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ABSTRACT. An element u of a ring R is called unipotent if u — 1 is nilpo-
tent. Two elements a,b € R are called unipotent equivalent if there exist
unipotents p,q € R such that b = ¢~ 'ap. Two square matrices A, B are
called strongly unipotent equivalent if there are unipotent triangular matrices
P,Q with B = Q 1AP. In this paper, over commutative reduced rings, we
characterize the matrices which are strongly unipotent equivalent to diagonal
matrices. For 2 X 2 matrices over Bézout domains, we characterize the nilpo-
tent matrices unipotent equivalent to some multiples of E72 and the nontrivial

idempotents unipotent equivalent to E7i.
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1. Introduction

Let R be an associative unital ring. For a ring R, U(R) denotes the set of all the
units of R, N(R) the set of all nilpotents of R and E;; denotes the n x n matrix
with all entries zero excepting the (i, j) entry, which is 1. For a square matrix A,
ged(A) denotes the greatest common divisor of the entries of A.

In Ring Theory, two elements a,b € R are called equivalent if there exist two
units p, ¢ of R such that b = ¢ 'ap and conjugate if ¢ = p. An element wu is called
unipotent if w — 1 is nilpotent. It is well-known that unipotents are units.

In Linear Algebra, two rectangular m x n matrices A and B are called equivalent
if B = Q' AP for some invertible n x n matrix P and some invertible m x m matrix
Q@ and similar if m = n and Q = P. Matrix equivalence is an equivalence relation
on the set of rectangular matrices.

Specializing the above definition, a square n X n matrix U is unipotent if U =

I, + T for an n X n nilpotent matrix 7. Unipotent matrices are invertible.
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Definition. Two elements a,b € R are called unipotent equivalent (u-equivalent,
for short) if there exist two unipotents p, ¢ of R such that b = ¢~ *ap. Thus, a, b
are u-equivalent iff there exist two nilpotents s, ¢ of R such that (1+¢)b = a(1+s).
Specializing, two elements a,b € R are called unipotent conjugate (u-conjugate, for

lau. Equivalently, a,b € R are

short) if there is an unipotent u such that b = u~
u-conjugate iff a nilpotent ¢ € R exists such that b= (1 +¢)"ta(l +t).

In particular, two rectangular m x n matrices A and B are called unipotent
equivalent (u-equivalent, for short) if B = Q=1 AP for some unipotent n x n matrix
P and some unipotent m X m matrix (). Specializing, two square matrices A, B are
called unipotent similar (u-similar, for short) if there is a unipotent matrix U such
that B = U~'AU. Specializing again, a square matrix is called u-diagonalizable if
it is u-similar to a diagonal matrix.

Definition. A matrix will be called ue-diagonalizable if it is u-equivalent to a
diagonal matriz. Notice that u-diagonalizable matrices are ue-diagonalizable.

It is well-known that for two rectangular matrices of the same size over a field,
their equivalence can be characterized by any of the following conditions:

The matrices can be transformed into one another by a combination of elemen-
tary row and column operations.

The matrices have the same rank.

Deciding whether two given matrices of the same size have the same rank is
solved at undergraduate level by the (reduced) row echelon form.

More, an n X n matrix A has rank r iff there exist invertible matrices P, @ such
I, 0
that PAQ = [ (; 0 ] with I,. the r X r identity matrix.

These two invertible matrices are obtained using elementary row operations, as
for P, and using elementary column operations, as for Q.

As examples in Section 2 show, P and/or @ may not be unipotent because
matrices obtained by using elementary row (or column) operations on one copy of
I,, (are invertible but) may not be unipotent.

Therefore, in general (but some exceptions will be emphasized in the sequel), the
above procedure (including elementary row or column operations) does not work
when dealing with the u-equivalence of a matrix with a diagonal one, neither when
trying to characterize the u-equivalence of two matrices.

An example in the last section shows that (idempotent 2 x 2) matrices of the
same rank may not be u-equivalent.

Thus, in order to obtain results concerning u-equivalent matrices we can only use
the definition, that is, find two nilpotent matrices T', S and B = (I,4+7T) ' A(I,+59).
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Excepting the case of 2x2 matrices, u-equivalence for 3x3 (or higher order) matrices
already amount to difficult problems.

