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İki-Boyutlu Konvektif Sınır Koşullu Erime Problemi İçin Nümerik 
Yaklaşım 

 
Vildan Gülkaç1*, 

 

 
ÖZ 

 
Bu çalışmada, daha önce çözdüğümüz, iki-boyutlu konvektif sınır koşullu erime probleminde, türevlerin bir kısmında 

açık yöntem kullanırken bir kısmında da kapalı yöntem kullanarak sonlu farklar oluşturulmuştur ve bu denklemlerin 

çözümü için  bir iteratif yöntem geliştirilmiştir. Metod (x, y) koordinatlarında ikinci dereceden doğruluğa sahiptir. Bu 

metodla elde edilen sonuçlar, önceki araştırmacılar tarafından verilen sonuçlarla tamamen uyumludur. 

  

Anahtar Kelimeler: Flux Limiters, LOD metodu, hareketli sınır problemleri, Strang splitting. 

  
 

Numerical Approach for the two-dimensional heat equation problem 
with convective boundary conditions 

 
ABSTRACT 

 
In this work, we extended our earlier study on the solution of two-dimensional heat equation problem by considering 

a class of time-split finite difference methods. Operator splitting is used as a procedure for computing, some derivatives 

are computed explicitly and some of them computed implicitly during this procedure. The procedure is second order 

accurate in time and in (x, y) coordinates. The results of computing by present procedure are in totally compatible with 

the results obtained previously by other researches. 
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1. INTRODUCTION 
 

Convection is the convective heat transfer 

which is the transfer of heat from one place to another 

and is the dominant form of heat transfer in liquids and 

gases. Convection is often defined as a different method 

of heat transfer includes the combined processes of 

conduction (heat diffusion) and advection (heat transfer 

by bulk fluid flow). 

 Movement of a fluid can force convection by 

means other than buoyancy forces. Convection may also 

be forced by thermal expansion of fluids. Natural 

convection occurs due to fluid motion when the fluid is 

heated by natural buoyancy forces.  

 The convection heat transfer mode consists of 

one mechanism.  Energy is transferred by bulk, or 

macroscopic motion of the fluid as well as, diffusion 

which is the energy transfer because of specific 

molecular motion. Large numbers of molecules are 

moving together with or as combinations at any instant, 

related with this motion. Such motion, causes the heat 

transfer in the presence of a temperature increase. As a 

result of the molecules in combinations continue their 

random motion of the total heat transfer is then because 

of the superposition of the energy transport by random 

motion of the molecules and by the bulk motion of the 

fluid. When mentioning this cumulative transport, it is 

common to use the term convection and the term 

advection when mentioning the transport because of the 

bulk fluid motion.  

 For a long time convection heat transfer and 

fluid flow in porous media examined numerically and 

experimentally because of the important uses, for 

example micro-thrusters, geothermal energy extraction, 

matrix or micro-porous heat exchangers, catalytic and 

chemical particle beds, packed-bed regenerators and heat 

transfer enhancement. Melting and solidification 

procedures are came across in a range of industrial 

applications. Several methods have been proposed [1-25] 

to solve these problems. Many researchers explored 

different numerical and analytical methods to obtain 

solutions for moving boundary problems. Some 

references for analytical methods can be found in 

Goodman [4], Rasmussen [5]. Some examples for 

numerical approaches are found in Creyer [6], Furzeland 

[7, 8], Aitchison [9, 10], Landau [11], Gupta and Kumar 

[12], Ferris and Hill [13], Beaubauff  and Chapman [14], 

Duda et al [15]. Öziş and Gülkaç [1, 2] prepared a 

numerical method to solve the multi-dimensional phase 

change problems by an independent variable interchange 

which extension and as well as modification of 

Boadway’s transformation. Gülkaç published [16, 17] 

two different numerical method for two dimensional 

moving problem.  Minkowycz and Sparrow [18] , the 

local non-similarity solution method applied to solve for 

natural convection on a vertical cylinder for conditions. 

Some researchers commonly used saturated porous 

media or mixed convection heat transfer numerical 

simulations with Darcy equation models. As seen [19] 

and [20]. 

