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ABSTRACT. Let R be a prime ring of characteristic not equal to 2, U be the
Utumi quotient ring of R and C be the extended centroid of R. Let G and F
be two generalized derivations on R and L be a non-central Lie ideal of R. If
F(G(u))u = G(u?) for all u € L, then one of the following holds:

(1) G=0.

(2) There exist p,q € U such that G(z) = px, F(x) = gz for all z € R with

qp = p-
(3) R satisfies s4.
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1. Introduction

R always stands for the prime ring with center Z(R) throughout this article.
The Utumi quotient ring of R is denoted by U. The center of U is called the
extended centroid of R and it is denoted by C. The definition and construction of
U can be found in [3]. An additive mapping d : R — R is said to be a derivation if
d(zy) = d(x)y +zd(y) for all z,y € R. For a fixed p € R, the mapping J,, : R — R,
defined by 6,(x) = [p,z] for all € R is a derivation, known as inner derivation
induced by an element p. A derivation that is not inner is called outer derivation.
An additive mapping F' : R — R is said to be a generalized derivation if there exists
a derivation d on R such that F'(zy) = F(z)y + zd(y) for all z,y € R. For fixed
a,b € R, the mapping F, ) : R — R defined by F, ;) (z) = ax +xb is a generalized
derivation on R. The mapping F(, ) is usually called generalized inner derivation
on R. An additive subgroup L of R is said to be a Lie ideal of R if [L, R] C L. The

standard polynomial identity s4 in four variables is defined as

54(w1, 22,13, 24) = Z (—1)720(1) T (2) T (3) T (4)
og€Sy
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where (—1)7 is +1 or —1 according as o being even or odd permutation in symmetric
group Sjy.

In [19], Posner demonstrated that if d is a derivation of a prime ring R such
that [d(z),z] € Z(R) for all z € R, then either d = 0 or R is a commutative
ring. Many mathematicians have extended Posner’s result in various ways. In [14],
Lanski generalized Posner’s result by proving it on a Lie ideal L of R. In [4], Bresar
proved that if f; and fo are two derivations such that fi(z)x — xfa(x) = 0 for
all x € L then either f; = fo = 0 or R is commutative. More recently in [21],
Tiwari has given the entire structure of F,G and H if they satisfy the identity
F(G(u)u) = H(u?) for all u € S, where F,G and H are generalized derivations and
S is a suitable subset of R. Generalized derivations on Lie ideals and left ideals
have been studied in [1,3,6,7], where further references can be found. Motivated by
the above cited results, it is a very natural question what would be the structure
of F and G if they satisfy the identity F(G(u))u = G(u?). Our main result is the

following:

Theorem 1.1. Let R be a prime ring of characteristic not equal to 2, U be the
Utumi quotient ring of R and C be the extended centroid of R. Let G and F
be two generalized derivations on R and L be a non-central Lie ideal of R. If
F(G(uw))u = G(u?) for all u € L, then one of the following holds:

(1) G=0.
(2) There exist p,q € U such that G(x) = pz, F(z) = qz for all x € R with
qp = p-

(3) R satisfies s4.
We use the following remarks in the sequel to prove our result.

Remark 1. [6] Let K be an infinite field and m > 2 be an integer. If Py, ..., Py are
non-scalar matrices in My, (K) then there exists an invertible matrix P € M, (K)

such that each matrix PP,P~',..., PP,P~" has all non-zero entries.

Remark 2. Let K be any field and R = M,,(K) be the algebra of all m x m
matrices over K with m > 2. Then the matrix unit e;; is an element of [R, R] for
all 1 <i#j<m.

Remark 3. [2] Every generalized derivation F' of R can be uniquely extended to
a generalized derivation of U and it assumes the form F(z) = az + d(z), for some

a € U and a derivation d on U.
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Remark 4. [16] If I is a two-sided ideal of R, then R, I and U satisfy the same

differential identities.

Remark 5. [2] If T is a two-sided ideal of R, then R, I and U satisfy the same

generalized polynomial identities with coefficients in U.