In this paper, we mainly focus on an analogue of the above mentioned result on

I, 0
rank r matrices A, i.e. PAQ = [ 0 o ] .

We characterize some classes of ue-diagonalizable matrices, which we call strongly
ue-diagonalizable matrices, namely, those for which P, ) are unipotent triangular
matrices.

It is well-known that over Bézout domains (definition in the last section), nilpo-
tent 2 X 2 matrices are similar to multiples of E15, and nontrivial idempotent 2 x 2
matrices are similar to Fy1. In the last section, we describe the nilpotent 2 x 2
matrices that are u-equivalent to a multiple of Ej5 and the nontrivial idempotent

2 X 2 matrices that are u-equivalent to F11, respectively.

2. Examples

It is not so easy to work with unipotents because (unlike units) minus unipotents
and products of unipotents may mot be unipotent. We gather here some simple

observations and examples on unipotents.
Proposition 2.1. Inverses and powers of unipotents are unipotent in any ring.

Proposition 2.2. In any ring R, the following conditions are equivalent:

(i) the opposite of every unipotent is unipotent;
(ii) the opposite of some unipotent is unipotent;

(ili) 2 4s nilpotent.

As an example, in any nil clean ring (i.e., every element is a sum of an idempotent

and a nilpotent), 2 is (central) nilpotent (see [2, Proposition 3.14]).

A ring is called NR if N(R) is a subring of R. Some examples are: commutative

rings, reduced rings, (nil-) Armendariz rings, UU rings. Matrix rings are not NR.
Proposition 2.3. In a ring R, products of unipotents are unipotent iff R is NR.

Therefore, viewed as a binary relation, the u-equivalence is generally reflexive

and symmetric, but may not be transitive.

Example 2.4. Products of unipotents (with not commuting nilpotents) may not

be unipotent.
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1 0 11 11 0 1. .
= =1+ is not unipotent.

1 2
It is easy to see that units are equivalent in any ring, and in particular, every
unit is equivalent to 1. It is also easy to see that unipotents are u-equivalent to 1

in any ring.

Proposition 2.5. The units of a ring that are u-equivalent to 1 are precisely the

products of two unipotents.

Recall that a square matrix over a commutative ring is nilpotent iff all coefficients
of the characteristic polynomial, excepting the one of t™, are nilpotent (see [1,
Corollary 1.8]). It follows that over any commutative reduced ring (e.g., any integral
domain), a square matrix is nilpotent iff all its eigenvalues are zero. Equivalently, its
characteristic polynomial is ¢™. Therefore, a square matrix M over any commutative
reduced ring is a unipotent matrix iff its characteristic polynomial P(t) is a power of
t — 1. Thus, over any commutative reduced ring, all the eigenvalues of a unipotent
matrix are 1 and so det(M) = 1 and Tr(M) = n. These are necessary but not
sufficient conditions.

Next, we give the examples mentioned in the Introduction.

Example 2.6. Unipotence of matrices is not invariant under elementary row (or

column) operations.

Since unipotent n X n matrices over commutative reduced rings have determinant
= 1 and trace = n, it is easy to give examples of elementary row (or column)
operations that change the (sign of the) determinant and/or the trace. However, if

1 10
1 1 |,itdoesnot
1

we perform (—1)row; +rows on the unipotent matrix U = | 0
0 0
1 10
change the trace nor the determinant, but U’ = 0 1 1 | is not unipotent,
-1 -1 1
0 1 0
sinceU'—I3=1| 0 0 1 | isinvertible.
-1 -1 0

Example 2.7. Conjugation and u-equivalence are independent notions:
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11 0 0 11 0 0
1) Since Iy = , the idempotent and (not
0 1 11 11 11

idempotent over any nonzero ring) [ L1 1 are u-equivalent but not conjugate.

This is also an example of u-equivalent matrices that are not u-conjugate. More-

over, over Zo this is an idempotent u-equivalent to a nilpotent.
10

—-25 -10

e i H R e

T and FE15 are conjugate. We will show that these nilpotents are not u-equivalent

2) Consider the nilpotent T' =

] and the 2 x 2 nilpotent E15. Since

after proving a general result, Corollary 4.5.

