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Since the composite materials can be designed in 
different ways with the desired mechanical pro-

perties for various stacking sequences, matrix and 
fiber materials, they have been widely used in many 
structural elements. These elements are generally 
constructed of laminated composite materials, and 
too many design parameters are taken into consi-
deration in the design and analysis process. Sankar 
(2001) obtained an elasticity solution for lamina-
ted beams under sinusoidal loading. The stresses 
and displacements were obtained by use of a non-
dimensionalized design parameter that varies expo-
nentially for constant mechanical properties [1]. Say-
yad et al (2014) performed a static flexural analysis 
of a simply supported single-layer composite beam 
under various loadings and obtained the results by a 
precise elasticity solution [2]. Sayyad et al (2015) in-
vestigated the bending of composite beams by use of 
a trigonometric beam theory due to transverse shear 
deformation, ad compared the results with those of 
the other trigonometric theories [3]. Pimenta et al 
(2015) investigated the sinusoidal-web beams under 
the effects of lateral and torsional buckling. In this 
manner, firstly, an experimental investigation was 
performed, and then a finite-element model was cre-
ated and tested using the data from the experiments. 
In the prediction of the beam resistance, a theoretical 
model was proposed, and a computational program 
was established. Finally, using the first order relia-
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bility approach, reliability analyses were performed, 
and the results were compared with the literature [4]. 
Pagani et al (2017) developed the static analyses of 
sandwich, and laminated beams under a transverse 
sinusoidal loading by applying the Lagrange expansi-
on-based refined beam model for a simple supported 
boundary condition. The 3-D FEM (Finite Element 
Method) results were computed and compared with 
the previous studies [5]. Jiaoa et al (2017) investiga-
ted the effect of geometry of composite I-beams for 
the buckling capacity theoretically, and in order to 
validate the theoretical approach, number of expe-
riments and simulations were carried out [6]. Liu et 
al (2018) searched the non-linear bending behavior 
of anisotropic composite beams for different distri-
buted loadings and compared the results with FEM 
solution [7]. Dorduncu (2019) investigated the ben-
ding stresses of composite beams by use of a refined 
zigzag theory. The method’s capabilities and robust-
ness were presented for various sets of aspect ratios 
and boundary conditions [8]. Karakoti and Kar (2019) 
examined the sinusoidally-corrugated laminated 
composite panels by use of a customized computatio-
nal code to obtain the bending responses of panels for 
various boundary conditions. The model’s accuracy 
was confirmed with the comparison and validation of 
the analytical results [9]. Pandey and Gadade (2019) 
used FEM in the static analysis of a composite beam. 
As a present model, the nine-noded, 12-degree-of-
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obtained analytically for a specific material, at different po-
ints where the maximum displacements and stresses may 
occur. The computer aided engineering approach is deve-
loped for given parameters, and the results are compared 
with the ones obtained by use of finite element method and 
analytically by use of a shear deformation beam theory in 
the literature [20-21].

ANALYTICAL MODEL
The beam is assumed to have a rectangular cross-section 
and constructed of linear elastic layers. It has a length 
of “L”, total thickness of “h”, unit width, and the coordi-
nate axes are located at the mid-plane where 0≤x≤L and 

-h/2≤z≤h/2, respectively. A laminated composite beam
under a uniform sinusoidal transverse loading is presen-
ted in Fig.1.

In the analytical solution, a unified shear deformation 
beam theory is used which is firstly applied to the composite 
shells developed by Soldatos and Timarcı (1993). The shear
deformation effects are taken into consideration by use 

of a

general shape function " ( )"φ z depending on the beam 
thickness. In addition, with the appropriate selection of the 
shape functions, the previous beam theories can also be ob-
tained. The displacement fields for the unified shear defor-
mation beam theory are given as follows:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )

1,x

1,y

U x,y,z;t u x, y;t z w x;t z  u x;t

V x,y,z;t v x, y;t z w x;t z  v x;t

W x,y, z;t w x,y;t

∅

∅

= − +

= − +

=

  (1)