Remark 6. [13, Kharchenko Theorem| Let R be a prime ring, d be a non-zero

derivation on R and I be a non-zero ideal of R. If I satisfies the differential identity

f(rla e 77"n,d(7“1), .. ,d(""n)) =0

for all r1,...,7, € I, then either

(i) I satisfies the generalized polynomial identity f(r1,...,7n,2Z1,...,2n) =0
or

(ii) d is U-inner i.e., for some ¢ € U, d(z) = [¢, x] and I satisfies the generalized
polynomial identity f(ri,...,rn,[q,71],---,[q,]) = 0.

Remark 7. [3, Theorem 4.2.1, (Jacobson density theorem)] Let R be a primitive
ring with Vg a faithful irreducible R-module and D = End(Vg), then for any
positive integer n if vi,ve,..., v, are D-independent in V and wi,ws,...,w, are

arbitrary in V' then there exists r € R such that v;r = w; fori=1,2,...,n.

Remark 8. [5] Let X = {z1,z2,...} be a countable set consisting of non-
commuting indeterminates z1,2,.... Let C{X} be the free algebra over C' on
the set X. We denote T' = U x¢ C{X}, the free product of the C-algebras U and
C{X}. The elements of T" are called the generalized polynomials with coefficients
in U. Let B be a set of C-independent vectors of U. Then any element f € T can
be represented in the form f = )", a;n;, where a; € C' and n; are B-monomials of
the form pouipiusps - - - Unpy, with po,p1,...,pn € B and uy,us,...,u, € X. Any
generalized polynomial f = ), a;n; is trivial i.e., zero element in 7" if and only if

a; = 0 for each 1.

2. F and G are generalized inner derivations

In this section we study the case when F' and G are generalized inner derivations.
Suppose F(z) = ax+xb and G(z) = cx+xd for all z € R and for some a,b,c,d € U.

To prove our main result, we prove the following proposition.
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Proposition 2.1. Let R be a prime ring of characteristic not equal to 2, U be the
Utumi quotient ring of R and C be the extended centroid of R. Let G and F' be two
generalized inner derivations on R and L = [R, R] be a non-central Lie ideal of R.
IfF(G(u))u = G(u?) for all u € L, then one of the following holds:

(1) G=0.

(2) There exist p,q € U such that G(x) = px, F(x) = qx for all x € R with

qp = p-.
(3) R satisfies s4.

We need the following results to prove Proposition 2.1.

Lemma 2.2. Let R = M,,(K) be the ring of all m x m matrices over an infi-
nite field K with characteristic not equal to 2 and m > 3 and L = [R,R]. Let

ai,as,as,aq, as, as € R such that
Cl1[9€1,$2]2 + aslx1, xolaz[xy, 2] + aslxy, x2]as[r1, xa] + [x1, x2ag[x1, x2] (1)

= ayfz1, 22)* + [21, 22]% a3
for all 1,20 € R. Then one of the following holds:
(1) as,as,a6 € K.I,.
(2) as, ayq,aqas + ag € K.I,.
Proof. By the hypothesis R satisfies
a1u2 + asuasu + aguasu + uagu — a4u2 — u2a3 =0 (2)

for all u € [R, R).

First, we assume that a3 is not central. Since equation (2) is invariant under the
action of all automorphisms of R, a3 may be assumed to have all non-zero entries
by Remark 1. For three different indices 7,7, h, let u = [e;;, €;;] = ei; — e;;, then

from equation (2), we have
ai(eii + ej;) + az(ei — ej;)as(ei — ej;) + asles — ejj)as(ei — ;) (3)

+(eii — ej5)as(eis — €j;) — aaleis + €;5) — (i + €j5)az = 0.
Left multiplying by e;; and right multiplying by ey, in equation (3), we get the
following
eiiazenn = (az)inein =0
i.e. (a3);n =0, which is a contradiction. Thus a3z € K.I,,.

Now, if a4 and a5 are non-central elements, then by the previous arguments, we may
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assume that all the entries of a4 and as are non-zero. Since az € K.I,, therefore

equation (2) reduces to:
(a1 + asasz — ag — az)u® + aquasu + vagu = 0. (4)
Substituting u = [e;;, €;;] = €;; in equation (4), we get
a4€ijas€ij + €;jae;; = 0. (5)
Left multiplying by e;; in equation (5), we have
eijaseijasei; = (aa)ji(as)jiei; =0

which implies either (a4);; = 0 or (as);; = 0. In each case we get a contradiction
thus either a4 is central or as is central.