Example 2.8. Conjugate units may not be u-conjugate:
0 1

Over any commutative (unital) ring, for V = L1

1 -1
0 -1
In order to check that U and U’ are not u-conjugate, we start with

0 1|[14+2 [ 1+2 oy 1 -1
10 0 -1

and x2 + yz = 0, which in turn reduces to y = —2, z = 2 + 1 and (v — 1) = 3.

01
U= l Lo ] we have U’ = V-IUV = ,so U and U’ are conjugate.

z 1—x z 1—2x

Therefore, U and U’ are not u-conjugate over any (commutative) ring such that 3

is not a square (e.g., Z).

Remark. If in a ring u !

1

au = b and w is a unit but not unipotent, we still can
have v™"av = b with unipotent v.

A trivial example is u € U(R) — (1+ N(R)) since 1~ 'ul = v~ 'uu with unipotent
1. A less trivial example is the above example over any ring such that 3 is a square

(e.g. Z[V3)).

Example 2.9. Ue-diagonalizable matrices:

Some matrices are not diagonalizable over any field, most notably the nonzero
nilpotent matrices. For instance, consider T' = Fys.

Clearly F1o is equivalent to E71, which is in diagonal form. We just swap the

0 1
1 0|

columns and so E11 = IQElgU with U =
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1
These matrices are also u-equivalent since [ 4

0 1 )
Ei1» = FEny with
1 2
arbitrary y. Since u-similar matrices are similar, Fy5 is not u-diagonalizable.

Example 2.10. There exists an ue-diagonalizable unit which is not unipotent:

0
Take U =

1
0 ] over any commutative ring R with 2 € U(R). The usual
diagonalization procedure for two different eigenvalues +1 and linearly independent

1 1 1
0 for P = ] and

p~t=271 bl .
1 -1

Next, since
1 2 2 1 2 1
U= = diag(1, -1 ,
0 1 ] [ 1 0 ] 8 ) [ -1 0 ]

it follows that U is a ue-diagonalizable matrix over any commutative ring.

1 -1

1 1
eigenvectors l ) ], l ) 1 gives PT1UP =

Example 2.11. There exists a diagonalizable matrix which is not u-diagonalizable:

[ 5 6 2 3
Take A = Lo ] over Z. For eigenvalues 2, 3, eigenvectors l ] , [ ) ]
2 3 4 . N
and P = we have P~ AP = diag(2, 3).
1 1
However, troy A = diag(2,3) troo amounts to x =
z 1—2 z 1—=2

1—-2z,y= 6(-1 — 2), which replaced in 22 4+ yz = 0 gives 222 — 2z — 1 = 0 with no

integer solutions.

3. u-equivalence with triangular unipotents

We have already mentioned (see Introduction) that the procedure which consists
of elementary row or column operations does not (in general) work when dealing
with the u-equivalence of a matrix with a diagonal one. However, if a matrix A
is upper triangularizable using only elementary row operations rrow; + row; with
t < j and then diagonalizable using only elementary column operations rcol; + col;

with ¢ < j then A is ue-diagonalizable.

A special class of unipotent matrices consists of upper (or lower) triangular

matrices. In the sequel, we consider such matrices having only 1’s on the diagonal.
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As noticed in the previous section, this is always the case over commutative reduced
ngs.

Thus, triangular unipotents are sums I,, + 7" where T is a strictly upper (or
lower) triangular (nilpotent) matrix.

Notice that lower triangular unipotents can be obtained using only one type of
elementary row operations on I, namely, rrow; +row; with ¢ < j, and analogously,

upper triangular unipotents using the same type of elementary column operations.

Recall that a matrix A is called strongly ue-diagonalizable, if there exist trian-
gular unipotent matrices P and @ with only 1’s on the diagonal (condition which
is implicitly assumed in the sequel) such that QAP is a diagonal matrix. As men-
tioned before, triangular unipotent matrices are of this sort over commutative re-
duced rings.

Since different characterizations occur, we must be more precise. A matrix is
LU strongly ue-diagonalizable if @ is lower triangular and P is upper triangular.
We define UU, UL and LL strongly ue-diagonalizable matrices by requiring @, P
to be (both) upper triangular, @) upper triangular and P lower triangular, or @, P
(both) lower triangular, respectively.

Since on the left and on the right, such matrices form subgroups, these binary
relations are equivalence relations.

