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Abstract: Canadian lynx data are widely used and modeled in the literature. Although many different models have 

been made so far, no model-based classification studies have been carried out in terms of residuals to investigate 

the similarities or differences between these models. This study reviewed previously obtained models for the 

Canadian lynx time series. The starting point of the current study is residuals, and some statistical data analysis 

tools are used for this. The residual series of the models are clustered with the K-means cluster method. Besides, a 

new model is proposed for this time series, and the model is included in the data analysis together with other 

models in the literature. In addition, chaos analysis was performed for all residual time series of the models.   

Keywords: Time series, the K-means cluster method, BDS Test Statistic, Canadian lynx data 

1.    Introduction 

There are some classical data patterns in the literature. A new methodology is first applied to these 

datasets. Time series analysis also includes such data, one of them which is Canada lynx time series. 

The Canadian lynx data investigated in time series analysis was collected annually for the period 1821–

1934. It gives the number of the Canadian lynx "trapped" in the North-West Canada. The review and 

classification of previous models for the Canadian lynx time series is the research topic of our study. 

Known time series modeling methods such as the Box-Jenkins or Autoregressive Integrated Moving 

Average (ARIMA) method can be used to study such time series. However, the stationarity of the 

ARIMA model time series is limited by the normality of residuals and the requirement for 

independence. The residuals are the errors between the observed time series and the model constructed 

with ARIMA, which should be uncorrelated and normally distributed [1]. 

The Canadian lynx time series includes a ten-year cycle [2-5]. The data have been examined in many 

studies in the literature. Some studies are just linear, bilinear, exponential, etc. It includes classical 

modeling approaches such as Linear model forms that have been proposed by [4], [6], and [7]. [8] 

examined the exponential model structure. Self-excited Threshold Autoregressive (SETAR) models 

were given by [9], while bilinear models were proposed by [10] and [7]. These studies aim to examine 

the Canadian data as classic data in the literature with modeling techniques. Thus, the different 

appearance of this classical data in different models can be seen. 

Lai investigated some of the linear and nonlinear autoregressive models on the classic Canadian lynx 

data [11]. Kaboudan used this data as a real-world data application to evolve best-fit regression models 

[12]. Teruia and Van Dijk applied Canadian Lynx data to the time-varying method, which allows for a 

locally (non)linear modelling [13]. Khashei and Bijari used Canadian Lynx data to apply hybrid models 

for time series forecasting [14]. The usefulness of the Threshold Quantile Autoregression (TQAR) model 

is illustrated in an application to the dynamics of the Candian lynx population by [15]. Zainuddin et al. 
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forecasted Canadian lynx data by using a novel hybridization of bootstrap and double bootstrap 

artificial neural networks [16]. A forecasting approach for Canadian Lynx data based on machine 

learning techniques was applied by [17]. Chen et al. proposed a novel method based on error 

decomposition and a nonlinear combination of forecasters and used this method for forecasting 

Canadian Lynx data as a real-world data application [18].    

In the concept of the current study, it is aimed to examine studies that are based on non-hybrid modeling 

techniques. Also, the selected time series models which were previously modeled with non-hybrid 

modeling techniques by 12 different methodologies or researchers are examined by taking into account 

the modeling in [19]. The examination in question is made on the remnants of each model. The 

examination in question is made on the residuals of each model. The main purpose of the study is to 

cluster the models using the K-means clustering method and using the BDS test statistic to investigate 

chaos. The current study is structured as follows: Section 2 gives previously obtained time series models 

by using Canadian lynx data, Section 3 includes the methods and results for data mining analysis of the 

models mentioned in Section 2, and the final comments of the study are given in Section 4. 

2.    Materials and Methods  

2.1. Obtained Time Series Models by Using Canadian Lynx Data 

Canadian lynx series, whose models are the subject of investigation, was determined annually between 

1820-1934. This data is one of the most popular data sets for theoretical or applied studies in time series 

analysis. The sequence graph of the said time series is given in Fig. 1.  

 

Figure 1. Canadian Lynx series (1820-1934) 

The models related to Canadian lynx data are usually obtained after performing logarithmic 

transformation for a 100-unit slice. The models below assume a white noise process with a mean εt of 0 

and a variance of σ². The models obtained at various times of the data mentioned above, sometimes 

using different methodologies, are given below: 
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Model  I – Linear [4] 

                Xt = 2,9 + 1,41Xt-1 – 0,77Xt-2 + εt,               (1)   

Model  II - Exponential [8] 

                   XT= {1,167 + (0,316 + 0,982XT-1)KT}XT-1 – {0,437                    (2) 

                        + (659 +1,26Xt-1) Kt}Xt-2 + Et ,   Kt = exp( -3,89Xt-12). 