Case 1: If a4 € K.I,, then equation (4) reduces to
(a1 + asas — ag — az)u® + u(asas + ag)u = 0. (6)

Again choosing u = e;; in equation (6), we get that

(agas5 + ag)jieij; =0

i.e. (asas + ag);; = 0 and thus again by Remark 1, asas + ag € K.I,,,. Hence in
this case we have ag, ay, agas + ag € C, which is our conclusion (2).

Case 2: If a5 € K.I,,, then from equation (4), we get
(a1 + asas — ag — as + agas)u® + uagu = 0 (7)

for all u € L. Thus by similar arguments as above, we get ag € K.I,,,. Hence in

this case we get our conclusion (1). O

Lemma 2.3. Let R = M,,(K) be the ring of all m x m matrices over a field K with

characteristic not equal to 2 andm > 3 and L = [R, R]. Let ay,as, a3, a4, as,as € R.

If

a1[$1,$2]2 + aslx1, xolag(zr, 2] + aalzy, T2]as[z1, xo] + (21, x2ag[z1, 2] (8)

= ay[z1, 22)? + 11, 22) a3
for all 1,29 € R. Then one of the following holds:

(1) as,as,ag € K.I,,.
(2) as,aq,a4a5+ag € K.Ip,.
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Proof. If K is an infinite field, then the conclusion follows from Lemma 2.2. Oth-
erwise, let F' be an infinite field which is an extension of K and let R = M;(F) =
R®g F. It is worth noting that a multilinear polynomial is an identity for R if and
only if it is an identity for R. So R does not satisfy s4 and we may assume that

t > 3. Consider the following generalized polynomial identity
f(Y1,Y2) = a1[Y1, Y2]2 +az[Y1, Yalas (Y1, Yo +aua[Y1, Yalas Y1, Y| + Y1, Yalag[Y1, Y]

—ay[Y1,Ya]? — V1, Yo)%as (9)
which is a generalized polynomial identity for R with multi-homogeneous of multi
degree (2,2) in indeterminates Y; and Y;. Thus the complete linearization of
f(Y1,Y3) gives a multilinear generalized polynomial H(Y7,Y32, X7, X3) in 4 inde-

terminates. Moreover,
H(Y17 Y27 Y17 }/2) = 4f(Y17 1/2)

Clearly the multilinear polynomial H (Y7, Y2, X1, X2) is a generalized polynomial
identity for R and R too. Since char(K) # 2, we obtain f(Y1,Y2) = 0, for all

Y:,Ys € R, and the conclusion follows from Lemma 2.2. O

Lemma 2.4. Let R be a prime ring of characteristic not equal to 2 and a1, as, as,

aq, a5, ag € R such that
ar[z1, xa)® + aglwr, walag[wr, wo] + aslwr, wolas [z, xa] + [x1, wa]aglrr, z2]  (10)
—aylzy, 22)? — [21,22]%a3 = 0
for all x1,xz9 € R. If R does not satisfy any non-trivial generalized polynomial
identity, then one of the following holds:
(1) as,as,a6 € C.
(2) as, ayq, 0405 + ag € C.

Proof. Suppose that as, a4, as are not central elements. From hypothesis R satis-

fies the following generalized polynomial identity
h(x1,22) = a1[x1, 22)° + as[w1, wolas[r1, m2] + aslry, x2]as(zy, z2] (11)