We first characterize the matrices that are LU strongly u-equivalent to some

diagonal matrix, over commutative rings.

Theorem 3.1. An n X n matric A = [aij]léingn over a commutative ring is

LU strongly ue-diagonalizable iff for every 2 < m < n, A and AT satisfy the

A1m ail a12

. a2m . . . ) a1 a2
conditions ) is a linear combination of ] , ] R

Am—1,m Am—1,1 Am—1,2
ai,m—1
a2,m—1 ) o o .
. If this holds, a11 divides all the entries in the first row and in the
Am—1,m—1

first column.

Proof. If Q = [l;;] is an n X n lower triangular unipotent matrix and P = [r;;]

is an n X n upper triangular unipotent matrix, then QAP is diagonal iff for every
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a1 a12 a1,m—1
a21 @22 az m—1
2<m < n, ripy . + rom . + i+ Tm—1m . +
Am—1,1 Am—1,2 Am—1,m—1
A1m
a2m
=0
Am—1,m
and l,,1 [ a1 G12 ccc Alm—1 ] + o |: Q21 Q22 '+ A2m—1 :| =+ ...
+lm»m—1 Um—1,1 Am-1,2 *° (am—-1,m-1 :|+|: aml1 Am2 - Omm-—1 :| =
0.
For m = 2 we get aj1 | a12 and a1 | as1, for m = 3 we get aq1 | a13 and a1 | asy
and so on. For m = n we obtain a11 | a1, and a11 | ap1. O
The conditions on A7 in the theorem mean [ Am1l  @m2  ** Gmom—1 ] is a
linear combination of [ air a2 o G1me1 },
a1 @G22 - A2m-—1 }7 sy [ Um—1,1 Am-1,2 *°° Am—-1m-1 }

Corollary 3.2. A 2 x 2 matriz A = [a;j]1<i j<2 15 LU strongly ue-diagonalizable

iff ay1 divides both a2 and as;.

A symmetric theorem can be proved taking upper triangular unipotent matrices
on the left and lower triangular unipotent matrices on the right. However, it cannot
be obtained by transpose because (QAP)T = PTATQT, for lower triangular @ and
upper triangular P, still has a lower triangular matrix on the left and an upper
triangular matrix on the right. Actually, the symmetry is with respect to the

secondary diagonal.

Theorem 3.3. An n X n matriz A = [aij]lgmgn over a commutative Ting is

UL strongly ue-diagonalizable iff for every 1 < m < n —1, A and AT satisfy the
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am+1,m am+1,m+1 am+1,m+2
. am+2,m . . . . am+2,m+1 am+2,m+2
conditions ) is a linear combination of ) , ) ,
An,m An,m+1 An,m+2
am-i—l,n
anL+2,n
*)
ann
oy . T . .
The conditions on A* in the theorem mean { mm+1 Gmom42 " Gmn } is
a linear combination of | @41, m+1  Gmtim+2 0 Gmtin |5
Um4+2,m+1  Om4-2,m+2 o Om42n :| [RERER] [ Un,m+1  On,m+2 o Qpp :| .

Remarks. 1) In the n x n LU case, there is no condition on a,,, and in the n x n
UL case, there is no condition on aq;.
2) ayy dividing all the entries in the first row and in the first column and only

one linear combination (for A or for A” but not for both) are necessary but

1 2 4
not sufficient conditions for the LU case. For example, take | 1 2 3 |. Here
2 4 0
4 1 2
[2 4}:[1 2}—}—[ 1 2}but 3 #*k ) +1 ) , OVer any nonzero
ring.

3) As one might expect, there are matrices u-equivalent to diagonal matrices which

2
are not LU strongly ue-diagonalizable. For example, take A =

4
over Z.
0 ‘|

By the above theorem, since 2 1 3, A is not LU strongly ue-diagonalizable. How-

0 1 2 4] [3 0 1 0
~1 2 30| |0 -4 11

diag(3, —4). Notice that the right unipotent is lower triangular.

ever, since , A is u-equivalent to

Example 3.4. There exists a LU strongly ue-diagonalizable 3 x 3 matrix:
1 3 1
Take A= | 1 1 -1 |. Since l ! ] = -2
3 11 5 !
4 [ 1 3 } - [ 11 }, by the above theorem, A is LU strongly u-equivalent to a