Model  III - SETAR (2,2,2) [9] 

                       0,62 + 1,25Xt-1 – 0,43Xt-2  +  0,195εt,            Xt-2 ≤ 3,25            (3) 

     Xt = 

                       2,25 + 1,52Xt-2 – 1,24Xt-2 + 0,25εt,                Xt-2 > 3,25  

Model  IV - Bilinear (9) [10] 

                Xt – 0,8845Xt-1 + 0,1699Xt-2 + 0,1271Xt-4 – 0,5514Xt-10 + 0,5280Xt-11           (4) 

                    = 1,117 – 0,1653Xt-8 εt-10 – 0,097Xt-5 εt-8 + 0,0922Xt-1 εt-1 + εt , 

Model  V - AR (11) [6]           

                Xt = 1,13Xt-1 – 0,51Xt-2 + 0,23Xt-3 – 0,29Xt-4 + 0,14Xt-5 – 0,14Xt-6             (5) 

                      + 0,08Xt-7 - 0,04Xt-8 + 0,13Xt-9 + 0,19Xt-10 – 0,13Xt-11 + εt , 

Model  VI [6]- AR (11) 

                 Xt = 1,0938Xt-1 - 0,3571Xt-2 - 0,1265Xt-4 + 0,3244Xt-10 – 0,3622Xt-11 + εt ,          (6)           

Model  VII [7]- Bilinear (13) 

                 Xt - 0,77227Xt-1 + 0,091572Xt-2 – 0,083073Xt-3 + 0,261493Xt-4           (7) 

       - 0,225585Xt-9 + 0,245841Xt-12 = 1,486292 – 0,7893Xt-3 εt-9 

 + 0,4798Xt-9 εt-9 + 0,3902Xt-6 εt-2 + 0,1326Xt-1 εt-1 + 0,07944Xt-2 εt-7  

 - 0,3212Xt-4 εt-2 + εt , 

Model  VIII [7]- Linear              

                 Xt - 1,0541Xt-1 + 0,4538Xt-2 – 0,32597Xt-3 + 0,37912Xt-4 – 0,23452Xt-5           (8) 

                 + 0,1757Xt-6 – 0,09598Xt-7 + 0,12843Xt-8 – 0,27435Xt-9 – 0,11427Xt-10  

                 + 0,18534Xt-11+0,17218Xt-12= εt ,                                                                            

Model  IX [7]- Linear 

                 Xt - 1,01705Xt-1 + 0,39997Xt-2 – 0,25851Xt-3 + 0,22037Xt-4             (9) 

                  – 0,21099Xt-9 + 0,25343Xt-12 = εt , 

Model  X [9](Tong, 1983)- SETAR (2,5,2)          

                   0,768 + 1,067Xt-1 - 0,2Xt-2 + 0,164Xt-3 – 0,428Xt-4 + 0,181Xt-5          (10) 

    Xt =              + 0,174εt,                                                          Xt-2 ≤ 3,05  

                  2,254 + 1,474Xt-1 – 1,202Xt-2 + 0,238εt ,                  Xt-2 > 3,05  
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Model  XI [9]- SETAR (2,7,2) 

                        0,546 + 1,032Xt-1 – 0,173Xt-2 + 0,171Xt-3 –0,431Xt-4 + 0,332Xt-5           (11) 

Xt =             – 0,284Xt-6 + 0,210Xt-7 +0,161εt,                            Xt-2 ≤ 3,116 

                     2,632 + 1,492Xt-1 – 1,324Xt-2 + 0,225εt,                Xt-2 > 3,116                         

Model  XII [8]- Exponential 

                     Xt = 0,481Xt-1 – 0,247Xt-2 + 0,318Xt-3 + 0,23Xt-4 + 0,352Xt-5            (12) 

                                   + 0,096Xt-6 - 0,085Xt-7 - 0,289Xt-8 - 0,181Xt-9 + Yt, 

      Yt = {1,514 + (0,480 – 3,332Yt-1 – 0,610Yt-1² + 8,906Yt-1³)   

                     exp(-γYt-1²)}Yt-1 + {- 0,902 + (- 0,228 + 0,923Yt-1 + 0,193Yt-1²  

                         - 4,216Yt-1³)exp(-γYt-1²)}Yt-2 + εt,  γ = 3,89. 