In this work, we prepared a new method to solve 

the phase-change problems by Rannacher method [21] 

which extension and as well as modification of 

Rannacher method. In this method Crank-Nicolson 

finite-difference equations are solved with a number of 

initial time-steps with iterative method. In section 2, we 

explained the model problem in this study. In section 3, 

the discretization in space and time is demonstrated. In 

section 4 the accuracy and stability of the method is 

analyzed. Numerical results and conclusions for the 

fusion problem are presented in section 5. Finally we 

compare the proposed work with other schemes and 

results show that the present work has much higher 

efficiency.  

 

2. FORMULATION OF THE PROBLEM 
 

Following researchers worked on this problem, Gupta 

and Kumar [12], Sparrow and Hsu [22], Öziş and Gülkaç 

[1], and Gülkaç [2]. 

 The problems physical situation takes place in a 

containment vessel which contains a liquid phase-change 

medium at temperature𝑇𝑓. A circular tube passes through 

the containment vessel which a coolant flows through the 

tube with inlet temperature𝑇0. The containment vessel’s 

upper and lower boundaries are adiabatic. In this 

variation the primary factor is the axial temperature rise 

undergone by the coolant as it flows through the tube. 

Heat transfer to the coolant because of the energy 

released by freezing process and by the sub cooling of the 

solid causes the temperature increase. Other possible 

participating factors to the axial thickness variation are 

heat conduction in the solid and heat storage in the 

coolant. At the beginning the containment tube is filled 

with a liquid phase-change material at fusion temperature 

𝑇𝑓describes the freezing process. No coolant is flowing 

and no coolant fluid is present within the tube at  𝑇𝑓 . At 

t=0 time the coolant flow is started and maintained. 𝑇𝑓 is 

always higher than the entering coolant temperature 𝑇0 

.𝑇0  is maintained at the stable value which is always 

smaller then 𝑇𝑓,  which causes the freezing  process to be 

initiated and continues as long as coolant is supplied to 

the vessel [12]. 

According to the [12], below equations shows the process 

mathematically,   

 

 if 𝑇 = 𝑇(𝑟, 𝑧, 𝜏) shows the temperature distribution in 

the solid region at time ,  
𝜕𝑇

𝜕𝜏
= 𝛼 [

𝜕2𝑇

𝜕𝑟2 +
1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2], 𝑟0 < 𝑟 < 𝑅(𝑟, 𝜏), 

0 ≤ 𝑧 ≤ 𝐿𝑧, 𝜏 > 0                                                                          (1) 

  



V. Gülkaç  İki-Boyutlu Konvektif Sınır Koşullu Erime Problemi İçin Nümerik Yaklaşım 
 

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 3: pp. 343-349, year 345 
 

ℎ(𝑇𝑤 − 𝑇𝑣) = 𝑘
𝜕𝑇

𝜕𝑟
 𝑎𝑡 𝑟 = 𝑟0                                                   (2) 

 

𝑇(𝑟, 𝑧, 𝜏) = 𝑇𝑓, at 𝑟 = 𝑅(𝑧, 𝜏)                                                  (3) 

We can write the second condition on interface boundary 

from the mass conservation equation as below 

 

𝑘 (
𝜕𝑇

𝜕𝑟
= 𝜑𝐿𝜗𝑛), at 𝑟 = 𝑅(𝑧, 𝜏)                                               (4) 

 

n is the normal to the interface with regard to liquid. The 

velocity of the interface in the direction of n is 𝜗𝑛. 𝐿𝑧 is 

length of the tube along the z axis. 𝑇𝑣   is coolant 

temperature and 𝑇𝑤  is the wall temperature, which are 

both functions of z and 𝜏. 