1
1

+ and[?) 11]:
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3 x 3 diagonal matrix. Below we find explicitly the triangular unipotent matrices
P and Q.
The sequence —row; + rows, —3row; + rows and rows + rows gives an upper

triangular matrix. Next —3col; + cola, —col; 4 colg and —cols + colg gives the

1 0 0
diagonal form | 0 —2 0 [. The same elementary row operations performed on
0 0 O
1 00 1 -3 2
I3give @=| -1 1 0 | and on columns, P= | 0 1 —1 |. Notice that
-4 0 1 0 0 1

the i < j condition is essential in order to obtain (triangular) unipotents @ and P

with 1’s on the diagonal.

Next, we characterize the matrices that are UU strongly ue-diagonalizable, over

commutative rings.

Theorem 3.5. An n x n matrizc A = [aij]lgmgn over a commutative Ting is

UU strongly ue-diagonalizable iff it is upper triangular, for every i < j, a;; is

a linear combination of the diagonal entries ai, Git1,i+1, ---» @j; and if a;; =
mg”)aii + mgziai+l7i+1 + .+ my])ajj denote these linear combinations, then for

every k such that i < k < j, m,(jj) = m,(fk)m,(fj).
Proof. We start with two upper triangular unipotent n x n matrices, ¢ and P,
such that QAP = D is diagonal. Writing A = Q~!DP~! shows that A must be
upper triangular too.

If Q = [lijli<ij<n and P = [rjj]li<ij<n are n X n upper triangular unipotent
matrices, then QAP is diagonal iff the following relations hold.

Ok k1 = — Tk k+10kk — U k10k+1,k+15

Wk jt2 = (Ph bt 1Th+1,k+2— Tk k+2) Ok k41 k+2lk kot 1041 k+1F (o k1 Dot 1 kb2 —
U k4 2) Okt 2 k425

ks k3 = (—Th k- 1Tk+1,k+2Tk+2,k+3 F Tk k-+1Tk+1,k+3 T Tk k+2Tk-+2,k+3 — Tk k+3 ) Gk

Uk ko1 (Tl 1 k42T k42,543 — Tht1,k+3) Qht1,k+1

—Trt2 k+3 (U k101 kr2 — U kt2) Gkt 2 o2

(ke k1l 1 er2lbr2 k3 e kr1 b1 k3 e kr2lir2, k43 — o k43) k3 k3 and
so on. That is, each entry over the diagonal is a linear combination of diagonal

entries, as recorded above.
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(i5)

%

If these linear combinations are given, namely a;; = m; " as; + mEfiaHMH +

et myj)ajj, then the entries of Q and P can be expressed in terms of the m’s iff
mfjj) = mgk)mékj), as follows:

Thk+1 = —m,(ck’kﬂ), Ui jt1 = —mgi];+1),

Tkk+2 = m;k’kﬂ)mgfll’kw) 7m§€k,k+2)7 lkkv2 = m,gl’frl)mgigl’kﬂ) —m,ﬁ’f;’;“),
Pty = _mék,k-s-l)m’(clj_-s-ll,k-s-z)mgi-;z,k-s-ra)+m§€k,k+1)m§€li1,k+3)+m§§k,k+2)m§£+22,k+3)
lokss = _ml(cliliﬂ)ml(clizl,kw)ml(ﬁ;z,kw)_’_ml(cliliﬂ)ml(cli?,kw)_i_ml(ﬁléﬂ)ml(cli?,kw)

and so on. O

Since we apply this for a 3 x 3 example below, we provide the formulas which give
the unipotent upper triangular matrices, given the linear combinations of diagonal
entries.

t
(12)

is a diagonal matrix and a1z = my; a1 +

If

o O =
O = 8

z 1 s
y|A] 0 1 v
1 0 0 1
mgm)azza a3 = mé%)azz + m:(szg)%& a13 = m§13)a11 + mém)aﬂ + m:(slg)a% are the

given linear combinations then z = —mgu), Yy = —mé%), z = m§12)m§23) - mélg),
— (12) . _ (23) ,_ . (12) (23) (13)
s=-m; ,v=—my ,t=m; 'my  —my .

