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 Digital image processing heavily relies on the connectivity of pixels, as it is a vital 
component for accurate object identification and analysis within an image. Grouping 
together pixels with similar features such as colour and intensity, allows for the 
formation of meaningful patterns or objects, which is essential for object recognition 
and segmentation. This approach is particularly valuable in photogrammetric imaging, 
video surveillance, deep learning as it facilitates the isolation of regions of interest and 
object tracking. Image smoothing is also a crucial aspect in enhancing visual quality by 
reducing noise and enhancing details, especially in applications such as aerial mapping, 
medical imaging, video compression, image resizing and computer vision. The absence 
of connected pixels and image smoothing would make image processing tasks more 
challenging and less reliable, making them fundamental to digital image processing and 
critical to various applications in diverse fields. This paper introduces a novel image 
smoothing filter called Connected Pixels Based Image Smoothing Filter (CPF), which is 
based on gray connected pixels. The success of the CPF was compared to that of the 
Non-Local Means Filter (NLMF) in terms of Structural Similarity Index (SSIM) for the 
same Mean Squared Error (MSE). The experimental results showed that CPF has a 
better ability to preserve image details compared to NLMF. 
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1. Introduction  
 

Pixel connectivity refers to the relationship between 
neighboring pixels in a digital image. It is a fundamental 
concept in image processing and computer vision, as it 
plays a crucial role in many image analysis tasks such as 
edge detection, segmentation, and object recognition [1-
5].  In general, pixel connectivity refers to the notion of 
how pixels are connected or related to each other. There 
are different ways to define pixel connectivity, depending 
on the context and the specific requirements of the image 
processing task at hand [6-9].  One of the most common 
definitions of pixel connectivity is based on the notion of 
adjacency, which refers to whether two pixels are 
neighbors or not. In a 2D image, two pixels are 
considered adjacent if they are located next to each other 
horizontally, vertically, or diagonally [10-12]. In other 
words, two pixels are adjacent if they share a common 
edge or corner.  Pixel connectivity is often quantified 
using a connectivity matrix or a connectivity graph, 

which represents the relationships between adjacent 
pixels in the image. A connectivity matrix is a binary 
matrix that encodes the adjacency relationships between 
pixels, where a value of 1 indicates that two pixels are 
adjacent, and a value of 0 indicates that they are not. A 
connectivity graph, on the other hand, is a graph-
theoretic representation of the connectivity matrix, 
where each pixel is represented as a vertex, and the 
adjacency relationships between pixels are represented 
as edges.  The definition of pixel connectivity can also be 
extended to 3D images, where it refers to the 
relationships between neighboring voxels (3D pixels). In 
a 3D image, two voxels are considered adjacent if they are 
located next to each other in any of the three spatial 
dimensions (x, y, z).  Pixel connectivity is closely related 
to other concepts in image processing, such as image 
topology and morphological operations. In image 
topology, the connectivity of a set of pixels is defined as 
the number of connected components in the set. 
Morphological operations, such as dilation and erosion, 
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rely on the notion of pixel connectivity to manipulate the 
shapes and boundaries of objects in an image.  In 
conclusion, pixel connectivity is a fundamental concept 
in image processing and computer vision that refers to 
the relationships between neighboring pixels in a digital 
image. It plays a crucial role in many image analysis tasks, 
and it is quantified using connectivity matrices or graphs 
[13-16]. The definition of pixel connectivity can be 
extended to 3D images, and it is closely related to other 
concepts in image processing such as image topology and 
morphological operations.  Algorithms developed to find 
connected pixels can be slow for several reasons. Large 
image sizes require significant processing time, as the 
algorithm must check each pixel and its neighbors for 
connectivity. Complex algorithms also take longer to 
execute, while outdated hardware may not handle the 
algorithm efficiently. The data structure used to store the 
image and pixels can impact the algorithm's speed if not 
optimized, and inefficient implementation can slow 
processing time. Optimization of these factors may result 
in faster processing times for algorithms designed to find 
connected pixels [17-22]. 

The process of identifying and labeling subsets of 
connected components based on a given heuristic is 
referred to as connected-component labeling, also 
known as connected-component analysis, region 
labeling, blob extraction, region extraction, or blob 
discovery. This algorithmic application is based on graph 
theory and aims to assign unique labels to each subset of 
connected components. It is important to note that 
connected-component labeling should not be mistaken 
for segmentation. 