Since the displacement component along y-axis is 
zero for the beam, the following displacement fields “U” 
and “W” are obtained as follows, where “u”, “w” and “u1” are 
the displacement functions of the mid-plane.

freedom isoparametric Lagrange interpolation function 
was developed. To compare the FEM results with the 
literature, the maximum non-dimensionalized deflec-
tion values for symmetric and unsymmetric laminates 
under concentrated loads were calculated for various 
boundary conditions [10]. By taking into account four 
different carbon nanotube distributions, Sobhy (2019) 
introduced a novel analytical method for the bending of 
functionally graded plates reinforced with single-walled 
carbon nanotube in different temperature conditions. 
For simply supported boundary condition, the present 
plate was subjected to various distributed loadings, and 
non-dimensionalized stress and displacement values 
were obtained [11]. In the bending and vibrational analy-
sis of reinforced beams, Wang et al. (2019) suggested a 
2-D (Two-Dimensional) elasticity model for a sinusoidal 
distributed load and various boundary conditions, non-
dimensionalized displacement, stress, and natural frequ-
ency parameters were derived [12]. Pathirana and Qiao 
(2019) investigated the critical buckling load of sinusoidal 
panels under simply support boundary condition by use 
of Rayleigh-Ritz method. To predict the critical load, a 
semi-analytical solution was used, and due to the finite 
element analysis, the results were obtained with better 
correlation. Considering the twisting capacities and dif-
ferent material properties, the study was conducted to 
assess the effects of the buckling amplitude, thickness, 
and aspect ratio [13]. Pathirana and Qiao (2020) studied 
the buckling behaviour sinusoidal panels under in-plane 
loading by Rayleigh-Ritz approach. The local buckling 
load is predicted accurately by a precise solution method. 
The local buckling behavior were captured at any aspect 
ratios, thickness, and amplitudes [14]. Zaboon and Jassim 
(2022) used the classical lamination theory to obtain the 
analytical solutions for laminated composite beams. In 
the analytical bending solution, several boundary condi-
tions and loadings were taken into consideration. The bo-
undary conditions were chosen as simple-simple, clam-
ped-free and clamped–clamped, and the loading types 
were chosen at the center point with uniform distributed 
load [15]. Zhu et al (2022) investigated the properties of 
engineered cementitious composites due to the ductility, 
strength, fatigue and cracking behavior. To examine the 
impacts of various fiber contents, three different types 
of hybrid designed cementitious composites with vario-
us volume fractions of steel and polyethylene fiber were 
evaluated [16].

In the present work, the bending analysis of a cross-
ply laminated composite beam under a uniform sinusoidal 
transverse loading for simple support boundary condition 
is performed both analytically and by use of a CAE softwa-
re. For the comparison purposes, initially, the longitudinal 
and vertical displacements, normal and shear stresses are 

Figure 1. A laminated composite beam under a uniform sinusoidal 
transverse loading
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( ) ( ) ( ) ( ) ( )
( ) ( )

1,xU x,z;t u x;t z w x;t z  u x;t

W x,y, z;t w x,y;t

∅= − +

=
                (2)

In order to satisfy the stress-free conditions at the top 
and bottom surfaces and continuity of interlaminar stresses 
through the thickness of the beam, a parabolic shape functi-
on is chosen in the study as follows [17]:

( )
2

2
4zz z 1
3h

∅
 

= − 
 

(3)

The displacement fields given in Eq. 2 yield to the ki-
nematic relations where the subscript “,” corresponds to the 
differentiation with the relevant axis.

( )
( )

x ,x ,xx 1,x

xz 1

u z w z  u

z  u

ε ∅

γ ∅

= −

′

+

=
     (4)

Using the generalized Hooke’s law, the stress-strain re-
lations in each layer of the beam can be expressed as follows:

x x11

xz xz55

Q 0
0 Q

σ ε
τ γ

    
=     

    
                                 (5)

The transformed reduced stiffness " Q "ij  depend on 

the reduced stiffness " Q "ij  and fiber orientation angles “θ” 
of the relevant layers (Jones, 1975). The rigidities with two 
subscripts, and more than two subscripts correspond to the 
classical and shear deformation beam theories, respectively 
[18].

