′𝑥 > 𝑑ℬ′ . 
If this system has a solution we say that the matrix ℬ is a “cell” or a “thrackle” for the metric 𝑑. The 

collection of cells of a metric 𝑑 is denoted by 𝐶𝑒𝑙𝑙(𝑑). Two metrics 𝑑 and 𝑑′ on an 𝑛-point metric space 

𝑋 are said to be equivalent in the metric-fan sense, if they have the same collection of cells or what 

amounts to the same collection of sub-graphs, i.e. 𝐶𝑒𝑙𝑙(𝑑) = 𝐶𝑒𝑙𝑙(𝑑′). The equivalence class of a metric 

𝑑 is a sub-cone of the metric cone and these sub-cones constitute altogether the metric fan. 

 

The classification of 6-point spaces with respect to Gromov product structures (Δ-equivalence) is 

obtained in [4]. In that work it is shown that there are 26  Δ-equivalence classes and also presented their 

correspondences to the classification by the decomposition of the metric fan. The list of Gromov product 

structures and the corresponding metric fan types for the 26 Δ-generic metrics are given in [4]. 

 

In [5], the Gromov classification of 7-point spaces has been obtained and shown that there are 431 

equivalence classes. For 8-point metric spaces, we have obtained the Δ-equivalence classifications 

and found 11470 equivalence classes in the work on our website: 

http://finitemetricspaces.khas.edu.tr/118F412_webpage_8pointspaces.pdf  

 

The metric fan classification of 𝑛-point spaces for 𝑛 > 6 is not known. It looks like the number of 

classes will be increasingly large and such a classification would not be practical. Even the Gromov 

product classification is becoming impractical for 𝑛 > 8. Thus, we are looking for coarser equivalences 

that would reflect essential properties of a finite metric space. 

 

Quadrangle generic metric spaces: An 𝑛-point finite metric space 𝑋 is called “quadrangle generic”, 

or 𝑄-generic, if for every 4-point subset {𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑} ⊆  𝑋, the set of distances 
{𝑑𝑎𝑏 + 𝑑𝑐𝑑 , 𝑑𝑎𝑐 + 𝑑𝑏𝑑 , 𝑑𝑎𝑑 + 𝑑𝑏𝑐} 

has a unique maximal element. 

 

http://finitemetricspaces.khas.edu.tr/118F412_webpage_8pointspaces.pdf
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Quadrangle Structures: A quadrangle structure on a 𝑄-generic finite metric space (𝑋, 𝑑) is a map 

which assigns to any 4-point subset {𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑} of 𝑋, the pair of edges corresponding to the maximal 

element of the set {𝑑𝑎𝑏 + 𝑑𝑐𝑑 , 𝑑𝑎𝑐 + 𝑑𝑏𝑑 , 𝑑𝑎𝑑 + 𝑑𝑏𝑐}. We denote the 4-point subset {𝑃𝑎 , 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑} 

without any restriction on the sides by 𝑄(𝑎, 𝑏, 𝑐, 𝑑) in which the ordering of the indices is irrelevant. If 

𝑑𝑎𝑐 + 𝑑𝑏𝑑 is maximal, the vertices are ordered as (𝑃𝑎 , 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑) and we denote this structured 

quadrangle by 𝑄(𝑎𝑏𝑐𝑑) in which the cyclic permutations and reversal of the order of the indices give 

equivalent quadrangles. 

 

𝑸-equivalence: Two 𝑄-generic metric spaces (𝑋, 𝑑) and (𝑋, 𝑑′) are called 𝑄-equivalent, if the 

corresponding quadrangle structures are the same up to a permutation of 𝑋. 

 

Parameterization of 𝟒-point spaces: Let the set of minimal Gromov products of the quadrangle  

𝑄(𝑎𝑏𝑐𝑑) be {Δ𝑎𝑏𝑑 , Δ𝑏𝑎𝑐, Δ𝑐𝑏𝑑 , Δ𝑑𝑎𝑐} and let 𝛼 and 𝛽 be defined as 

𝛼 = Δabc − Δabd, β = Δadc − Δadb,  
then, one has the following equalities between Gromov products 

𝛼 = Δ𝑎𝑏𝑐 − Δ𝑎𝑏𝑑 = Δ𝑏𝑎𝑑 − Δ𝑏𝑎𝑐 = Δ𝑐𝑑𝑎 − Δ𝑐𝑑𝑏 = Δ𝑑𝑐𝑏 − Δ𝑑𝑐𝑎, 
𝛽 = Δ𝑎𝑑𝑐 − Δ𝑎𝑑𝑏 = Δ𝑏𝑐𝑑 − Δ𝑏𝑐𝑎 = Δ𝑐𝑏𝑎 − Δ𝑐𝑏𝑑 = Δ𝑑𝑎𝑏 − Δ𝑑𝑎𝑐, 

and the distances are expressed as 

𝑑𝑎𝑏 = Δ𝑎𝑏𝑑 + Δ𝑏𝑎𝑐 + 𝛼,  𝑑𝑐𝑑 = Δ𝑐𝑏𝑑 + Δ𝑑𝑎𝑐 + 𝛼,  

𝑑𝑏𝑐 = Δ𝑏𝑎𝑐 + Δ𝑐𝑏𝑑 + 𝛽,  𝑑𝑎𝑑 = Δ𝑎𝑏𝑑 + Δ𝑑𝑎𝑐 + 𝛽,  

𝑑𝑎𝑐 = Δ𝑎𝑏𝑑 + Δ𝑐𝑏𝑑 + 𝛼 + 𝛽,   𝑑𝑏𝑑 = Δ𝑏𝑎𝑐 + Δ𝑑𝑎𝑐 + 𝛼 + 𝛽.  