There are several algorithms [19, 23-31] that can be 
used to find connected gray pixels in an image. Here are 
a few: 

 
1. Flood fill algorithm: This is a simple algorithm 

that starts from a given seed pixel and fills all adjacent 
pixels of the same gray value. It continues until all 
connected pixels are filled. 

2. Depth-first search (DFS): This is a graph 
traversal algorithm that can be used to find all connected 

gray pixels in an image. It starts at a given seed pixel and 
explores as far as possible along each branch before 
backtracking. 

3. Breadth-first search (BFS): This is another graph 
traversal algorithm that can be used to find connected 
gray pixels. It explores all the neighboring pixels at the 
current level before moving on to the next level. 

4. Connected component labelling (CCL): This is a 
more complex algorithm that assigns a unique label to 
each connected component of gray pixels in an image. It 
can be used to identify and separate multiple connected 
regions with different gray values [28, 32-35]. 

 
In this paper, we introduce the Connected Pixels 

Based Image Smoothing Filter (CPF), which was 
developed using gray connected pixels. CPF can produce 
a smoothed image while preserving the detail 
information in the original image relatively well. It is a 
simple and effective image smoothing filter that can be 
easily adapted to different applications due to its simple 
structure. 

The rest of this paper is organized as follows: In 
Section 2, Connected Pixels Based Image Smoothing 
Filter (CPF) is mentioned. In Section 3, Experiments are 
presented. In Section 4, Results and Conclusions are 
given. 

 

2. Connected pixels-based image smoothing filter 
(CPF) 

 

This section introduces the Connected Pixels Based 
Image Smoothing Filter (CPF). CPF is a non-recursive, 
non-iterative, non-linear image-smoothing filter. CPF 
uses the median value of the gray-connected pixels to the 
central pixel of the sliding window to generate the 
smoothed value of the central pixel. CPF has two 
parameters: 'win' and 'T', which denote the size of the 
sliding window and the threshold value, respectively. 
The result obtained is not affected by the order in which 
neighbors are selected, as long as they meet the 
threshold requirement. The algorithmic structure of the 
CPF is shown in Figure 1. 
 

 

 
Figure 1. Pseudo-Code of the Connected Pixels Based Image Smoothing Filter (CPF) 
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Connected component labeling is a crucial process in 
computer vision, particularly for object recognition. It 
entails identifying regions in a binary image where pixels 
are connected. To perform this operation on a 2D image 
stored in a 2D array, we scan each pixel one by one and 
assign a label based on the labels of its neighbors or a 
new label if all its neighbors are background pixels. 
Suppose a pixel with a value of 0 in array I represents a 
background pixel, while a pixel with a value of 1 
represents an object pixel. To store the labels, we use an 
array L of the same size as I. In our implementation, we 
use a single array to hold both I and L. The goal is to fill 
the array L with integer labels so that object pixels 
neighboring each other have the same label. Although we 
use integer labels for simplicity, other label types can also 
be used.  In this paper, we utilized the mask topology 
presented in Figure 2 of Rosenfeld for an 8-pixel 
neighborhood based connected pixel labelling [36].  The 
pixel in the scan mask is represented by letters a, b, c, d, 
and e, and we use the same letters instead of their (i, j) 
coordinates.  
 

 
Figure 2. The mask topology of Rosenfeld for 8 pixels 

neighborhood. 
 

Figure 3 provides an illustrative example of 8-
connected component labeling using the Rosenfeld 
algorithm. 

L[e] represents the label of the current pixel being 
scanned, and I[b] represents the pixel value of the 
neighbor directly above e in the vertical direction. We 
start with an integer variable l initialized to 1. During the 
first scan, we provisionally assign a label to e as follows: 
L[e] is assigned 0 if I[e] = 0. If a, b, c, and d in the scan 
mask are all background pixels, we assign it a new label l, 
and we increment l by 1. Otherwise, we assign it the 
minimum of the provisional labels already assigned to 
the scan mask. This process ensures that all pixels in the 
same object are assigned the same provisional label. In 
subsequent scans, we change the labels of object pixels to 
the minimum labels of their neighboring object pixels. 
Specifically, if L[e] is greater than the minimum of L[b], 
L[c], and L[d], we update L[e] to the minimum value. We 
repeat this process until there are no more changes to the 
labels. In conclusion, connected component labeling is a 
fundamental operation in computer vision that involves 
identifying regions in a binary image where pixels are 
connected. By scanning each pixel and assigning labels 
based on the labels of its neighbors, we can accurately 
identify these regions. This technique can be applied to a 
wide range of applications, including object recognition 
and image segmentation. 