+lw1, wolag[r1, x2] — au[zy, x2)* — [21, w2)as
for all 1,29 € R. Since R and U satisfy same generalized polynomial identity
(GPI), U satisfies h(z1,22) = Op. Suppose that h(zi,zs) is a trivial GPI for
U. Let T = U x¢ C{x1,22}, the free product of U and C{z1,z2}, the free C-
algebra in non-commuting indeterminates 1, x2. Then, h(z1,z2) is zero element

inT = UxcC{x1,x2}. Since {1, a3} is linearly C-independent therefore by Remark
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8, we get [x1,72]%a3 = 0 € T, which is a contradiction. Thus a3z must be in C.
Then U satisfies

h(x1,22) = plr1, 22]* + asfr1, v2]as[zr, x2] + [21, 22]ag[z1, 2] (12)

where p = a1 +asaz3—as—as € U. It implies that {1, a5, ag} is linearly C-dependent
otherwise a4[z1, x2)as[r1, x2] will appear as a non-trivial polynomial identity. Then

there exist aq,as,a3 € C such that oy + asas + azag = 0. If a3 = 0 then

as = —a;lal, a contradiction. Therefore a3 # 0. Then ag = B1 + P2as, where
51 = falagl and By = 7042043?1. Thus from equation (12), we get
(p+ B) @1, 22]® + aslz, wo)as[x1, 2] + Balz1, w2]as[z1, z2] = 0 (13)

for all 1,29 € R. Since {1, a5} is linearly C-independent, by using Remark 8 in
equation (13), we get
aslw1, T2)as[zy, x2] + P21, T2]as[r1, x2] = 0.
Again since {1, a4} is linearly C-independent, by previous arguments we get
aglry, zo]as[ry, v2] =0,

a contradiction. Hence either a4 € C or a5 € C.

Case 1: If a5 € C then from ag = 81 + P2as, we get ag € C. Thus in this case we
get our conclusion (1).

Case 2: If a4 € C then equation (12) reduces to

pl1, 22)? + [21, 2] (asas + ag)[z1, 22] = 0 (14)

for all 1,29 € R. Now if agas + ag ¢ C then from Remark 8 in equation (14),
U satisfies the non-trivial identity [z1, z2](a4as + ag)[z1, 22] = 0, a contradiction.

Thus agas + ag € C. Hence in this case we get our conclusion (2). U

Lemma 2.5. Let R be a prime ring of characteristic not equal to 2 and ay, as, as,

a4, as, ag € R such that
ay[r1, v2)* + as[z1, Tolas[ry, xa] + aslwy, wolas[zy, o] + [T1, To]as[r1, xa]  (15)

—agfry, w2]? — [1, 22]%a3 = 0
for all 1,25 € R. Then one of the following holds:

(1) as,as,a6 € C.
(2) as,aq,agas +ag € C.
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Proof. We may assume that R does not satisfy standard identity s4. By Lemma

2.4, R satisfies the non-trivial generalized polynomial identity
h(z1,22) = a1[z1, 22)? + aslz1, T2]as(z, T2] + aslz, 2o)as |z, 2] (16)

w1, zo]ag[ry, 2] — aslry, 20]? — [x1, 2)%as.

Since R and U satisfy the same polynomial identity (see Remark 4) therefore equa-
tion (16) is also satisfied by U. In case C is infinite, we have h(z1,x2) = 0 for all
x1,29 € U®c C, where C is the algebraic closure of C. Since both U and U ®¢ C
are prime and centrally closed [9], we may replace R by U or U ®¢ C according to
C is finite or infinite. Then R is centrally closed over C' and h(xq,z2) = 0 for all
x1, T2 € R. By Martindale’s theorem, [18], R is then a primitive ring with non-zero
socle soc(R) and with C' as its associated division ring. Then, by Jacobson’s theo-
rem [12, p.75], R is isomorphic to a dense ring of linear transformations of a vector
space V over C.

Assume first that V is finite-dimensional over C. Then the density of R on V
implies R = M (C), the ring of all k x k matrices over C. Since R does not satisfy
s4, we have k > 3. Thus My (C) satisfies the following polynomial identity:

a1]xr, 20]? + ag[ry, woaslry, 2] + as[z, xo)as|ry, xo] + [21, To)ag[r1, xa]  (17)
—aglxy, x2)* — [x1, x2]%az = 0.

Now suppose that dim¢ V' is infinite. Suppose that as, a4, as, ag, agas + ag ¢ C.
By Martindale’s theorem [18], there exists a non-zero idempotent e? = ¢ € R such
that eRe = M, (C) with n = dim¢g Ve. Since as, ayq, as,ag,asas5 + ag ¢ C, there
exist hi,hs, ha, hg,hs € soc(R) such that [as, hi] # 0, [as, hs] # 0, [as, ha] # 0,
[as, ha] # 0 and [agas + ag, hs] # 0. By Litoft’s theorem [10], there exists a non-
trivial idempotent e € soc(R) such that aghi, hias, ashs, hsas, ashe, hoas € eRe.