In addition to the above models, it can be written by remodeling the original data in question. When 

the model obtained by remodeling is modeled by taking the logarithm of the original data, the proposed 

model is named Model XIII-linear and expressed as follows, Xt = log Zt 

Xt = 6.645+1.347Xt-1+ 0.657Xt-2 + εt +0.294εt-10                      (13) 

is obtained. 

The data mining analysis based on the statistical methodology used to investigate the time series models 

obtained by modeling the Canadian lynx data can be summarized as follows: 

i- Clustering the models' residual sequences with the help of the K-means cluster method. 

ii- A criteria for identification of non-linear (or chaos), the BDS (Brock, Dechert, Scheinkman) test 

statistic.     

Cluster analysis is a framework that develops tools and methods that group large individuals (or cases, 

units, items, objects, etc.) with the help of a specific data matrix containing multiple variables. Items are 

grouped or clustered using metrics based on “similarity” [20]. The similarity measure is calculated using 

a distance function based on an approximation such as Euclidean, Mahalanobis, or Manhattan. Items 

with small distance function values are classified under the same cluster [21]. For this data, clustering 

with hierarchical and principal components has been applied before in other studies [29]. In this study, 

one of the most popular is the cluster analysis method to determine the similarities of the models in the 

literature: K-means cluster method. 

2.2.   K-Means Cluster Method 

This method can be defined as a non-hierarchical clustering method, which is proposed by [22]. The K-

means cluster method uses an algorithm to assign each unit to the group or cluster having the nearest 

centroid [21]. This method tries to construct homogeneous groups or clusters of items based on selected 

variables, using an algorithm that can handle a large number of cases [20]. In the method, it is necessary 

to determine the number of clusters at the beginning. This information can specify initial cluster centres 

[23-24]. The algorithm of K-means can be explained as follows: Firstly, the optimal K value (the number 

of groups or clusters) has to be determined. Then the K number of items is randomly chosen, and they 

are assigned for each cluster separately. Afterwards, the remaining items are assigned to the relevant 

clusters by considering the minimum distance function value, and the new cluster centers are calculated 

in each iteration. It is needed to repeat the steps above until no more reassignments for items take place 

[21].  

2.3.   The BDS Test Statistic 

The BDS has been used as a test statistic, as a criterion to identify the chaos (or non-linear), which tests 

the null hypothesis that the variable of interest is Independently and Identically Distributed (IID). Now, 
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let us briefly consider the test statistic-BDS itself. It is based on the so-called correlation integral 

introduced by [25].  

The time series to be analyzed (Xt:1,2,..., T) is used to form the N-histories  

XtN = (Xt, Xt+1, . . ., Xt+N-1). 

Each N-history can be considered to be a point in an N-dimensional space, where N is called the 

embedding dimension. These N-histories can be used to define a correlation integral 

CN(e) = 
2

1T T
I X X

N N
t s e t

N
s
N

( )
( )

   , 

where TN = T-N+1, and Ie is the indicator function of the event 

 Xt+i - Xs+i   e ,   i=0,1,...,N-1. 

The correlation integral, CN(e), can be interpreted as an estimate of the probability that XtN and XsN are 

within a distance e. Given this interpretation, we can see that under the independence hypothesis 

CN(e)  C1(e)N,  as T 

holds. That is, P( xt+i - xs+i   e),  (i=0,1,..., N-1) is, due to independence, equal to P
i

N




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1
(  Xt+i - Xs+i  

e), which is estimated by C1(e)N as the variables are identically distributed [26-27]. Thus, the BDS 

statistic reduces to 

WN(e) =  T  (CN(e) - C1(e)N)  N(e) , 

where N(e) is an estimate of the standard deviation under the null hypothesis. WN(e) distribution 

converges to a standard normal with expectation zero and variance unity as T approaches infinity. Thus, 

one can now calculate the statistic that has a standard normal asymptotic distribution under the 

independence hypothesis. If the absolute values of the test statistic are large, the null hypothesis of IID 

(randomness) is to be rejected [28].  

3.   Results of Analysis 

Some of the results obtained from the analyzes using the methods described above are given in the text. 

As already mentioned, the study of models of the Canadian lynx series is based on residuals. All other 

results regarding the techniques are given in Appendices A and B. Accordingly, some descriptive 

statistics of the model residuals for 13 items (models) are given in Table 1. 