 
Figure 3. An example of 8-connected component 

labeling using the Rosenfeld algorithm 
 

Expressing the assignment of a provisional label for 
"e" during the initial scan can be described by using 
Equations 1-2. 
 

𝐿[𝑒] ← {

0 𝐼[𝑒] = 0

𝑙, (𝑙 ← 𝑙 + 1) ∀𝑖 ∈ (𝑎, 𝑏, 𝑐, 𝑑),   𝐼[𝑖] = 0

𝑚𝑖𝑛⏟ (𝐿(𝑖))
𝑖∈(𝑎,𝑏,𝑐,𝑑)|𝐼(𝑖)=1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 
Where 
 

𝐿[𝑒] ← 𝑚𝑖𝑛⏟
𝑖∈(𝑎,𝑏,𝑐,𝑑) | 𝐼[𝑖]=1

(𝐿(𝑖))  ,     𝐼𝑓  𝐼[𝑒] = 1 ,   

     𝑎𝑛𝑑  ∃𝑖 ∈ (𝑎, 𝑏, 𝑐, 𝑑) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝐼[𝑖] = 1 
(2) 
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3. Experiments  
 

In this section, we test the success of the Connected 
Pixels Image Smoother Filter (CPF) in smoothing images 
using Test Images. The Test Images used are 8-bit RGB 
with dimensions of 512x512 pixels. We compare the 
image smoothing capability of CPF to that of the Non-
Local Mean Filter [37, 38] for an unbiased review. The 
smoothing parameter of NLMF is optimized using BSD 
[39] so that the MSE values calculated between the 
original image and the smoothed images calculated by 
CPF and NLMF are the same. Bernstein-Search 
Differential Evolution (BSD) is a nature-inspired 
optimization algorithm that is widely used for solving 
complex problems in various fields such as engineering, 
finance, and artificial intelligence. BSD combines the 
concepts of Bernstein polynomials and Differential 
Evolution to improve the search process for finding the 
optimal solution. BSD uses a population-based approach 
where each individual represents a candidate solution, 
and the optimization process involves generating new 
candidate solutions through mutation and crossover 
operations. BSD has shown significant improvements in 
convergence speed and solution quality compared to 
traditional optimization algorithms. Overall, BSD is a 
powerful optimization technique that can be used to 
solve a wide range of problems efficiently.  

The Anisotropic Diffusion filter [40] is an image 
processing technique used to enhance images by 
reducing noise while preserving edges. It works by 
diffusing the image while applying less diffusion to edges 
and more diffusion to flat regions. This helps to remove 
noise without blurring edges, resulting in a sharper and 
clearer image. The degree of diffusion is controlled by a 
parameter called the diffusion coefficient, which can be 
adjusted to achieve the desired level of smoothing.  
Anisotropic diffusion is commonly used in computer 
vision, medical imaging, and other applications where 
image clarity is important. The image smoothing 
performance of CPF and Anistropic Diffusion is tested 
using the Susskind Test Image and the results are shown 
in Figure 4.  

CPF produced better results than Anistropic Diffusion 
even in edge regions. 

The Non-Local Mean Filter (NLMF) is a popular image 
denoising technique used to reduce noise while 
preserving edges and details. Unlike traditional filters 
that operate on a pixel-by-pixel basis, NLMF considers 
the entire image when calculating the similarity between 
patches of pixels. By comparing similar patches, the filter 
can identify and remove noise while preserving image 
structure. The algorithm is computationally expensive, 
but several optimizations have been proposed to 
improve efficiency. NLMF has been successfully applied 
to a variety of image processing tasks, including video 
denoising, image deblurring, and super-resolution. NLMF 
has three parameters: 'win1', 'win2', and 'S'. 'win1' and 
'win2' denote the match and search window sizes, 
respectively, while 'S' represents the smoothing 
parameter.  Within this section, the notation NLMF 
(win1, win2, S) will be employed to denote the Non-Local 
Means Filter along with its corresponding parameters. 
Similarly, the notation CPF (win, T) will be utilized to 

represent the Constrained Parametric Filters along with 
its associated parameters. In the experiments carried 
out, Mean Squared Error (MSE) and Structural Similarity 
Index (SSIM) were used to measure the similarities of 
NLMF and CPF with the original image.  