Now, we expressed the variables and the parameters in 

physical units. Most researchers demonstrate the 

problems in non-dimensional variables as in Gupta and 

Kumar [12]. Denote eqns. (1)-(4) to the following [12], 

 

𝑆𝑡𝑒
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2 +
1

1+𝑦

𝜕𝑢

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2, 0 < 𝑦 < 𝑠(𝑥, 𝑡), 

0 ≤ 𝑥 ≤ 𝐿𝑥, 𝑡 > 0                                                                          (5) 

 

𝐵𝑖(𝑊 − 𝑉) = (
𝜕𝑢

𝜕𝑦
)

𝑠𝑜𝑙𝑖𝑑
, y=0                                                    (6) 

 

𝑢(𝑥, 𝑦, 𝑡) = 0, y=s(x, t)                                                                (7) 

and the eqn. (4) may be written as; 

 
𝜕𝑢

𝜕𝑛
= 𝜇𝜗𝑛 at 𝑦 = 𝑠(𝑥, 𝑡)                                                              (8) 

 

 

3. DISCRETIZATION OF PROBLEM 
 

 We can solve the two-dimensional heat equation 

(5) by splitting it into two one-dimensional eqns. Eqn. (5) 

rewritten as eqn. (9), 

𝑢𝑡(𝑡, 𝑥, 𝑦) = ℳ(𝑢) + ℛ(𝑢) + ℑ(𝑢)                                    (9) 

 We consider a discretization of eqn. (9) and time 

on a structured and equidistant grid (𝑡𝑛, 𝑥𝑖 , 𝑦𝑗), 𝑡𝑛 =

𝑛∆𝑡, 𝑥𝑖 = 𝑖ℎ, 𝑦𝑗 = 𝑗ℎ .  The operator ℳ and ℛ  are 

approximated using centered second order finite 

differences 

 

ℳ𝑢𝑖,𝑗 =
1

𝑆𝑡𝑒

𝑢𝑖+1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖−1,𝑗

ℎ2                                                   (10) 

 

ℛ𝑢𝑖,𝑗 =
1

𝑆𝑡𝑒

𝑢𝑖,𝑗+1−2𝑢𝑖,𝑗+𝑢𝑖,𝑗−1

𝑘2                                                     (11) 

 

 

Such in [24] to prevent spurious oscillations we use flux 

limiters for the first order operator ℑ. 

 

ℑ𝑢𝑖,𝑗 =
1

𝑆𝑡𝑒

1

1+𝑦𝑗
𝜒

Δ+𝑢𝑖,𝑗−(𝑓𝑗+1
2⁄ −𝑓𝑗−1

2⁄ )

𝑘
                              (12) 

with 

Δ+𝑢𝑖,𝑗 = 𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗, 𝜒 = 1 +
1

2
Δ𝑡,  

 

𝑓
𝑖,𝑗−

1

2

=
1

2
(1 −

Δ𝑡

𝑘

1

1+𝑦
𝜒) 𝛿𝑖,𝑗−1

2⁄ , 

 

𝑓
𝑖,𝑗+

1

2

=
1

2
(1 −

Δ𝑡

𝑘

1

1+𝑦
𝜒) 𝛿𝑖,𝑗−1

2⁄                                           (13) 

 

Here 𝛿𝑖,𝑗+1
2⁄ = 𝜙(Δ+𝑢𝑖,𝑗+1, Δ+𝑢𝑖,𝑗)  and 𝜙  is the flux 

limiter function. We consider the min-mod-limiter 

defined by 𝜙 

(α,β)= {

0, 𝑖𝑓𝛼𝛽 < 0

𝛼, 𝑖𝑓 |𝛼| < |𝛽|

𝛽, 𝑖𝑓 |𝛽| < |𝛼|
                                                           (14) 

So that we will use a Strang operator splitting as 

seen [23] which let us the treat ℳand ℛ  implicitly in 

time and ℑ explicitly. The implicit scheme to solve 

 𝑢𝑡 − ℳ𝑢 = 0 from 𝑡𝑛−1 to 𝑡𝑛 is as seen as in [24-25].  

The eqn. (8) is not suitable for numerical solution in this 

form. Hence following Crank and Gupta [12], we may 

express eqn. (8) in more suitable expression as eqn. (15). 

𝑆𝑡 =
1

𝜇
{(𝑢𝑥)2 + (𝑢𝑦)

2
} /𝑢𝑦                                                   (15) 

According to Öziş and Gülkaç [1], to calculate the 

coolant temperature distribution along the axis of the 

cylinder, one may need the equation combining the 

energy equation, can be written as 

 

2(𝑊 − 𝑉) = 𝑤
δ𝑉

𝛿𝑡
+

1

𝑆𝑡

𝛿𝑉

𝛿𝑥
t>0.                                                (16)    

Hence to compute numerically at time level 𝑡𝑛  as eqn. 