This is shown in Figure 1 below. 

 

 

 
 

 

 

 

 

 

 

 
Figure 1.  A quadrangle with the set of minimal Gromov products {Δ𝑎𝑏𝑑 , Δ𝑏𝑎𝑐 , Δ𝑐𝑏𝑑 , Δ𝑑𝑎𝑐}.  
 

Matrix representation of Gromov product structures: Gromov product structures on an 𝑛-point 

space are represented by the 𝑛 × 𝑛 matrix 𝑀Δ defined by 𝑀Δ(𝑖, 𝑗) = 1 and 𝑀Δ(𝑖, 𝑘) = 1 if Δ𝑖𝑗𝑘 is the 

minimal Gromov product at 𝑃𝑖 and 0 otherwise [6]. 

 

Matrix representation of quadrangle structures: The matrix of a quadrangle structure 𝑄, 𝑀𝑄 on  an 

𝑛-point space is an 𝑛𝑑 × 𝑛𝑑   matrix (𝑛𝑑 =
𝑛(𝑛−1)

2
) such that 𝑀𝑄(𝑎𝑏, 𝑐𝑑) = 1 if the edges 𝐸𝑎𝑏 and 𝐸𝑐𝑑 

are diagonals in {𝑃𝑎 , 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑} and 𝑀𝑄(𝑎𝑏, 𝑐𝑑) = 0 otherwise. 

These matrix representations proved to be useful in determining equivalences/inequivalences of 

Δ- and 𝑄-equivalence classes. We recall that two structures are equivalent if their matrices can be 

mapped to each other by a permutation of indices. Similarity and isospectrality of matrices leads to 

coarser classifications [6]. 

 

Split pseudo-metrics: A “split” 𝑆 = {𝐴, 𝐵} of a finite set 𝑋 is a partition of 𝑋 into two non-empty 

subsets 𝐴 and 𝐵. For simplicity we often identify the set of points of 𝐴 with its index set.  For  each 

𝛽 

𝛽 

𝛼 𝛼 

𝑃𝑏 
𝑃𝑐 

𝑃𝑎 𝑃𝑑 
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𝑃𝑎 ∈ 𝑋, we denote by 𝑆(𝑎) the subset 𝐴 or 𝐵 that contains 𝑃𝑎.  Corresponding to each split 𝑆 we define 

the pseudo-metric 𝛿𝑆 by 

𝛿𝑆(𝑎, 𝑎′) = { 
1, 𝑖𝑓  𝑆(𝑎) ≠ 𝑆(𝑎′),

0, 𝑖𝑓  𝑆(𝑎) = 𝑆(𝑎′).
 

If the number of elements of 𝐴 or 𝐵 is equal to 𝑘, the split is referred to as a 𝑘-split. 

 

Totally split decomposable metrics: A metric on 𝑋 is called totally split decomposable if it can be 

expressed as a linear combination (with non-negative coefficients) of the split metrics [7]. 

 

The isolation index of a split: The isolation index of a split 𝑆 = {𝐴, 𝐵} is defined as 

𝛼{𝐴,𝐵} =
1

2
min

{𝑎,𝑎′∈ 𝐴,𝑏,𝑏′∈ 𝐵}
{ max { 𝑑𝑎𝑏 + 𝑑𝑎′𝑏′  , 𝑑𝑎𝑏′  + 𝑑𝑎′𝑏 , 𝑑𝑎𝑎′ + 𝑑𝑏𝑏′}  − (𝑑𝑎𝑎′ + 𝑑𝑏𝑏′)}. 

 

Split prime: A pseudo-metric is called a split prime if all of its isolation indices are equal to zero [7]. 

        

Lemma 1: Let (𝑋, 𝑑) be a finite metric space with 𝑛 elements 𝑃𝑖 (𝑖 =  1, … , 𝑛) and let 𝑆 = {𝐴, 𝐵} be 

a split for 𝑋. Then, 

i. The isolation index for the 1-split with 𝐴 = {𝑃𝑎}  is the minimal Gromov product at 𝑃𝑎, 

ii. If (𝑋, 𝑑) is 𝑄-generic, then the isolation index for the 𝑘-split with 𝐴 = {𝑃𝑖1
, … , 𝑃𝑖𝑘

} is non-zero 

if and only if for no pair of indices 𝑎, 𝑎′ ∈ 𝐴, 𝐸𝑎𝑎′ is a diagonal of the quadrangles 𝑄(𝑎, 𝑎′, 𝑏, 𝑏′) 

where 𝑏, 𝑏′ ∈ 𝐵. 

Proof: See [1]. 

 

In [1], we have shown that the number of 2-splits in an 𝑛-point space is at most 𝑛. We have discussed 

the case 𝑛 = 6 in terms of 3-splits, relating to the results of [7]. 

 

2. PARAMETERIZATION OF 𝟓-POINT METRIC SPACES 

 

In this section we will give an explicit parameterization of 5-point spaces using Gromov product 

structures, quadrangle structures and partial orders on Gromov products at each 𝑃𝑎. This 

parameterization coincides with the parameterization given in [8]. 