The LL characterization (and proof), symmetric with respect to the secondary

diagonal, is the following

Theorem 3.6. An n x n matriz A = [a;j]1<i j<n Over a commutative ring is LL
strongly ue-diagonalizable iff it is lower triangular, for every i > j, a;; is a linear
combination of the diagonal entries a;i, Giy1,it1, .., a5 and if a;; = mgij)aii +
mgﬂaiﬂ,iﬂ + ...+ mg»ij)ajj denote these linear combinations, then for every k
such that i >k > j, m,(fj) = m,(fk)mfckj).

Remark. Having characterized, in the four possible cases, all matrices that are
strongly ue-diagonalizable, it is easy to provide 3 x 3 integral examples which satisfy

one condition but not the other three.

Example 3.7. There exists a 3 x 3 matrix which is UU but not LU nor UL nor
LL strongly ue-diagonalizable:
1 2 3

For instance, over Z, is not LU strongly ue-diagonalizable since

HEE

+7

w

4
5
2] . . . o .
, is the unique linear combination, but is UU strongly
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u-equivalent to

1 -1 0 1 2 3 11 3
diag(1,3,5)=| 0 1 -2 0 3 4 01 2
0 0 1 005 00 1

Here the formulas previously displayed are used in order to find the unipotent upper
triangular left and right matrices.

It is obviously not LL strongly ue-diagonalizable since it is not lower triangular,
and not UL ue-diagonalizable. Indeed, notice that the conditions in the 3 x 3
case require l 21 1 = [ 0 ] to be a linear combination of [ 22 ], l 423 1

as 0 as2 ass

which trivially holds and { alp a3 } to be a linear combination of [ asy  G23 |,

[ asz  a33 } = [ 0 ass ] For the latter, ass | ags is necessary, but 5t 4.

According to the above characterizations, Example 2.10, is a 2 X 2 matrix which
is ue-diagonalizable but is not strongly ue-diagonalizable (that is, not LU, not UL,
not UU and nor LL).

It is harder to find the following example and it is quasi-impossible to find it

without computer aid.

Example 3.8. There exists a 3 x 3 matrix which is ue-diagonalizable but not
strongly ue-diagonalizable:
Especially, 3 x 3 matrices with zero NE entry cannot be dealt with elementary

row (or column) operations with i < j.

0 -1 1
1) The matrix A= | 2 4 0 | is ue-diagonalizable since
0 0 1
1 0 -1 2
01 0 |A| -1 0 0| =diag(1,2,1).
0 0 1 0 01

It is obviously not UU or LL strongly ue-diagonalizable (nor being triangular),

and not LU since the NE entry (= 0) does not divide all entries in the first row (or

2 114
column). Finally, it is not UL since l 0 ] =3 [ 0 +0- ] is not an integral
linear combination. Thus, A is not strongly ue-diagonalizable over Z.

0 0 1
2) For U= | 0 0 |, computer aid was necessary.
1 0

1
0



UNIPOTENT DIAGONALIZATION OF MATRICES 83

0 -2 -1 1 -2 0
Since [ 0 1 0 |U| 0 1 0 | =diag(—1,1,1), U is ue-diagonalizable.
1 2 2 -2 2 1

Asin the previous example, it can be shown that U is not strongly ue-diagonalizable.

If for both unipotents we permit only entries —2,—1,0,1,2 then the computer
produced 232 possible ue-diagonalizations for U, none if we restrict the entries only
to —1,0, 1.

4. u-equivalence for 2 x 2 nilpotent or idempotent matrices

Important ring theoretic properties, for instance being idempotent, being nilpo-
tent or being a unit, are known to be invariant for conjugation but not for equiv-

alence. These are also not invariant to u-equivalence, as shown by easy examples:

2 -1
By =Ep

] for idempotent-nilpotent.

The u-equivalence of the units in any ring was addressed in Section 2.

Generalizing some of our previous examples, we describe the 2 x 2 nilpotent ma-
trices that are u-equivalent to multiples of F15 and the 2 x 2 nontrivial idempotent
matrices that are u-equivalent to Fy;.

Definition. A ring R is called a GCD ring if every pair of elements has a greater
common divisor, and a GCD ring is called a Bézout ring if the greater common
divisor of any two elements is a linear combination of these.

An integral domain R is called UFD (unique factorization domain) if every non-
zero non-unit element can be written as a product of prime elements (or irreducible
elements), uniquely up to order and units. Recall that both Bézout domains and
UFD’s are GCD domains.