(9).  

1. �̃�𝑖,𝑗
𝑛 = 𝑢𝑖,𝑗

𝑛−1 −
∆𝑡

4
(ℳ𝑢𝑖,𝑗

𝑛−1 + ℳ�̃�𝑖,𝑗
𝑛 ),                           (17)                                                                    

2. 𝑢𝑖,𝑗
𝑛 =

1

3
(4�̃�𝑖,𝑗

𝑛 − 𝑢𝑖,𝑗
𝑛−1 − Δ𝑡ℳ𝑢𝑖,𝑗

𝑛 )                                (18) 

 

The explicit scheme to solve 𝑢𝑡 + ℛ𝑢 + ℑ𝑢 = 0  from 

𝑡𝑛−1 to 𝑡𝑛is 

𝑢𝑖,𝑗
𝑛 = 𝑢𝑖,𝑗

𝑛−1 + ∆𝑡ℑ𝑢𝑖,𝑗
𝑛−1 + ∆𝑡ℛ𝑢𝑖,𝑗

𝑛−1                                  (19) 

 

Following [1], we can write eqn. (15) and (16) such as 

eqns. (20), (21), (22). 

3. 𝑆𝑖,𝑗
𝑛 =

∆𝑡

𝜇
{

Δ𝑦

(Δ𝑥)2

(𝑢𝑖+1,𝑗
𝑛−1 −𝑢𝑖−1,𝑗

𝑛−1 )
2

𝑢𝑖,𝑗+1
𝑛−1 −𝑢

𝑖,𝑗−
1
2

𝑛−1 +
𝑢𝑖,𝑗+1

𝑛−1 −𝑢𝑖,𝑗−1
𝑛−1

Δ𝑦
} + 𝑆𝑖,𝑗

𝑛−1    (20) 

4. 𝑉𝑖
𝑛 [

∆𝑥

1+𝐵𝑖𝑢𝑖,𝑗1
𝑛 +

𝑤∆𝑥

2∆𝑥∆
+

1

𝑆𝑖,𝑗
𝑛 ] =

1

2𝑆𝑖,𝑗
𝑛 𝑉𝑖−1

𝑛 +
𝑤∆𝑥

2∆𝑡
𝑉𝑖

𝑛 +

∆𝑥

1+𝐵𝑖𝑢𝑖,𝑗1
𝑛                                                                                               (21) 

 

5. 𝑊𝑖
𝑛 = 𝑢𝑖,𝑗1

𝑛−1 + 𝐵𝑖𝑢𝑖,𝑗1
𝑛 𝑉𝑖

𝑛                                                     (22) 

Fluid enters the cylinder at a constant temperature, say 

unity, we have 𝑉0
𝑛 = 1. 

Flux limiter causes  ℑ to be nonlinear, however 

it is applied explicitly in eqn. (19) to 𝑢𝑖,𝑗
𝑛−1  with low 



V. Gülkaç  İki-Boyutlu Konvektif Sınır Koşullu Erime Problemi İçin Nümerik Yaklaşım 
 

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 3: pp. 343-349, year 346 
 

additional computational complexity.  So that 

oscillations in solution diminish.   

The solution to eqn. (9) is progressed one time 

step Δ𝑡 with Strang splitting in two alternative ways. The 

first algorithm is: 

 

1. Compute 𝑢𝑖,𝑗
𝑛  at 𝑡

𝑛−1
2⁄  using eqns. (17), (18) with time 

step Δ𝑡
2⁄  and 𝑢𝑖,𝑗

𝑛−1 as initial data. 

2. Compute �̃�𝑖,𝑗
𝑛  at 𝑡𝑛 using eqn. (19) with time step Δ𝑡 in 

eqns. (11), (12), (13) and (16) and 𝑢
𝑖,𝑗

𝑛−1
2⁄
 as initial data. 

3. Compute 𝑢𝑖,𝑗
𝑛  at 𝑡𝑛  using eqns. (17), (18) with time 

step Δ𝑡
2⁄  and �̃�𝑖,𝑗

𝑛  as initial data. 