( )4 2 2 4
11 11 12 66 22

4 4
55 44 55

Q Q cos 2 Q 2Q sin cos Q sin

Q Q sin Q cos

θ θ θ θ

θ θ

= + + +

= +
    (6)

The reduced stiffness parameters depend on the mec-
hanical properties such as elasticity modulus “E”, shear mo-
dulus “G” and Poisson’s ratio “ν”, and are given as follows:

1 2 21 2
11 12 21 22

12 21 12 21 12 21

44 23 55 13 66 12

E E EQ ,  Q Q ,  Q
1 1 1

Q G ,  Q G ,  Q G

ν
ν ν ν ν ν ν

= = = =
− − −

= = =
    (7)

1 12

2 21

E
E

ν
ν

= (8)

By the appropriate use of stress-strain relations in the 
force and moment equations,

( )

( )

h / 2 / 2
a

x x x xz
h / 2 h / 2
h / 2 h / 2

a
x x x x

h / 2 h / 2

N  dz,  Q  z  dz

z dz,  M z  dz

σ τ Φ

σ σ Φ

•

− −

− −

= =

= =

∫ ∫

∫ ∫

h

M
(9)

the following constitutive equations are obtained. “a” 
corresponds to the shear deformation effects, “A”, “B”, “D” 
denote the extensional, coupling and bending rigidities 

respectively, and “ a
x" Q " Qxa” is the shear force. Rigidities 

with two subscripts correspond to the classical theory, 
whereas the ones with more than two subscripts corres-
pond to shear deformation theory.

x 11 11 111 ,x
a

x 11 11 111 ,xx x 55 1
a
x 111 111 1111 1,x

N A B B u
M B D D w ,  Q A u
M B D D u

    
    = − =    
         

             (10)

The extensional, coupling and bending rigidities are 
defined as follows:

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

h / 2 h / 2
2k k

11 11 55 55
h / 2 h / 2

h / 2 h / 2
k k

11 11 111 55
h / 2 h / 2
h / 2 h / 2

k k2
11 11 111 11

h / 2 h / 2
h / 2

2k
1111 11

h / 2

A Q dz,  A Q z  dz

B Q z dz,  B Q z  dz

D Q z  dz, D Q z  z dz,

D Q z dz

∅

∅

∅

∅

− −

− −

− −

−

= =

=

=

′

=

= =

∫ ∫

∫ ∫

∫ ∫

∫

                   (11)

For a laminated beam under a uniform transverse lo-
ading of q(x), the governing equations can be considered as 
follows:

( )
x ,x

x ,xx

a a
x ,x x

N 0

M q x

M Q 0

=

=

− =

(12)

The beam is considered to be under a uniform sinu-
soidal loading where “m” is the wave number, and given as 
follows:

( ) ( ) ( )0
mq x q sin x ,   m 1,2,
L
πα α= = = … (13)

The boundary conditions prescribed at both ends whe-
re x=0 and x=L, are obtained by application of Hamilton’s 
principle, and given for simply supported, cantilever and 
free boundary conditions respectively.

a
x x x

,x 1

a
x x ,x x x

N w M M 0
u w w u 0

N M M M 0

= = = =
= = = =

= = = =

(14)

In order to satisfy the simple support boundary condi-
tion, the following Navier-type displacement functions are 
used, whereas “C1”, “C2” and “C3” are the amplitudes of the 
displacement functions.