We first list some useful properties of elements a, b, ¢ in a GCD domain such that
a®? 4+ bc = 0. As customarily, equality denotes association (in divisibility), that is

a = b means a = bu for some unit v € U(R).

Lemma 4.1. Let R be a GCD domain and a,b,c € R such that a®> + bc = 0 with
a# 0. Then
(i) ged(b,c) = ged(a, b, c).
(ii) If0# b | a then b = ged(a, b, ¢).
(iii) If R is a UFD and ged(a,b,c) = 1 then (ged(b,c) = 1 and) regardless of

sign, b, c are squares.

Proof. (i) Let d = ged(b,¢) and write b = dby, ¢ = dc;. Then a? = —bycid? so
that d? | a®. Hence d | a.
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(ii) Write @ = br. Then 0 = a? + be = b%*r? + be which by cancellation gives

c= —br?. Hence b | c.
(iii) By (i), ged(b,¢) = 1 and since —bc is a square, so is each of b and c. O
Corollary 4.2. Qver any UFD, every nonzero nilpotent 2 x 2 matriz with (collec-
2
tively) coprime entries is of form [ qu b 1 with ged(p, q) = 1.
—q —pq

Theorem 4.3. Ouver any Bézout domain, a 2 X 2 (nonzero) nilpotent matric T =
a b
c —a
exist x,y,z € R such that bx® + a(1 — z)y = 0 and bz = a(l — z). The solution
(x,y) = (0,0) is suitable iff b | a.

] (with a® + bc = 0) is u-equivalent to dE1o with d = ged(T) iff there

Proof. First observe that if T' =

] with a®4bc = 0, has a zero entry, then
c —a

it has (at least) 3 zero entries, so it is a multiple of Ejs or Fa;. We can discard this

1 1

case since (Iy+ JdE2 = dEa (12 +

) and continue assuming

T has only nonzero entries.
Secondly, notice that if d = ged(T), by writing a = day, b = dby, ¢ = dcy, in the

equality
1 b 1 t 1-—
T 4 “ = dF1o T =d b s , we
z 1—=z c —a u 1—s 0 0

can cancel d, that is, we can suppose ged(T') = 1 (and suppress the lower indexes).

In what follows we are looking for two unipotent matrices (i.e., 2,9,z € R and

1+s t lu 1-s
U 1—s 0 0
yz = 82 +ut = a®> + bc = 0. This equality amounts to v = (1 + x)a + yc,

s=14+ya—(1+z)band za+ (1 —z)c=0=2b— (1 —z)a.

Notice that since a # 0 # ¢, in any domain the last two equalities are equivalent:

s,t,u € R, respectively) such that
1+ Y ] a b

z 1—2x c —a

= E12 with I2+

if we multiply za + (1 — 2)c = 0 by a, replace a®> = —bc and cancel ¢, we get the
second equality 0 = zb — (1 — x)a. Analogous, conversely. Therefore in the sequel
we preserve just the equality zb = (1 — x)a.

Next, multiplying by b in 22 4+ yz = 0 and replacing bz = a(1 — ) we get
ba? +a(l — )y =0,

which is a binary quadratic equation for every given a,b. Clearly, this equation has

at least the solution (0,0). However, this verifies bz = a(1 — z) iff (not only b | a2,
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which is equivalent to the matrix T' being nilpotent but) b | a. According to the

a 1

—a2 —a

previous lemma, since ged(T") = 1, this holds only iff b = 1, ie., T =

i

which is easy to handle (more general, see Remark 2, after this proof). ([

Remarks. 1) Using the general theory of solving such binary quadratic equations
(see [3], D = a?), we perform the substitutions a’z = X + a2, a®y = Y + 2ab and
obtain X (bX — aY) = —a*h. Over any UFD, this gives finitely many solutions on
factorizing the RHS.

Coming back to the previous corollary, we can assume (ged(T") = 1, so ged(b, ¢) =
1 and s0) b = p?, c = —¢? and a = pq for some p, ¢ € R with ged(p, ¢) = 1. Thus, the
equations become pz? +¢q(1—z)y = 0 and X (pX —qY) = —p°¢* with ged(p, q) = 1,

respectively. Moreover, pz = g(1 — x) is necessary.
2) In the b | a case, if @ = bd then 2 = d, ¢ = —az = —bd? and (indeed)

10 bd b | [oed 0] [u 1-s
d 1 “bd> —bd| |0 0| |0 o0

trices have ged = b.