It is known that the Gromov product equivalence gives the known classification of 5-point Δ-

generic metric spaces [4]. 

A:   {Δ125, Δ213, Δ324, Δ435, Δ514} 

B:   {Δ125, Δ213, Δ325, Δ425, Δ514}, 
C:   {Δ125, Δ213, Δ325, Δ425, Δ513}. 

 

Note that, if say Δ𝑖𝑗𝑘 is minimal in the metric space 𝑋, then it is also minimal in every quadrangle  

𝑄 = {𝑃𝑖, 𝑃𝑗, 𝑃𝑘 , 𝑃𝑙}. In a graphical presentation we indicate this by marking the corresponding angle by 

a filled arc as shown in Figure 2. For a 5-point metric space 𝑋, at least one of the Gromov products in 

any quadrangle belongs to the list of minimal Gromov products. It follows that for a 5-point space, the 

Gromov product structure determines the quadrangle structure. The determination of the parameters 

displayed in the quadrangles will be explained below. 
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Figure 2. The structure of the 4-point subsets for the three types of  5-point metric spaces. 
 

From Figure 2, we can see that, in Type A, the edges 𝐸12, 𝐸23, 𝐸34, 𝐸45 and 𝐸15 are “sides” in all 

quadrangles, hence Type A metrics are totally split-decomposable by Lemma 1. For Type B, there are 

4 edges 𝐸45, 𝐸15, 𝐸12 and 𝐸23 that occur as sides in all quadrangles. Therefore it is not totally split-

decomposable. Similarly for Type C, the edges that occur as “sides” in all quadrangles are 𝐸12, 𝐸23, 𝐸34 

and 𝐸45, hence it is not totally split-decomposable. 

 

In order to obtain an explicit parameterization of these metrics,  we will use the quadrangle structure to 

obtain partial order relations among the Gromov products, then use the relations 𝑑𝑖𝑗 = Δ𝑖𝑗𝑘 + Δ𝑗𝑖𝑘 . The 

structure of the quadrangles in Figure 2 lead  to the following order relations for each of the types A, B, 

C in the following way: Take quadrangle 𝑄(1234) of Type A for instance. Since 𝑑12 + 𝑑34 < 𝑑13 +

𝑑24, equivalently 
1

2
(𝑑12 + 𝑑14 − 𝑑24) <

1

2
(𝑑13 + 𝑑14 − 𝑑34) which is to say Δ124 < Δ134; we can also 

say that since 𝑑14 + 𝑑23 < 𝑑13 + 𝑑24 is equivalent to 
1

2
(𝑑12 + 𝑑14 − 𝑑24)  <

1

2
(𝑑12 + 𝑑13 − 𝑑23) 

which means Δ124 < Δ123. Thus for each vertex of a quadrangle, two inequalities among three Gromov 

products could be derived by similar algebraic manipulations. The list of these inequalities for each type 

is given below. These order relations are used to determine isolation indices for 2-splits and the split 

primes. 

 

From quadrangles of Type A, we have the following relations among Gromov products: 

 

       
 

 

 

 

 

which lead to the following Hasse diagrams given in Figure 3. 

𝑄(1234) ∶ Δ124 < Δ123, Δ134, Δ213 < Δ214, Δ234, Δ324 < Δ312, Δ314, Δ413 < Δ412, Δ423, 

𝑄(1235) ∶ Δ125 < Δ123, Δ135, Δ213 < Δ215, Δ235, Δ325 < Δ312, Δ315, Δ513 < Δ512, Δ523, 

 𝑄(1245) ∶ Δ125 < Δ124, Δ145,   Δ214 < Δ215, Δ245, Δ425 < Δ412, Δ415, Δ514  < Δ512, Δ524, 

𝑄(1345) ∶ Δ135 < Δ134, Δ145, Δ314 < Δ315, Δ345, Δ435 < Δ413, Δ415, Δ514  < Δ513, Δ534, 

  𝑄(2345) ∶ Δ235 < Δ234, Δ245,  Δ324 < Δ325, Δ345, Δ435 < Δ423, Δ425, Δ524 < Δ523, Δ534. 
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Figure 3. The partial order diagrams for the Type A. 

 

For Type B, we have: 

 

 

 

which give the following Hasse diagrams given in Figure 4. 

 

 
 

Figure 4. The partial order diagrams for the Type B. 

 

For Type C, the quadrangles give the following relations: 

𝑄(1234) ∶ Δ124 < Δ123, Δ134, Δ213 < Δ214, Δ234, Δ324 < Δ312, Δ314, Δ413  < Δ412, Δ423, 

𝑄(1235) ∶ Δ125 < Δ123, Δ135, Δ213 < Δ215, Δ235, Δ325 < Δ312, Δ315, Δ513  < Δ512, Δ523, 

𝑄(1245) ∶ Δ125  < Δ124, Δ145, Δ214 < Δ215, Δ245, Δ425 < Δ412, Δ415, Δ514  < Δ512, Δ524, 

𝑄(1435) ∶ Δ145  < Δ134, Δ135, Δ345 < Δ314, Δ315, Δ413 < Δ415, Δ435, Δ513 < Δ514, Δ534, 

𝑄(2354) ∶ Δ234  < Δ235, Δ245, Δ325  < Δ324, Δ345, Δ425 < Δ423, Δ435, Δ534  < Δ523, Δ524. 