 
 

 
Figure 4. Comparison of CPF and Anistropic Diffusion 

for the same MSE values on Susskind Test Image (Please 
use zoom in to see details in the image) 
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Figure 5. Comparison of CPF and NLMF for the same MSE values on Test Images (Please use zoom in to see details in the 

image) 
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MSE is a statistical measure that calculates the 
average of the squared differences between predicted 
and actual values. It is commonly used to evaluate the 
performance of regression models. The equation for MSE 
is given in Equation 3: 
 

MSE =
1

M ⋅ N
∑ ∑(Ai,j − Bi,j)

2
N

j=1

M

i=1

 (3) 

 
where “M” and “N” denote the 2D image size in pixels, 

and “A” and “B” denote the original and the smoothed 
images, respectively.  

SSIM is a metric used to measure the similarity 
between two images. It compares the structural 
information of the images, including luminance, contrast, 
and structure, to determine the similarity.  SSIM values 
range from -1 to 1, with 1 indicating a perfect match 
between the images. The formulation of the SSIM is given 
in Equation 4. 
 

SSIM =
(2μxμy + C1)(2σxy + C2)

(μx
2 + μy

2 + C2)(σx
2 + σy

2 + C2)
 (4) 

 
𝜇𝑥: The pixel sample mean of x. 
𝜇𝑦: the pixel sample mean of y. 

σx
2: The variance of x. 

σy
2: The variance of y. 

σxy: The covariance of x and y. 

C1=(𝑘1 ⋅ 𝐿)2 , C2=(𝑘2 ⋅ 𝐿)2  : two variables to stabilize the 
division with weak denominator; 
𝐿: the dynamic range of the pixel-values. 
𝑘1 = 0.01𝑘2 = 0.03 
 

SSIM has valuable properties, including indiscernible 
identity and symmetry. It's not a distance function 
because it doesn't fulfil triangle inequality or non-
negativity. Yet, it can transform into a normalized root 
MSE measure that works as a distance function under 
certain conditions. The function's square is locally 
convex and quasiconvex, allowing for optimization. 
Please see [41] for the meanings of the symbols used in 
Equation 4. The experimental results for the test images 
using CPF and NLMF are shown in Figure 5. Upon 
examining Figure 5, we can conclude that while both 
methods yield the same MSE value, NLMF produces 
results that are over-smoothed, leading to partial loss of 
detail.  In contrast, CPF produces images that are 
relatively smoother and of higher quality as measured by 
SSIM values, compared to NLMF. 

 
 

4. Results and Conclusion 
 

In digital image processing, the accurate 
identification and analysis of objects depend significantly 
on the connectivity of pixels. This concept plays a vital 
role in object recognition and segmentation in various 
domains, such as medical imaging and video surveillance. 
Image smoothing also plays a crucial role in reducing 
noise and enhancing details, thereby improving the 
visual quality in applications such as medical imaging, 

video processing, and computer vision. Without 
considering the connectivity of pixels and employing 
image smoothing techniques, image processing tasks 
would be challenging and less reliable. 

In this paper, a novel image smoothing filter based on 
gray connected pixels, termed CPF, is proposed. The 
experimental results demonstrate that CPF outperforms 
the widely used non-local means filter (NLMF) in terms 
of detail preservation while having the same mean 
square error (MSE) values. Thus, CPF can be considered 
as a valuable tool for various image processing 
applications. 

Some advantages and disadvantages of the CPF are 
given below: 

 
1. Since the structure of the CPF is very simple, it can be 
easily adapted to different applications. 
2. CPF is a non-recursive, non-iterative and non-linear 
image smoothing method. 
3. Smoothed images produced with CPF contain 
relatively more details. 
4. The speed of CDF, like NLMF, is dependent on the 
sliding window size. 
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