Table 1. Some Values for Model Residuals 

Model name-type Average Standard deviation Goodness of fit-p 

Model I-Linear   -0.01022 0.238354 0.520603 

Model II- Exp.   -0.00525 0.212661 0.105848 

Model III-SETAR   -0.10415 0.260800 0.228786 

Model IV-Bilinear    0.00188 0.202352 0.620368 

Model V-Linear   -0.00703 0.197697 0.400336 

Model VI-Linear   -0.01299 0.202263 0.681150 

Model VII-Bilinear   -0.00644 0.152882 0.478163 

Model VIII-Linear    0.00379 0.183809 0.535887 

Model IX- Linear   -0.00410 0.192566 0.967262 

Model X-SETAR    0.00605 0.204812 0.672208 

Model XI-SETAR    0.00400 0.199168 0.724205 

Model XII- Exp.   -0.01952 0.242870 0.054820 

Model XIII- Linear   -0.00703 0.539036 0.035021 
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The p-values of the mean, standard deviation, and normality tests for all model residuals are given in 

Table 1. Model II, Model XII, and Model XIII, in particular, have the lowest probabilities when the p-

values are examined carefully. What they have in common is that the two are exponential.  

Using the hierarchical clustering with Dendrogram and principal component analysis method, [29] 

determined that the models were divided into 4 clusters in both of two methods: {I, II, III}, {IV, V, VI}, 

{VII, VIII, IX}, and {X, XI, XII}.  

According to the K-means cluster method, when considered as two clusters (optimal value according 

to Silhouette approach), {I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII} and {XIII} are obtained. Similar to the 

results of hierarchical clustering, models I, II, and XII stay in the same cluster. In addition, the other 

models except model XIII are in the same cluster as models I, III, and XII. When the number of clusters 

value increases, even IV has a different structure than V and VI, and {IV, VI, VII} construct a cluster 

together. If the number of clusters value is four, the obtained clusters are as follows: {I, III}, {IV, V, VI},{II, 

VII, VIII, IX, X, XI, XII}, and {XIII}. Similar to hierarchical clustering results, the models with different 

mathematical structures can stay in the same clusters. The proposed Model M also forms a cluster by 

itself in K-means. All the results for the K-means cluster method can be seen in Appendix A. 

Lai compared the Canadian lynx data of AR and some other five models with BDS statistics [11]. In this 

study, the residuals of thirteen models obtained for Lynx were examined using BDS statistics. The BDS 

results for all the models are given in Appendix B below. 

Considering the BDS test results of the residuals series given in Appendix B, it can be said that the 

assumptions are met for Model I, Model II, Model III, Model VII, Model X, and Model XI; that is, the 

residuals are linear. The other models, the residuals for Model IV and Model XII, were p< α=0.05 in all 

dimensions and failed the BDS test. Also, the performance of BDS Statistic in Model III (dimension 3), 

Model V (dimensions other than 2), Model VI (dimensions other than 2), Model VIII (dimensions 5 and 

6), and Model IX (dimensions 5 and 6) could not pass. That is, it contains a non-linear (or chaos) 

structure. 

The analysis results show that the models obtained for the Canadian lynx series, considered classical 

data in its field, do not show a complete similarity with each other. In the previous studies, the groups 

obtained in Hierarchical clustering and principal component analysis formed some different groups 

from those obtained by K-means. Although all models examine the model in the same time series, 

contrary to expectations, the models show differences. Another interesting point is that the models with 

the same mathematical structure tend to fall into different groups or clusters. 

4.   Conclusions 

In the current study, the classical Canadian lynx data, which is one of the widely used time series, has 

been examined with the BDS test statistics of the residuals of these models by classifying the models 

obtained in various studies before. The models' similarities and differences were investigated using the 

K-means cluster method, one of the data mining techniques based on multivariate statistical methods. 

The most important points in the current working concept can be highlighted as follows: All the models 

in the current study show some differences from the clusters obtained by the previously used methods. 

The K-means cluster method yields similar results in some respects, as it is based on a distance matrix 

calculated from the data. If desired, different time series clustering methods can be used in the future 

[30]. In addition, according to the results of the BDS test statistics based on the residuals of the models, 

it can be said that the residuals of some models do not pass the BDS test; that is, they contain a nonlinear 

(or chaotic) structure. 
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Appendix A. The Results of K-Means  

 

Figure 2. Optimal number of clusters 

Table 2. Cluster membership 

Model Number Model Name 2 Clusters 3 Clusters 4 Clusters 

1 a 1 1 4 

2 b 1 1 1 

3 c 1 1 4 

4 d 1 3 2 

5 e 1 3 2 

6 f 1 3 2 

7 g 1 1 1 

8 h 1 1 1 

9 i 1 1 1 

10 j 1 1 1 

11 k 1 1 1 

12 l 1 1 1 

13 m 2 2 3 

 

 

  