𝑄(1234) ∶  Δ124 < Δ123, Δ134, Δ213 < Δ214, Δ234,  Δ324 < Δ312, Δ314, Δ413 < Δ412, Δ423, 

𝑄(1235) ∶  Δ125 < Δ123, Δ135, Δ213 < Δ215, Δ235, Δ325 < Δ312, Δ315, Δ513 < Δ512, Δ523, 

𝑄(1245) ∶  Δ125 < Δ124, Δ145, Δ214 < Δ215, Δ245, Δ425 < Δ412, Δ415, Δ514 < Δ512, Δ524, 

𝑄(1345) ∶  Δ135 < Δ134, Δ145, Δ314 < Δ315, Δ345, Δ435 < Δ413, Δ415, Δ514 < Δ513, Δ534, 

𝑄(2354) ∶  Δ234 < Δ235, Δ245, Δ325 < Δ324, Δ345, Δ425 < Δ423, Δ435, Δ534 < Δ523, Δ524. 
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which lead to the Hasse diagrams given in Figure 5. 

 

 
 

Figure 5. The partial order diagrams for the Type C. 

 

Remark 1 For Types A and B, the quadrangle structure determines the Gromov product structure, in 

the sense that the partial order relations deduced from the quadrangle structure determine the smallest 

Gromov product at each 𝑃𝑖.  On the other hand, for Type C, the partial order relations imply that both 

Δ413 and Δ425 are smaller than Δ412, Δ415, Δ423 and Δ435, but the order relation between Δ413 and Δ425 

is not determined by the quadrangle structure. This is an example for the case where the quadrangle 

structure does not determine the Gromov product structure. 

 

Recall that the minimal Gromov products at each 𝑃𝑎  are the isolation indices of 1-splits. In what follows, 

we assume that minimal Gromov products are zero. 

The isolation indices for 2-splits will serve as free variables for the parameterization of the distances.  

For example, for Type A, 

𝛼12 =
1

2
min{ max{𝑑13 + 𝑑24, 𝑑14 + 𝑑23, 𝑑12 + 𝑑34} − (𝑑12 + 𝑑34),

max{𝑑13 + 𝑑25, 𝑑15 + 𝑑23, 𝑑12 + 𝑑35}  − (𝑑12 + 𝑑35),
max{𝑑14 + 𝑑25, 𝑑15 + 𝑑24, 𝑑12 + 𝑑45}  − (𝑑12 + 𝑑45)} 

            = min{ 𝑑13 + 𝑑24 − 𝑑12 − 𝑑34,  𝑑13 + 𝑑25 − 𝑑12 − 𝑑35,  𝑑14 + 𝑑25 − 𝑑12 − 𝑑45}. 
Which reformulating by using Gromov products gives: 

 

𝛼12 = min{Δ134 − Δ124  = Δ234 − Δ213, Δ135 − Δ125  = Δ235 − Δ213 , Δ145  − Δ125  = Δ245 − Δ214}. 
 

Finally since Δ125 = Δ213 = 0 we may write it as: 

𝛼12 = min{Δ234, Δ135 = Δ235, Δ145}. 
From the partial order relations it is clear that  𝛼12 cannot be equal to Δ145. Similarly, as Δ234 > Δ235, 

we choose Δ135 as a free variable for the parameterization.  By similar arguments and what is given 

when discussing “Parameterization of 4-point spaces” and Figure 1 in the introduction, the 

parameterization of the Gromov products and of the distance functions can be obtained as given below. 

 

Type A: Δ125 = Δ213 = Δ324 = Δ435 = Δ514 = 0. 
Δ124 = 𝛼, Δ135 = 𝛽, Δ123 = 𝛼 + 𝛾, Δ145 = 𝛽 + 𝜂, Δ134 = 𝛼 + 𝛽 + 𝛿, 

Δ214 = 𝛾, Δ235 = 𝛽, Δ215 = 𝛼 + 𝛾, Δ234 = 𝛽 + 𝛿, Δ245 = 𝛽 + 𝛾 + 𝜂, 

Δ314 = 𝛾, Δ325 = 𝛿, Δ312 = 𝛽 + 𝛿, Δ345 = 𝛾 + 𝜂, Δ315 = 𝛼 + 𝛿 + 𝛾, 
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Δ413 = 𝜂, Δ425 = 𝛿, Δ415 = 𝛼 + 𝛿, Δ423 = 𝛾 + 𝜂, Δ412 = 𝛽 + 𝛿 + 𝜂, 

Δ513 = 𝜂, Δ524 = 𝛼, Δ512 = 𝛽 + 𝜂, Δ534 = 𝛼 + 𝛿, Δ523 = 𝛼 + 𝛾 + 𝜂. 

  
Type B: Δ125 = Δ213 = Δ325 = Δ425 = Δ514 = 0. 