1 1 2 3
m x m x m xu C sin ,  u C cos ,  w C sin

L L L
π π π     = = =     

     
     (15)

Using the constitutive equations in governing equa-
tions, the set of three equations with three unknowns are 
obtained. The unknown parameters can be determined 
computationally when the boundary condition is applied at 
both ends.
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FINITE ELEMENT MODEL
In recent years, it has been observed that the use of com-
puter-aided design software is insufficient especially in 
determining the static and dynamic loads, and the ther-
mal effects of the designs under specific operating con-
ditions. Since the performance of the design will largely 
depend on the actual operating conditions, it is of great 
importance to predict these conditions correctly. Under 
the consideration of these parameters, it will be wise to 
use a different software solution in the analysis of engi-
neering designs. In the design process, a CAE software 
is generally used to include the real operating conditions 
and to create a simulation and perform the analysis in 
a virtual environment. The CAE software is commonly 
used in many engineering fields such as automotive, ae-
rodynamic, flow and structural analysis. Especially in the 
engineering applications, the optimum results can be ob-
tained in a shorter time with the minimum cost. While 
the design process of a product or system is independent 
of time and operating conditions, the same parameters 
should also be taken into consideration in the analysis. 
The reliability of the results will largely depend on the 
correct use of the solution technique and the limit values. 
Thus, the theoretical information in the relevant study 
becomes significant in the determination of these values. 
Therefore, especially in cases where the theoretical infor-
mation is incorrect or insufficient, CAE software may not 
give the correct or sufficient results. Number of different 
analyses such as static strength, fatigue, vibration, heat 
transfer and impact can be performed by use of the finite 
element method (FEM) based engineering software. As 
a result, the CAE software shortens the time required 
for the design process considerably and allows to analy-
ze and predict the optimum results for the product or 
system before the manufacturing process. In this study, 
Abaqus is utilized for the CAE solution. Since the plane 
and shell elements are generally effective in modelling 
and analyzing the laminated composite structures and 
converge faster, 3-D brick elements are chosen for the 
solid modelling.

RESULTS AND DISCUSSION
The vertical and longitudinal displacements and the she-
ar and normal stresses, namely, the bending stresses are 
presented in Table 1 at different points. The vertical and 
longitudinal displacement values are obtained at x=L/2, 
z=0 and x=0, z=h/2, respectively. The normal stresses are 
obtained at x=L/2, z=h/4, whereas the shear stresses are 
obtained at x=L/4, z=0 in accordance with Ref. [15].

The beam is simply supported, constructed of four la-
yers, has the stacking sequence of [900/00/00/900], length of 
L=6.35 m, thickness of h=2.794 m and a uniform sinusoidal 
distributed loading q0=1000 N/m is applied at the top. The 
beam material is chosen as boron/epoxy with the following 
mechanical properties [19]:

11 22 33

23 12 13

23 12 13

E 241.5 GPa,   E E 18.89 GPa
G 3.45 GPa,   G G 5.18 GPa

0.25,    0.24ν ν ν

= = =

= = =
= = =

(16)

The results are compared with Karama et al (1998) that 
were obtained by Abaqus software [20]. The vertical and 
longitudinal displacements and bending stresses were also 
obtained by use of a sinusoidal and exponential shape func-
tions in Karama et al (1998, 2003), and a parabolic shape 
function in Karacam (2005) [21], respectively. In the present 
study, the numerical results have shown that the proposed 
model has better results than the others. In the determina-
tion of the displacement and stress values, a unified shear 
deformation beam theory in which the previous beam the-
ories can be obtained by use of an appropriate shape func-
tion, is adopted in the numerical model. In the comparison 
of results, the following equation is used to obtain the error 
in percentage.

( ) ( )Reference Value New Value
Error % 100

Reference Value
−

= ×        (17)

In Fig. 2, the variation of vertical displacement is pre-
sented along the beam length. In accordance with the simply 
support boundary condition, the displacement values at the 
beginning and end of the beam where x=0 and x=L, are ob-
tained as zero. The maximum displacement value is obtai-
ned in the middle of the beam as it is expected. Due to the 
sinusoidal transverse loading, the negative values in the ver-
tical axis indicate that the displacement values are obtained 
in the negative z- direction.