4. Compute 𝑆𝑖,𝑗
𝑛  at 𝑡𝑛 using 𝑢𝑖,𝑗

𝑛 . 

5. Compute 𝑉𝑖
𝑛 at 𝑡𝑛 using 𝑢𝑖,𝑗

𝑛  and 𝑆𝑖,𝑗
𝑛 . 

6. Compute 𝑊𝑖
𝑛 at using 𝑢𝑖,𝑗

𝑛  and 𝑉𝑖
𝑛. 

 

The second algorithm is: 

1. Compute 𝑢
𝑖,𝑗

𝑛−1
2⁄
 at 𝑡

𝑛−1
2⁄  using eqn. (19) with time 

step Δ𝑡
2⁄  in eqns. (11), (12), (13) and (19) and 𝑢𝑖,𝑗

𝑛−1 as 

initial data. 

2. Compute �̃�𝑖,𝑗
𝑛  at 𝑡𝑛  using eqns. (17), (18) with time 

step Δ𝑡 and 𝑢
𝑖,𝑗

𝑛−1
2⁄
 as initial data. 

3. Compute 𝑢𝑖,𝑗
𝑛  at 𝑡𝑛 using eqn. (19) with time step Δ𝑡

2⁄  

in eqns.(11), (12), (13) and (19) and �̃�𝑖,𝑗
𝑛  as initial data. 

4. Compute 𝑆𝑖,𝑗
𝑛  at 𝑡𝑛 using 𝑢𝑖,𝑗

𝑛 . 

5. Compute 𝑉𝑖
𝑛 at 𝑡𝑛 using 𝑢𝑖,𝑗

𝑛  and 𝑆𝑖,𝑗
𝑛 . 

6. Compute 𝑊𝑖
𝑛 at using 𝑢𝑖,𝑗

𝑛  and 𝑉𝑖
𝑛. 

Both algorithms are one step schemes where the 

solution 𝑢𝑖,𝑗
𝑛−1 at 𝑡𝑛−1  is integrated to 𝑢𝑖,𝑗

𝑛  at 𝑡𝑛 and than 

𝑢𝑖,𝑗
𝑛  integrated to 𝑢𝑖,𝑗

𝑛+1 at 𝑡𝑛+1.  

The scheme to two-(x, y)-dimensions is straight 

forward for a Cartesian grid. A banded direct solver or a 

Krylov subspace iteration method is used to solve the 

implicit part. ℑ is applied to the solution to compute the 

approximation of the first derivatives and the 

approximation of the second derivatives are computed by 

applying ℛ at 𝑡𝑛−1  initially in one coordinate direction 

and later in the other coordinate direction. Like in [23] to 

update the solution, those contributions are summed and 

multiplied by Δ𝑡. Operator splitting method can be used 

by first advancing the solution in time by the x-derivative 

and then by the y-derivative either consecutively or using 

Strang splitting [23] or ADI method [16, 17]. 

 

4. ACCURACY AND STABILITY 
  

 The accuracy of eqn. (9) with ℳ , ℑand ℛ  in 

eqns. (10), (11), (12) is analyzed respectively by 

considered the approximation of the first derivative. The 

solution 

𝑢𝑡 −
1

𝑆𝑡𝑒
𝑢𝑥𝑥 = 0                                                                           (23) 

is progress from 𝑡𝑛−1 to 𝑡𝑛 by expanding the solution in 

a Taylor series in time  

𝑢𝑛 = 𝑢𝑛−1 + Δ𝑡𝑢𝑡
𝑛−1 +

1

2
Δ𝑡2𝑢𝑡𝑡

𝑛−1 +
1

6
Δ𝑡3𝑢𝑡𝑡𝑡

𝑛−1 +

𝑂(Δ𝑡4)                                                                                               (24) 

The terms 𝑢𝑡
𝑛−1 +

1

2
Δ𝑡𝑢𝑡𝑡

𝑛−1  approximate 𝑢𝑡  at 

𝑡𝑛+1
2⁄  in eqn. (22). Then 𝑢𝑡  and 𝑢𝑡𝑡  in this expression 

are replaced by derivatives in x using eqn. (21).  