Δ124 = 𝛿 + 𝜂, Δ135 = 𝛽 + 𝜂, Δ134 = 𝛽 + 𝛿 + 𝜂, Δ123 = 𝛼 + 𝛿 + 𝜂, Δ145 = 𝛽 + 𝛾 + 𝜂, 

Δ214 = 𝛼, Δ234 = 𝛽, Δ235 = 𝛽 + 𝜂, Δ215 = 𝛼 + 𝛿 + 𝜂, Δ245 = 𝛼 + 𝛽 + 𝛾 + 𝜂, 

Δ324 = 𝜂, Δ312 = 𝛽 + 𝜂, Δ314 = 𝛼 + 𝜂, Δ315 = 𝛼 + 𝛿 + 𝜂, Δ345 = 𝛼 + 𝛾 + 𝜂, 

Δ435 = 𝜂, Δ413 = 𝛾 + 𝜂, Δ415 = 𝛿 + 𝜂, Δ423 = 𝛼 + 𝛾 + 𝜂, Δ412 = 𝛽 + 𝛾 + 𝜂, 

Δ534 = 𝛿, Δ513 = 𝛾, Δ524 = 𝛿 + 𝜂, Δ512 = 𝛽 + 𝛾 + 𝜂, Δ523 = 𝛼 + 𝛿 + 𝛾 + 𝜂. 

 

𝑑12 = 𝛼 + 𝛿 + 𝜂,   𝑑13 = 𝛼 + 𝛽 + 𝛿 +  2𝜂,  𝑑14 = 𝛽 + 𝛿 + 𝛾 +  2𝜂, 𝑑15 = 𝛽 + 𝛾 + 𝜂, 𝑑23 = 𝛽 + 𝜂, 

𝑑24 = 𝛼 + 𝛽 + 𝛾 + 𝜂,   𝑑25 = 𝛼 + 𝛽 + 𝛿 + 𝛾 +  2𝜂,   𝑑35 = 𝛼 + 𝛿 + 𝛾 + 𝜂,   𝑑45 = 𝛿 + 𝜂.  

 

Type C : Δ125 = Δ213 = Δ325 = Δ425 = Δ513 = 0. 

 

𝑑12 = 𝛼 + 𝛿 + 𝜂, 𝑑13 = 𝛼 + 𝛽 + 𝛿 + 𝛾 +  2𝜂, 𝑑14 = 𝛽 + 𝛿 +  2𝜂, 𝑑15 = 𝛽 + 𝛾 + 𝜂,  𝑑23 = 𝛽 + 𝛾 + 𝜂, 

𝑑24 = 𝛼 + 𝛽 + 𝜂,  𝑑25 = 𝛼 + 𝛽 + 𝛿 + 𝛾 +  2𝜂, 𝑑34 = 𝛼 + 𝛾 +  2𝜂, 𝑑35 = 𝛼 + 𝛿 + 𝜂, 𝑑45 = 𝛿 + 𝛾 + 𝜂. 
 

 

These parameterizations are exactly the ones given by Koolen, Lesser and Moulton [8]. In the paper [8], 

the classes obtained via the decomposition of the metric cone are denoted as Type I, Type II and Type 

III. These correspond respectively to our equivalence classes denoted by Type A, Type C and Type B.  

The metrics of Type I, II and III are defined by their split decompositions, given as below. For simplicity 

we consider the pendant free case, i.e, we take the coefficients of the 1-splits as zero, equivalently the 

minimal Gromov products at each node are zero. 

 

We use the labeling of the nodes by {𝑥, 𝑦, 𝑢, 𝑣, 𝑤}. 
(Type I): 𝑑 = 𝛼𝑥𝑦𝛿𝑥𝑦 + 𝛼𝑦𝑢𝛿_𝑦𝑢 + 𝛼𝑢𝑣𝛿𝑢𝑣 + 𝛼𝑣𝑤𝛿𝑣𝑤 + 𝛼𝑤𝑥𝛿𝑤𝑥, 

(Type II): 𝑑 = 𝛼𝑥𝑢𝛿𝑥𝑢 + 𝛼𝑥𝑣𝛿𝑥𝑣 + 𝛼𝑢𝑦𝛿𝑢𝑦 + 𝛼𝑣𝑦𝛿𝑣𝑦 + 𝑐 𝑑′, 

(Type III): 𝑑 = 𝛼𝑥𝑢𝛿𝑥𝑢 + 𝛼𝑥𝑣𝛿𝑥𝑣 + 𝛼𝑤𝑦𝛿𝑤𝑦 + 𝛼𝑣𝑦𝛿𝑣𝑦 + 𝑐  𝑑′, 

where 𝑑′(𝑎, 𝑏) = 0 𝑖𝑓 𝑎 = 𝑏, 𝑑′(𝑥, 𝑦) = 𝑑′(𝑢, 𝑣) = 𝑑′(𝑢, 𝑤) = 𝑑′(𝑣, 𝑤) = 2 and 𝑑′(𝑎, 𝑏) = 1 for all 

other cases. 

 

We identify the indices 𝑥, 𝑦, 𝑢, 𝑣, 𝑤 with our notation.  For example, for Type I, i.e, our Type A, 

𝑥, 𝑦, 𝑢, 𝑣, 𝑤 correspond to 1, 2, 3, 4, 5 respectively and the correspondence of the parameters are 

𝛼𝑥𝑦 = 𝛽, 𝛼𝑦𝑢 = 𝛾, 𝛼𝑢𝑣 = 𝛿, 𝛼𝑣𝑤 = 𝜂, 𝛼𝑤𝑥 = 𝛼. 

For Type II, i.e, our Type C, 𝑥, 𝑦, 𝑢, 𝑣, 𝑤 correspond to 5, 2, 1, 3, 4 respectively and the correspondence 

of the parameters are 

𝛼𝑥𝑢 = 𝛿, 𝛼𝑥𝑣 = 𝛾, 𝛼𝑢𝑦 = 𝛽, 𝛼𝑣𝑦 = 𝛼, 𝑐 = 𝜂. 