. Observe that both ma-

We can provide many integral examples using the following result.

Proposition 4.4. If q is prime and 0 < p+ 1 < g then the quadratic equation
pz? + q(1 — x)y = 0 has only the solution (0,0).

Proof. If y = 0 then = 0, so suppose y # 0. Since p, q are coprime, ¢ | 2% and
since ¢ is prime, q | z. Write x = kq. Then q(1 — gk) | p¢®k? and so gk — 1 | pgk?.
Since pgk? = (gk — 1)pk + pk it follows gk — 1 | pk.

If £ > 0, since p+ 1 < g, it follows pk < gk — 1 and so k = 0, a contradiction.
If £k < 0 then ¢k < (p+ 1)k < pk+ 1. Hence gk —1 < pk < O and k = 0, a

contradiction. O

Corollary 4.5. Let q be prime and 2 < p+1 < q. The (nonzero) nilpotent integral
2

matrizc qu b s not u-equivalent to any multiple of E1s.
—q —pq
Coming back to Example 2.7 in Section 2, with the notations of the first remark
10 4
above and p = 2, ¢ = 5, the integral nilpotent T' = o5 10 is not u-

equivalent to the 2 x 2 nilpotent Fq5. That the associated quadratic Diophantine
equation 222 — 5xy + 5y = 0 has only the solution (0,0), also follows using [4].
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Next, in a similar way, we describe the nontrivial 2 x 2 idempotent matrices,
which are known to be similar to E11, over any ID ring (e.g., Bézout domain).

A ring R is an ID ring if every idempotent matrix over R is similar to a diagonal
one. Examples of ID rings include: division rings, local rings, projective-free rings,

principal ideal domains, elementary divisor rings, unit-regular rings and serial rings.

Theorem 4.6. Over any Bézout domain R, a nontrivial idempotent matrix E =
a b

c 1l—a
such that axz® + c(z — 1)y = 0 and za+ (1 — x)c = 0. The solution (x,y) = (0,0) is

suitable iff a | c.

] (with a(1 — a) = be) is u-equivalent to FEyy iff there exist x,y,z € R

Proof. We start with

1+z Y a b
z 1—2 c 1l—a

where a(1—a) = bc and 22 +yz = s>4ut = 0. This amounts to (1+x)a+yc = 1+s,

1+2)b+y(l—a)=tand za+ (1 —xz)c =0 = zb+ (1 —z)(1 —a). The last
two equalities are equivalent if b,c # 0 and a ¢ {0, 1} (multiply the first by 1 — a,

= Ell

u 1—s 0 0

1+s t]

1+s t]

replace a(1 — a) = be and cancel by ¢, one way and so on).
Sos=(1+z)at+yc—1,t=(1+2)b+y(l—a)and we record za+ (1 —x)c =0

which we multiply by y, replace yz = —2? and obtain
az® + c(x — 1)y = 0.

Replacing (0,0) in za 4+ (1 — 2)c = 0 gives ¢ = —za, which holds iff a divides
c. (Il

As for the nilpotent matrices above, we can provide many integral examples

using the following

Proposition 4.7. If ¢ is prime and 2 < a+1 < c then the equation ax*+c(x—1)y =
0 has only the solution (0,0).

Corollary 4.8. If ¢ is prime and 2 < a+1 < ¢ and a { ¢, the nontrivial idempotent

a
integral matriz E =
c l—a

1 18 not u-equivalent to E11.

The above result does not exhaust such (nontrivial) idempotent matrices.

Example 4.9. There exists a 2 X 2 (nontrivial) idempotent integral matrix which

is not u-equivalent to Fy.
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6 2
Take E = 5 s ] (i.e., a = 6, c = —15). The equation 62> —15zy+15y =
0 has only the solution (0, 0) which is not suitable since 6 4 15. Thus, F and E; are

3 1

not u-equivalent. Since UE = Fy1U for U = , F and FEy; are conjugate.

In closing, notice that a 2 x 2 idempotent can be u-equivalent to a 2 x 2 nilpotent

(see Example 2.9).
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