Since we have
e(al[exle, exge]z + aslexye, exse]aslexie, exae] + aqlexte, exse]asexie, exqe] (18)
+lex1e, exqelaglexie, exae] — aylexie, exqe)? — [6I16,€1‘26]2a3)6 =0.
Thus the subring eRe satisfies the following equation
eare[z1, 2)? + easelr1, voleazelry, x2] + easelry, volease[ry, zo] (19)

+[x1, zo]easelrr, 2] — eagelry, x9]? — [x1, 2] eaze = 0.
Then by Lemma 2.2, we have either eage, ease, eage € C or eaze,eaze, e(asas +
ag)e € C. If eage € C then agh; = (ease)hy = hi(ease) = hiasz, which contradict

the fact that ag € C'. Therefore we must have a3 € C. Thus in the case when ease,
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ease, eage € C' we get ag, as,as € C and when eage, ease, e(asas + ag)e € C then

we get as, aq,aqas + ag € C. O

Proof of Proposition 2.1: We assume that R does not satisfy s4. Since F,G
are generalized inner derivations, there exist a, b, ¢,d € U such that F(z) = ax+ xb
and G(z) = cx + ad for all z € R. From the hypothesis U satisfies the following

generalized identity
aclry, 2)? + a[zy, xo)d[w1, w2] + cw1, 2)blry, T2] + [T1, T2]db[T1, 7] (20)

—clzy, J:QP - [xl,xQ]Qd =0

for all x1,z5 € R. From Lemma 2.5, either d,b,db € C or d,c,cb+ db € C.
Case 1: If d,db,b € C then equation (20) reduces to following

((a+b)(c+d)—d—c)[z1,z2]> =0 (21)

which implies (a + b)(¢ + d) = (¢ + d). Thus in this case we get F(z) = (a + b)z,
G(z) = (c+d)x for all z € R with (a + b)(c+ d) = (¢ + d), which is our conclusion
(2)-

Case 2: Again if ¢,d, cb + db € C then equation (20) reduces to following
((a+b)(c+d)—d—c)lz,z2]> =0 (22)

which implies (a 4+ b)(¢c+d) = (¢+ d). If ¢+ d = 0 then G(x) = (¢ + d)x = 0 for
all x € R, which is our conclusion (1). If (¢ + d) # 0 then we get F(z) = (a + b)z,
G(z) = (c+d)x for all x € R with (a + b)(c+ d) = (¢ + d), which is our conclusion
(2). O

3. Proof of Theorem 1.2

We may assume that R does not satisfy s4. If G = 0, then we are done. Suppose
that G # 0. In view of [17], we may assume that, for some a,b € U, there exist
derivations d and g on U such that G(z) = ax + d(z) and F(x) = bx + g(z), for
all © € R. Now since L is not central and char(R) # 2, there exists a non-zero
ideal I of R such that 0 # [I,R] C L ([11, p.45], [8, Lemma 2 and Proposition
1], [15, Theorem 4]). Therefore we have F(G(u))u — G(u?) = 0, for all u € [I, I].
Since R and I satisfy the same generalized differential identities, we also have
F(G(u))u — G(u?) =0 for all u € [R, R]. Then by the hypothesis, we have

(b@[ﬂ?l, x9] + d([x1, 372]) + g(a[ml, x9] + d([x1, xg])) [%1, 2] (23)

= (aler, 2] + d([z1, 22]%)).



TWO GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS 57

If d and g both are inner derivations then the result follows from Proposition 2.1.
So assume that both d and g are not inner derivations. Now we have the following
cases.