For Type III, i.e, our Type B, 𝑥, 𝑦, 𝑢, 𝑣, 𝑤 correspond to 2, 5, 3, 1, 4 respectively and 

the correspondence of the parameters are 

𝑑12 = 𝛼 + 𝛾,     𝑑13 = 𝛼 + 𝛽 + 𝛿 + 𝛾,      𝑑14 = 𝛼 + 𝛽 + 𝛿 + 𝜂,     𝑑15 = 𝛽 + 𝜂,      𝑑23 = 𝛽 + 𝛿, 

𝑑24 = 𝛽 + 𝛿 + 𝛾 + 𝜂, 𝑑25 = 𝛼 + 𝛽 + 𝛾 + 𝜂,   𝑑34 = 𝛾 + 𝜂,   𝑑35 = 𝛼 + 𝛿 + 𝛾 + 𝜂,   𝑑45 = 𝛼 + 𝛿. 

Δ123 = 𝛼 + 𝛿 + 𝜂, Δ124 = 𝛿 + 𝜂, Δ134 = 𝛽 + 𝛿 + 𝜂, Δ135 = 𝛽 + 𝛾 + 𝜂, Δ145 = 𝛽 + 𝜂, 

Δ214 = 𝛼, Δ215 = 𝛼 + 𝛿 + 𝜂, Δ234 = 𝛽, Δ235 = 𝛽 + 𝛾 + 𝜂, Δ245 = 𝛼 + 𝛽 + 𝜂, 

Δ312 = 𝛽 + 𝛾 + 𝜂, Δ314 = 𝛼 + 𝛾 + 𝜂, Δ315 = 𝛼 + 𝛿 + 𝜂, Δ324 = 𝛾 + 𝜂, Δ345 = 𝛼 + 𝜂, 

Δ412 = 𝛽 + 𝜂, Δ413 = 𝜂, Δ415 = 𝛿 + 𝜂, Δ423 = 𝛼 + 𝜂, Δ435 = 𝛾 + 𝜂, 

Δ512 = 𝛽 + 𝛾 + 𝜂, Δ514 = 𝛾, Δ523 = 𝛼 + 𝛿 + 𝜂, Δ524 = 𝛿 + 𝛾 + 𝜂, Δ534 = 𝛿. 
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𝛼𝑥𝑢 = 𝛼, 𝛼𝑥𝑣 = 𝛽, 𝛼𝑤𝑦 = 𝛾, 𝛼𝑣𝑦 = 𝛿, 𝑐 = 𝜂. 

Explicit parametrizations for certain 6-point spaces have been also obtained  via partial order relations 

and quadrangle classifications. It is available on  

http://finitemetricspaces.khas.edu.tr/Optimal%20Realizations,%20h-

optimal%20Realizations%20and%20Tight%20Spans%20of%20Metric%20Spaces.pdf}. 

 

3. OPTIMAL REDUCTIONS OF 𝟓-POINT METRIC SPACES 

 

Optimal realizations of 5-point metric spaces for three types are given in [8], in what follows we will 

give underlying graphs for each metric type and will drive their optimal reductions. 

 

The weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) is called a realization of the finite metric space (𝑋, 𝑑) if there is a 

labeling function 𝜙 ∶ 𝑋 →  𝑉 such that for all 𝑥, 𝑦 ∈  𝑋 the weight of any path between 𝜙(𝑥) and 𝜙(𝑦) 

is equal to 𝑑(𝑥, 𝑦). Any such realization is called optimal if ||𝐺||, the total edge weight of the graph 𝐺 , 

is minimal among all realizations of the metric space (𝑋, 𝑑) [8]. 

 

As it is clear from the definition above that a finite metric space can have many realizations. In the 

following, we will start with the pendant free reductions and use certain “moves” as defined in [9] to 

reduce the total weight and reach the optimal representation.  This kind of operations are generally done 

by adjoining new vertices to the original graph, which in this case the added vertices are called secondary 

vertices and the original vertices as primary, discarding some edges or adding new edges between the 

enlarged set of vertices and assigning weights to the new edges in a way that the distance between 

primary nodes are unchanged but the weight of the graph, namely ||𝐺||, is reduced. 

 

The first move, which is called joining edges, is done in the following way: Consider a vertex 𝑢 and all 

(or some) of the other nodes 𝑣1, 𝑣2, … , 𝑣𝑘 of 𝐺, which are neighbors of 𝑢. Calculate the Gromov 

products of all triangles 𝑇𝑢𝑣𝑖𝑣𝑗
 with 1 ≤  𝑖 , 𝑗 ≤  𝑘 at vertex 𝑢 and call the minimum 𝑚𝑢. Now delete all 

the edges between 𝑢 and 𝑣𝑖 's, introduce a new vertex 𝑣 and connect 𝑣𝑖 's to 𝑣 by edges of weight 𝑤𝑢𝑣𝑖
−

𝑚𝑢 for 1 ≤  𝑖 ≤  𝑘 and also 𝑢 to 𝑣 by an edge of weight 𝑚𝑢; hence the nodes 𝑣𝑖 become connected to 

𝑢 by two edges through 𝑣 and the total weight of the graph is reduced by an amount of (𝑘 − 1)𝑚𝑢. 
 