In Fig. 3, the vertical displacement distribution is pre-
sented. It is obvious from the figure that both sides of the 
beam which are illustrated in red regions have zero displa-
cement, whereas the regions in dark blue correspond to the 
maximum displacement values.

In Fig. 4, the variation of longitudinal displacement 
along the beam thickness is presented. Since the sinusoidal 
loading acts from the top, the upper surface of the beam is 

Table 1. The vertical (W) and longitudinal (U) displacements, shear 
(τxz) and normal (σxx) stresses for simple support boundary condition.

Model W (×10-4) 
[m]

U (×10-4) 
[m]

τxz
[Pa]

σxx
[Pa]

Present 
Study

Error (%)

-6.2155
1.88

2.3554
1.85

-1031670
2.55

7685460
1.91

Karaçam 
(2005)

Error (%)

-6.2317
2.2

2.0382
11.8

-892316
11.3

7527000
3.9

Karama 
(2003)

Error (%)

-6.3701
4.4

2.1196
8.3

-940098
6.6

8112840
3.5

Karama 
(1998) -6.1006 2.3125 -1006000 7835200
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lengthened, whereas the lower surface is shorten. Thus, the 
maximum values are obtained at the bottom and top surfa-
ces where z=h/2 and z=-h/2. The longitudinal displacement 
values presented along x-axis in the figure have a common 
factor of “10-4”. Since the longitudinal displacement at the 
mid-plane of the beam when z=0 is “0.06×10-4”, it is obvious 
from the figure that the displacement at this value is very 
close to zero.

The longitudinal displacement distribution along the 
beam thickness is presented in Fig. 5. The red and dark blue 
regions indicate the positive and negative maximum displa-
cement values at the bottom and top surfaces along x-axis. 

In the mid-plane, the longitudinal displacement values are 
close to zero as in the previous figure.

In Fig. 6, the variation of normal stress along the beam 
length is presented. The maximum value is obtained in the 
mid-point, and stress values are obtained as zero at both 
ends of the beam respectively.

In Fig. 7, the normal stress distribution along the beam 
length is presented. For the specific point where x=L/2 and 
z=h/4, the stress values are close to the analytical solution. 
The positive and negative stress values correspond to the 
tensile and compressive stresses.

In Fig. 8, the variation of shear stress along the beam 
thickness is presented. At the bottom and top surfaces, the 
shear stresses are obtained as zero in accordance with the 
shear deformation beam theory, and the maximum stress 
value is obtained in the mid-plane.

In Fig. 9, the shear stress distribution along the beam 
thickness is presented. The stress values are close to the refe-

Figure 2. The variation of vertical displacement along the beam length.

Figure 3. The vertical displacement distribution.

Figure 5. The longitudinal displacement distribution.

Figure 6. The variation of normal stress along the beam length.

Figure 4. The variation of longitudinal displacement along the beam 
thickness.

Figure 7. The normal stress distribution.
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rence values where x=L/4, and z=0. The colored regions are 
similar with the curve obtained by the analytical solution in 
the previous figure.

CONCLUSION
In this study, the bending analysis of a composite beam 
under a uniform sinusoidal load is performed. By use of 
the proposed model, the results are compared with the 
analytical and CAE solutions of the previous studies. 
When the results are compared with the reference values, 
the percentage values of errors are obtained as 1.88% and 
1.85% for vertical and longitudinal displacements, 2.55% 
and 1.91% for the shear and normal stresses, respectively. 
Thus, it is concluded from the results that there is a signi-
ficant decrease in percentage error values from 11.8% and 
11.3% for the longitudinal displacement and shear stress 
values, whereas there is a minor change from 2.2% and 
3.9% for the vertical displacement and normal stress va-
lues when compared with the analytical solution of Kara-
çam, 2005. In the future works, the dynamic analysis can 
be performed in order to obtain the natural frequencies 
and buckling loads. Additionally, the static and dynamic 
analyses can be expanded by taking various design para-
meters into consideration such as loading type, stacking 
sequence, layer thickness and boundary conditions.
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