CASE 1: Let d be an inner derivation and g be an outer derivation. Then for

some g € U, d(x) = [¢, ] for all z € R, then from equation (23), we have
b(a[ﬂfl,ﬂﬁz] + [Qa [5517552]]) [x1, 2] +9(a[x17$2] + [Qa [551,552]]) [21, 2] (24)

= (alev, w2l + [, o1, 22]] ).
That is
b(alas, o) + [0, o, wa]] ) o ) + (g(a + @)l ) (25)
+(a+a)([g(r),w2] + o1, g(e2)ar, w2)) [y, o
~((lg@1). @) + w1, g(x2)))a + o, 22)g(a)) [ 2]
— (alor, @2l + [, [0, 22%]).

Since ¢ is an outer derivation on R, by Kharchenko’s theorem (see Remark 6) in

equation (25), we obtain
b(a[xth] + [q, [5517932]})[931,952] + (9(‘1 +q)[x1, 2] (26)
+(a+a)([yr 2] + o1, 30)) ) [y, 2]
*(([ylaxz} + [ml,yﬂ)q + [»’817392]9((1))[5]51,%2]
= (a[ﬂfl,zzP + [a. [5017%2]2])

for all x1,x2,y1,y2 € R. In particular R satisfies

(a+q)([y1, z2] + [21, y2]) [x1, 22] — (([ylvxZ] + [xlva])(J) [x1, x2]. (27)
It follows from Posner’s theorem [20] that there exist a suitable field K and a
positive integer ¢ such that R and M;(K) satisfy the same polynomial identities i.e.
M, (K) also satisfies equation (27). Since R does not satisfies s4 therefore we must
have t > 3. Choosing z1 = y1 = e;;, 22 = e;; and y, = 0 in equation (27), we get

€ijqeij = Gijeij =0
i.e. ¢;; = 0. Thus g is a diagonal matrix. By standard argument we can show that
q € C. Hence equation (27) reduces to
a(yr, m2) + [z1, y2]) [z1, 22] = 0.

In particular, we have 2a[z1, 22)? = 0, which implies a = 0. Thus we have G(z) = 0,

which is a contradiction.
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CASE 2: Let g be an inner derivation and d be an outer derivation. Then for

some p € U, g(x) = [p, ], for all z € R. Then from equation (23), we have
b<a[$1,$2] + d<[3717$2])) [z1, 72] + [p7a[x1,x2] + d([xl,@])} (21, z2)] (28)

= (a[:pl, z9)? + d([xl,w2]2)>.

We can rewrite equation (28) as

b(aler, o] + (), @] + [o1, d(2)] ) o1, o] (29)

+[praler, @) + ([d(@1), 2] + [o1, d(@2)]) | o1, 2]

= (a[xl, xo)* + ([d(xl), xa] + (21, d(xg)]) [x1, 2] + [z1, 2] ([d(ajl), x|+ [x1, d(u)]))
Since d is an outer derivation on R, by Kharchenko’s theorem (Remark 6) in equa-
tion (29), we get

b(alw, wa] + [21, 2] + [0, 22] ) o1, @3] (30)

+[p, alz, x2) + ([21, x2] + [21, ZQD] [z1, 7]

= (a[»’vl,ﬂ?ﬂz + ([21,332] + [961,22])[951,352} + [5517%2}([21,332] + [m1,22])>
for all 1, x2, 21, 20 € R. In particular, if we choose z; = 2o = 0 then R satisfies the

following blended component

b([Z1,xz] + [z1, 22]) (21, 22] + [  ([21, 2] + [1, zQ])] [z1, 2] (31)

— (([zl,xz] + [xl,zg])[xhxg] + [xh:rg]([zl,xg] + [:rl,zz])).
Then by Posner’s theorem there exist a suitable field K and positive integer ¢ such
that M;(K) and R satisfy equation (31). Since R does not satisfy sy, we may
assume that ¢ > 3. Now if we choose 21 = z1 = ¢e;;, 2 = ¢;; and 22 = 0 in

equation (31) then we get
—eijpeij = —pijeij =0

i.e. p;; = 0 which implies p is a diagonal matrix. By standard arguments one can

show that p is a central element. Thus equation (31) reduces to
b([21,$2] + [z1, Zz]) (1, 22] (32)

= (21, 2] + 1, 2]) o, o] + [, ] ([o1, @] + [o1, 22]) ).
Now for i # j, choosing x1 = e;;, T2 = ej;, 21 = 0 and 22 = e, we reach to the
following contradiction

0= €ih-
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Case 3: Now suppose that none of d and g is an inner derivation, then following
two subcases arises.