The second move, which is called edge removing, is done by deleting the edge between two nodes 𝑢 

and 𝑣 if it can be avoided by a shortest path. This move reduces ||𝐺|| by an amount of the weight of the 

deleted edge. 

 

The “Δ − 𝑌” transform is a consequence of the above moves and can be applied to any triangle with 1-

connected vertices in 𝐺. It is called a Δ − 𝑌 transform, because a triangle shape (Δ) turns to a 𝑌 shape 

after the operation. 

 

We should also note that what we mean by underlying graph of a metric, is the complete graph with the 

same set of vertices as the metric space and all the edges with weight 𝑑𝑖𝑗 removed for which there is a 

point in space 𝑝𝑘 such that 𝑑𝑖𝑗 = 𝑑𝑖𝑘 + 𝑑𝑘𝑗. 

 

For Type A with the Gromov product structure as { Δ125, Δ213, Δ324, Δ435, Δ514 }, when edge removing 

operations are applied and passed to pendant-free reduction, a 5-cycle given in Figure 6 is obtained. The 

optimal realization given in [8] is a 5-cycle with edges connected to each of its nodes (Type (𝑎) of [8]). 

 

 

 

 

 

http://finitemetricspaces.khas.edu.tr/Optimal%20Realizations,%20h-optimal%20Realizations%20and%20Tight%20Spans%20of%20Metric%20Spaces.pdf
http://finitemetricspaces.khas.edu.tr/Optimal%20Realizations,%20h-optimal%20Realizations%20and%20Tight%20Spans%20of%20Metric%20Spaces.pdf
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Figure 6. Optimal reduction of metric Type A. 

 

For Type B with the Gromov product structure as { Δ125, Δ213, Δ325, Δ425, Δ514}, the underlying graph 

is given in Figure 7: 

 

 
 

 
Figure 7. Underlying graph of metric Type B. 

 

By applying a Δ − 𝑌 transform to 𝑇345 we have Figure 8 

 

 
 

Figure 8. Graph with Δ − 𝑌 transformed. 
 

In this step, one can follow two different approaches which reduce the metric to Type (𝑏) or (𝑐) of [8]. 

To observe the process closely we need to point out that the parameterization of Type B is given in 

Figure 9: 

 
 

Figure 9. Underlying graph of metric Type B with distances parameterized. 

 

Here we have Δ345 = 𝛼 + 𝛾 + 𝜂, Δ435 = 𝜂 and Δ534 = 𝛿, and applying a Δ − 𝑌 transform to 𝑇345 will 

be as in Figure 10: 

5 2 

3 4 

1 
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Figure 10. 𝑇345 of Type B after Δ − 𝑌 transform. 

 

So the Type B with parameters are as following: 

 
 

Figure 11. Metric Type B with the parameters. 
 

Now according to the graph above, we have 𝑑14 equal to 𝛽 + 𝛿 + 𝛾 +  2𝜂 (path 𝑝1) or equal to 2𝛼 +
𝛽  + 𝛾 + 𝛿 +  2𝜂 (path 𝑝2). Path 𝑝2 is longer than path 𝑝1 by an amount of 2𝛼. Likewise 𝑑34 is equal 

to 𝛼 + 𝛾 +  2𝜂 (path 𝑝3) or equal to 𝛼 +  2𝛽 + 𝛾 +  2𝜂 (path 𝑝4). Here path 𝑝4 is longer than path 𝑝3 

by a difference of 2𝛽. It should be noted that 𝛼 = Δ214 and 𝛽 = Δ234 and two scenarios are possible: 

either 𝛼 > 𝛽 or 𝛽 > 𝛼. If 𝛼 > 𝛽, in order to decrease the total weight of the graph, we will introduce 

a new node called 𝑣 on the edge joining 1 to 2 as shown below: 

 
 

Figure 12. Reduction of Type B to (𝑏). 
 

This will reduce the total weight as 𝑥 = Δ214  and that results the Type B to reduced into (𝑏) of [8] and 

the metric will be as following: 

 
Figure 13. Reduction of Type B to (𝑏) when 𝛼 > 𝛽 (parameters given). 
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In the other case, when 𝛽 > 𝛼, if we do the same operation as before, but this time for the edge joining 

2 to 3 we will have the following reduction: 

 
 

Figure 14. Reduction of Type B to (𝑐). 
 

This reduces the weight of graph as 𝑦 = Δ234 and turns it into Type (𝑐) given as below: 

 

 
 

Figure 15. Reduction of Type B to (𝑐) when 𝛽 > 𝛼  (parameters given). 

 

For Type C which the underlying graph with the parameters given is depicted below, the following can 

be done: 

 
 

Figure 16. Underlying graph of metric Type C with the metric parameterized. 
 

Since Δ124 = 𝛿 + 𝜂, Δ214 = 𝛼 and Δ412 = 𝛽 + 𝜂, applying a Δ − 𝑌 transform to 𝑇124 will result in 

the following: 

 
 

Figure 17. Type C with a Δ − 𝑌 transform applied to 𝑇124. 
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Finally considering that Δ345 = 𝛼 + 𝜂, Δ435 = 𝛾 + 𝜂 and Δ534 = 𝛿, applying another Δ − 𝑌 transform 

to 𝑇345 will result in the following: 

 
 

Figure 18. Type C with a second Δ − 𝑌 transform applied to 𝑇345 and reduced to (𝑏). 