  Introduce the x-derivatives into eqn. (22) to 

obtain 

𝑢𝑛 = 𝑢𝑛−1 + Δ𝑡(
1

𝑆𝑡𝑒
)𝑢𝑥

𝑛−1 +
1

2𝑆𝑡𝑒2 Δ𝑡2𝑢𝑥𝑥
𝑛−1 +

1

6
Δ𝑡3𝑢𝑡𝑡𝑡

𝑛−1 + 𝑂(Δ𝑥4)                                                                  (25) 

𝑢𝑛 = 𝑢𝑛−1 + Δ𝑡
1

𝑆𝑡𝑒
𝑢𝑥

𝑛−1 +
1

2𝑆𝑡𝑒2
Δ𝑡2𝑢𝑦𝑦

𝑛−1 + 𝑂((Δ𝑡3)) (26)      

The approximation of    𝑢𝑛    of formal second  order in 

Δ𝑡 in eqn. (26).                                                               

 Similarly, the solution 

𝑢𝑡 −
1

𝑆𝑡𝑒

1

1+𝑦
𝑢𝑦 −

1

𝑆𝑡𝑒
𝑢𝑦𝑦 = 0                                                (27) 

is progress from 𝑡𝑛−1 to 𝑡𝑛 by expanding the solution in 

a Taylor series in time  

𝑢𝑛 = 𝑢𝑛−1 + Δ𝑡𝑢𝑡
𝑛−1 +

1

2
Δ𝑡2𝑢𝑡𝑡

𝑛−1 +
1

6
Δ𝑡3𝑢𝑡𝑡𝑡

𝑛−1 +

𝑂(Δ𝑡4)                                                                                               (28) 

The terms 𝑢𝑡
𝑛−1 +

1

2
Δ𝑡𝑢𝑡𝑡

𝑛−1  approximate 𝑢𝑡  at 

𝑡𝑛+1
2⁄  in eqn. (22). Then 𝑢𝑡  and 𝑢𝑡𝑡  in this expression 

are replaced by derivatives in y using eqn. (21).  

  Introduce the y-derivatives into eqn. (24) to 

obtain 

𝑢𝑛 = 𝑢𝑛−1 +
Δ𝑡

𝑆𝑡𝑒(1 + 𝑦)
𝑢𝑦

𝑛−1

+
1

2
Δ𝑡2 (

1

𝑆𝑡𝑒2(1 + 𝑦)
𝑢𝑦

𝑛−1

+ (
1

𝑆𝑡𝑒

1

1 + 𝑦
)

2

𝑢𝑦𝑦
𝑛−1) +

1

6
Δ𝑡3𝑢𝑡𝑡𝑡

𝑛−1

+ 𝑂(Δ𝑡4) 

𝑢𝑛 = 𝑢𝑛−1 + Δ𝑡
1

𝑆𝑡𝑒

1

1 + 𝑦
(1 +

1

2
Δ𝑡

1

𝑆𝑡𝑒
) 𝑢𝑦

𝑛−1

+
1

2
(Δ𝑡

1

𝑆𝑡𝑒

1

1 + 𝑦
)2𝑢𝑦𝑦

𝑛−1 + 𝑂(Δ𝑡)3 

𝑢𝑛 = 𝑢𝑛−1 + Δ𝑡
1

𝑆𝑡𝑒

1

1+𝑦
𝜒𝑢𝑦

𝑛−1 +

1

2
(Δ𝑡

1

𝑆𝑡𝑒

1

1+𝑦
𝜒)

2

𝑢𝑦𝑦
𝑛−1 + 𝑂(Δ𝑡)3                                          (29) 

The approximation of 𝑢𝑛  is of formal second 

order in Δ𝑡 in eqn. (23) and the same factor
1

𝑆𝑡𝑒

1

1+𝑦
𝜒 is 

multiplying both 𝑢𝑦  and 𝑢𝑦𝑦  as assumed in the 

derivation of the limiters as seen as [24]. It is noted in 

[24] that ignoring the correction 𝜒  for a variable 

coefficient in front of 𝑢𝑦 formally decreases the order to 

accuracy but in practice the difference in the error is 

small. Then the two terms depending on 𝑢𝑦
𝑛−1 and 𝑢𝑦𝑦

𝑛−1 

are approximated as in eqn. (24). 
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The eqns. (17), (18) and (19) for the diffusive 

part of eqn. (9) is of second order accuracy in time as in 

[23]. Combining two second order accurate schemes in 

operator splitting as in the first algorithm or the second 

algorithm in section 3 is also second order accurate in 

time as in [23]. 