Subcase 1: Assume both d and g are C-independent modulo inner derivations of
R. Then from Kharchenko’s theorem on d in equation (23), R satisfies the following
identity

(b(a[xl,xg] + [21, 2] + [#1, 22]) + g(alzy, z2] + [21, 2] + [21, 22])) [z1,22] (33)
= (a[zr, 2] + ([0, 2] + [21, 22]) [w1, 2] + [0, 2] ([21, 22] + [21, 22])).
In particular for z; = 2o = 0, we obtain
(b([zhwz} + [21, 22]) + g([21, 22] + [551722])) (21, 23] (34)
= (([z1, 2] + [w1, 22))[w1, 2] + [21, 22 ([21, 2] + [21, 22])).

That is
(b([zl,xz]ﬂxl,z2])+([g(21),xz]+[Z1,g(w2)]+[g($1)7Zz]+[$1»9(22)]))[3717902] (35)
= (([21, w2] + [21, 22)) 1, w2 + [w1, w2 ([21, w2] + [21, 22]))

Again from Kharchenko’s theorem on g in equation (35), R satisfies
(b([zl,irz] + 21, 2]) + ([y1, z2] + [21,wa] + [w1, 2] + [%,m])) (21, 2] (36)

= (([z1, w2] + [21, 22))[1, 2] + [0, w2 ([21, 2] + 1, 22])).
In particular, for y; = y2 = 0, R satisfies the blended component ([y,z2] +
[1,y2])[z1,z2] = 0. Then by Posner’s theorem there exist a positive integer ¢ > 3
and a suitable field K such that M;(K) satisfies ([y1, z2] + [z1,y2])[z1,22] = 0. In
particular, for ¢ # j if we choose y1 = z1 = €;5, T2 = €;; and y» = 0, we get

([eisr €5] + [eij, O))[eij, €5a] = O

ie. e; +e;; =0, a contradiction.
Subcase 2: Suppose that both d and g are linearly C'-dependent modulo inner
derivations. Then there exist vy, § € C such that vd + g = [p1, x] for some p; € U.
Now if v = 0 then g will be an inner derivation, which is a contradiction. Similarly,
if § = 0 then d will be an inner derivation, which is again a contradiction. Thus
both §,  are non-zero which gives g = ad(z) + [q1, 7], where 0 # a3 = —§~ 1y and
¢1 = 6 'p1. Then from equation (23), R satisfies

b(alzy, xo] + [d(z1), x2] + [z1,d(x2)]) [21, 22] + a1 (d(a)[z1, z2] (37)
+ald(z1), xo] + a[zy, d(x2)] + [d*(x1), z2] + 2[d(x1), d(22)]

+[z1, dz(@)])[xl,fz] + [(h, alry, 2] + [d(w1), v2] + [71, d(%)]] [71, 2]
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= (a[ml, .%'2]2 + ([d($1>, 3?2] + [.%‘1, d(xg)D [3?1, 1‘2] + [Il, CIL‘Q] ([d(l‘l), 3’52} =+ [561, d(l‘g)])) .

From Kharchenko’s theorem in equation (37), R satisfies the following identity
b(a[xl,xg] + [21, 2] + [21, 22])[3?1,31‘2] + o (d(a)[ml,xg] (38)
“+alz1, 2] + alz1, z2] + [w1, x2] + 2[21, 22]
+z1, wz)])[thfz] + [q1; alx1, x2) + [21, x2) + [21, ZQH (21, 2]

= (a[l’l,:L'Q]? —+ ([2'171'2] + [1'1722})[1'1,1'2] -+ [1'1,252]([21,%2} —+ [xl,ZQ])>.

In particular for w; = 0, R satisfies the following blended component
al[wh 1’2] [.’bl, mg] =0.

Again by Posner’s theorem there exist a suitable field K and a fixed integer t > 3
such that M, (K) satisfies a[w1, z2][z1, 2] = 0. In particular, for w; = 1 = e,

and xg = ej;, we get
aileij, ejilleij, €ji] = eii + €55 =0

which is a contradiction. O
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