 

4. VOLUMES OF GROMOV METRIC TYPES 

 

One of the ways to study the stability of Δ-equivalence classes under small numerical perturbations on 

components of metric represented as the vector 𝑑 = (𝑑𝑖𝑗), is to consider the relative volume of each 

class inside the metric cone. To estimate these relative sizes of Δ-equivalence classes in an 𝑛-point space, 

we generate random points that lie in the intersection of the metric cone with unit ball in ℝ
𝑛(𝑛−1)

2  and 

then count the occurrence of points in each class. 

We note that the volume of unit ball in  ℝ𝑁 is equal to 𝑉𝑁 =
𝜋

𝑁
2

Γ(
𝑁

2
+1)

, where Γ is the Gamma function. It 

should also be noted that since the rate of growth of Gamma function is greater than the exponentials, 

as the dimension of space increases this volume decreases. It is known that the maximum volume is 

obtained for 𝑁 = 6 and for the values of 𝑁 greater than 6, 𝑉𝑁 starts to decrease. On the other hand by 

keeping in mind that a metric 𝑑 on an 𝑛-point space can be shown by a vector of positive coordinates in 

ℝ𝑁 where 𝑁 =
𝑛(𝑛−1)

2
, we need to work with the intersection of unit ball with the orthant in which all 

the coordinates are positive (the first orthant in higher dimensions). Both of these issues leave us with 

only a few samples to work with. 

 

To deal with the problem of generating a statistically significant number of points in the metric cone in 

ℝ10 (since every metric on a 5-point space can be shown by a vector in ℝ10) on a standard computer, 

we generate 107 random points 𝑃 = (𝑥1, 𝑥2, … , 𝑥10), 0 < 𝑥𝑖 < 1 and accumulate these points from 10 

such runs to get 108 points. Each of these points has 10 positive coordinates that are uniformly 

distributed random numbers in the range (0,1). Then the points that fall inside the unit ball are chosen 

and in the next step by checking which points satisfy the triangle inequalities, we select the points inside 

the metric cone. Finally, for each of these points (metrics) we calculate the Gromov product structure in 

order to determine the metric type. This process is repeated 30 times and some of the results are given 

in Table \ref{table:random} below. The Matlab code for this program is available at 

http://finitemetricspaces.khas.edu.tr/Volume_of_Metric_Cone_n=5.m.  

 
Table 1. Sample results of accumulating 108 points in ℝ10. Each row is a single run of the program and shows how many 

points fall inside the unit ball, metric cone, and each type. 

 
points in unit ball points in metric cone Type A Type B Type C 

274578 705 142 360 203 

273136 735 186 351 198 

273891 716 161 362 193 

273426 733 170 376 187 

272959 721 167 363 191 

http://finitemetricspaces.khas.edu.tr/Volume_of_Metric_Cone_n=5.m
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As shown in Table 1, from 108 points in the cube, around 2.7 × 105 points (0.275%) fall inside the 

unit ball and around 0.25% of these points fall inside the metric cone. To understand why these small 

amounts of points in unit cube of ℝ10 fall inside the unit ball, it should be noted that the volume of unit 

ball 𝑉10 in ℝ10 is equal to 
𝜋5

120
 and we work only with the portion of unit ball intersecting the first orthant. 

This volume is approximately 0.00249 which is 0.24% of the volume of the unit cube. 

 

In order to interpret the data given in Table 1, some clarifications must be made. 5-point metrics inside 

the metric cone in ℝ10, when the Gromov product structure is considered, fall into 102 classes. Under 

permutation of the points of underlying metric space, these 102 classes form 3 families. In a family 

which is the orbit of the Gromov product structure {Δ125, Δ213, Δ324, Δ435, Δ514} under the action of the 

permutation group 𝑆5, there are 12 elements. The metrics that have a Gromov product structure in this 

family are called Type A metrics. Furthermore, the orbit of the Gromov product structure 
{Δ125, Δ213, Δ325, Δ425, Δ514} and {Δ125, Δ213, Δ325, Δ425, Δ513} have 60 and 30 elements respectively 

and the metrics of these families are called Type 𝐵 and Type 𝐶 in this order. 

 

For calculating the type of a metric inside the metric cone to obtain the results given in Table 1, these 

102 classes are taken into consideration. With this view in hand, the volume of Type A, Type B and 

Type C metrics on average are 22.07%, 51.02% and 26.26 % of the metric cone (within a standard 

deviation of 21.1 for points inside the metric cone, 10.83 for Type A metrics, 17.03 for Type B metrics 

and 12.43 for Type C metrics in our runs to obtain the data given in Table 1). If we take the other view, 

without considering the permutations, results of Type A, B and C should be divided by 12, 60 and 30 

respectively to obtain the volume of a single representative of each class. This means that within error 

bounds, the volumes of a single representative of Type A, B and C are respectively 1.84 %, 0.85 % and 

0.87 % of the metric cone. 

 

The results above, give us the following intuitive conclusions: first that the volume of a single 

representative of Type B and Type C metrics are almost equal and Type A is “thicker'” than these two 

types. Second, although a single representative of metric Type A is thicker than other types, these 

representatives are small in number (12 among 102 classes) with respect to Type B (60 among 102) 

and Type C (30 among 102) inside the metric cone. 
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