Suppose that the solution is smooth such that the 

limiter in eqn. (14) is 𝛿𝑖,𝑗+1
2⁄ = Δ+𝑢𝑖,𝑗  for j and j-1. 

Then ℑ𝑢
𝑖,𝑗

𝑛−1
2⁄

+ ℛ𝑢
𝑖,𝑗

𝑛−1
2⁄
 in eqns. (17) and (18) are  

ℑ𝑢
𝑖,𝑗

𝑛−1
2⁄

+ ℛ𝑢
𝑖,𝑗

𝑛−1
2⁄

= −

1
𝑆𝑡𝑒

(
1

1 + 𝑦𝑗
) 𝜒

2𝑘
(𝑢𝑖,𝑗+1

𝑛−1 − 𝑢𝑖,𝑗−1
𝑛−1 )

−

Δ𝑡 (
1

𝑆𝑡𝑒
1

1 + 𝑦𝑗
𝜒)

2

2𝑘2
(𝑢𝑖,𝑗+1

𝑛−1 − 2𝑢𝑖,𝑗
𝑛−1

+ 𝑢𝑖,𝑗−1
𝑛−1 ) 

+𝑢𝑛−1 + Δ𝑡
1

𝑆𝑡𝑒

1

1+𝑦
𝜒𝑢𝑦

𝑛−1 +

1

2
(Δ𝑡

1

𝑆𝑡𝑒

1

1+𝑦
𝜒)

2

𝑢𝑦𝑦
𝑛−1 + 𝑂(Δ𝑡)3                                          (30)                                                                                                               

 

In eqn. (23) the approximation of the y-derivatives is 

second order.  

To compute u(T), we can combine the last half 

step with the first half step in the first algorithm or the 

second algorithm into one full step with Δ𝑡 . This is 

possible of all inner time steps except for the first one at 

t=0 and the last one to react t=T as seen in [23, 24].  

5. NUMERICAL RESULTS AND CONCLUSIONS 
 

We offer the new method to solve moving boundary 

problems with convective boundary conditions using 

time-split finite difference methods. Operator splitting is 

used as a procedure for computing, some derivatives are 

computed explicitly and some of them computed 

implicitly during this procedure.  By using the new 

method Eqns. (9)-(15), (16) are discredited. Using 

Strang-splitting method, the discredited two-dimensional 

heat transfer equations with convective boundary 

conditions are solved. These methods perform as well as 

for the fusion problem with convective boundary 

conditions. The stability analysis is also investigated. The 

initial conditions from Sparrow and Hsu [22] used for the 

short-time solution. In addition to make comparison, the 

values of some parameters are taken equal with [12, 22] 

i.e., Ste=1.0, Bi=5.0, St=0.003, and w=0, Δ𝑥 =
10.0, Δ𝑦 = 0.1 and 0.05 and Δt = 0.0001 and 0.0005. 𝐿𝑥 , 

the length of the cylinder, is also taken to be 100.0. A 

comparison of the values of the interface position 

obtained by other numerical results in the previous 

studies shown in Figure 1. Figure 2 shows the 

temperature distribution at the wall (u=0) and Figure 3 

shows the temperature distribution at the coolant, along 

with the values from [12] along the axis of the cylinder 

at different times. In addition, obtained results prove that 

the present method can be applied to non-linear 

problems. Moreover, the new method may applied to 

three-dimensional problems. The present method’s 

computationally efficiency is proved by the numerical 

results. 

 

 

 

 
 

Figure 1. The interface positions against time along with 

comparative values from [12]. 

 

 

 

 

 
 

Figure 2. Graph displaying the temperature distribution 

in the coolant, along the axis of the cylinder at various 

times. 
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Figure 3. Graph displaying the temperature distribution 

in the wall, along the axis of the cylinder at various times. 
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