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 Optimal power flow (OPF) is a challenging optimization problem with a large number of 
variables and constraints. To overcome the OPF issue, high-performance optimization 
algorithms are needed. In this direction, this paper has been centered on the optimization of 
the OPF with the circulatory system-based optimization (CSBO) algorithm. The performance 
of the algorithm was evaluated on the IEEE 57- and 118-bus power networks for the 
optimization of non-convex OPF objectives, i.e., fuel cost, power loss, voltage deviation, and 
enhancement of voltage stability. The solution quality of CSBO is compared with state-of-the-
art metaheuristic algorithms such as Artificial Rabbits Optimization (ARO), African Vultures 
Optimization Algorithm (AVOA), and Chaos Game Optimization (CGO). Based on the OPF 
results, it is seen that the best fuel cost and voltage deviation results are calculated to be 
41666.2344 $/h and 0.5871 p.u with the CSBO algorithm for the IEEE 57-bus power system. 
The CSBO algorithm obtained the best objective function results for the IEEE 118-bus power 
network with a fuel cost of 134934.3140 $/h and a power loss of 16.4688 MW. In conclusion, 
the present paper reports that the CSBO is a powerful and efficient metaheuristic algorithm to 
solve the OPF problem. 
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1. Introduction  
 

In today's world, the energy crisis is undoubtedly one 
of the major problems. With the increasing standard of 
living, population, and industrialization, energy is 
needed more and more day by day. The problems that 
arise from energy increasing demand affect the economy, 
environment, and social life, that is, every stage of 
sustainable development in a negative way [1]. The 
optimal use of available energy resources plays a vital 
role in alleviating these problems. 

The optimal power flow (OPF) is of great importance 
for the cost-effective and reliable operation of electrical 
networks [2]. OPF minimizes the selected optimization 
objective subject to a variety of equality and inequality 
constraints [3]. In order to achieve the optimal network 
configuration generally the settings of the independent 
variables such as the active power of generation units, 
tap setting of the transformers, the output of shunt VAR 
compensators, and terminal voltages at generator buses 
are optimized [4, 5]. 

OPF is a non-convex optimization problem with high 
computational complexity [4, 5]. Solving the OPF 
problem is a challenging task for power system 

researchers [6]. To cope with this, it has been observed 
that various metaheuristic optimization algorithms have 
been successfully applied to the solution of the OPF 
problem. For instance, Houssein et al. [7] obtained the 
OPF solutions of the IEEE 30-bus power system using an 
enhanced equilibrium optimizer (EEO). In another study, 
Ramesh et al. [8] used an improved mayfly algorithm 
(IMA) to solve the OPF problem under different load 
conditions. Premkumar et al. [9] presented a 
comparative performance analysis of ESHADE, SHADE-
SFS, and SHADE-SAP algorithms in solving the OPF 
problem. In the study, simulation studies were carried 
out on two power systems (IEEE 30- and IEEE 118-bus) 
to demonstrate the effectiveness of the algorithms. The 
findings revealed that ESHADE designed with the 
superiority of feasible solution (SFS) and self-adaptive 
penalty (SAP) methods gives more successful OPF results 
compared to the SHADE-SFS, and SHADE-SAP. Kaur and 
Narang [10] obtained OPF solutions for IEEE 30-, 57-, and 
118-bus test systems using invasive weed optimization 
improved by the space transformation search method. 
Bakır et al. [11] used the fitness-distance balance-based 
stochastic fractal search (FDB-SFS) algorithm for solving 
OPF configured with renewable energy sources and 
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voltage source converters. Sonmez et al. [12] achieved 
OPF solutions for the IEEE 30-bus power network using 
improved artificial ecosystem optimization with a 
fitness-distance balance strategy. Abd El-Sattar et al. [13] 
used the powerful variant of the salp swarm algorithm to 
obtain the optimal operation configuration of three IEEE 
power networks. Jangir et al. [14] proposed the many-
objective teaching-learning-based optimizer (MaOTLBO) 
to obtain the OPF solutions of the IEEE 30-bus power 
system. The authors evaluated the performance of the 
proposed algorithm with optimization of the power loss, 
voltage stability index, fuel cost, voltage deviation, and 
emission objectives. The results showed that MaOTLBO 
offers better OPF solutions compared to MOEA/D-DRA 
and NSGA-III algorithms. Pandya et al. [15] formulated a 
multi-objective OPF problem in the presence of 
renewable power (wind, solar PV, small-hydro). The 
authors proposed the multi-objective equilibrium 
optimizer (MOEO) to solve the OPF problem 
incorporating renewable power. Considering the IEEE 
30-bus power system results are together, it is seen that 
the proposed algorithm is more successful than the 
competitor optimizers in terms of the quality of Pareto-
optimal solutions and their distribution. Premkumar et 
al. [16] developed the many-objective gradient-based 
optimizer (MaOGBO) to solve multi-objective OPF 
problems of IEEE 30-, 57- and 118-bus power systems. In 
the study, the authors considered fuel cost, voltage 
stability, emission, voltage deviation, and active-reactive 
power loss objectives. The results obtained from the OPF 
case studies showed that the proposed algorithm is an 
effective method for solving multi-objective OPF 
problems of large-scale power systems. 

From the literature survey, it can be observed that 
power system researchers have investigated the 
efficiency of various metaheuristic algorithms in the 
solution of the OPF problem. Findings obtained from the 
literature works showed that OPF solution quality is 
directly related to the exploration and balanced search 
capabilities of optimizers. Accordingly, it can be said that 
high-performance optimization algorithms are required 
to obtain high-quality solutions to the OPF problem. In 
this regard, testing novel metaheuristic algorithms in the 
solution of the OPF problem will be beneficial. This topic 
deserves further investigation. With this point of view, 
this paper has centered on the solution to the OPF 
problem with circulatory system-based optimization 
(CSBO) [17]. In the study, fuel cost, real power loss, 
enhancement of voltage stability, and voltage deviation 
objectives are optimized. Simulation studies are 
performed on IEEE 57- and 118-bus power networks. 
The obtained OPF solutions from the CSBO algorithm 
were compared with up-to-date metaheuristic 
algorithms such as Artificial Rabbits Optimization (ARO) 
[18], African Vultures Optimization Algorithm (AVOA) 
[19], and Chaos Game Optimization (CGO) [20].  

The main contributions of the study can be 
summarized as follows: 

 

• Application of CSBO algorithm to the solution of 
single and multi-objective OPF problems for the first 
time. 

• Comparative performance analysis of CSBO with 
state-of-the-art metaheuristic algorithms such as 
ARO, AVOA, and CGO. 

• Optimization of fuel cost, power loss, voltage 
deviation, and voltage stability enhancement 
objectives on IEEE 57- and 118-bus power networks. 

• Wilcoxon signed-rank test is applied to evaluate 
algorithm performance. 

 
The remaining sections of the paper are structured as 

follows: Section 2 gives the definition of the OPF problem. 
In this direction, the dependent variables, independent 
variables, and constraints of the OPF problem are 
introduced. The optimization model of the CSBO 
algorithm is elaborated in Section 3. Section 4 
summarizes and discusses the simulation results of the 
OPF case studies. Finally, conclusions of the study are 
presented in Section 5. 

 

2. Formulation of OPF Problem 
 

OPF is defined as the minimization of the selected 
objective function subject to various equality and 
inequality constraints. The optimization model of the 
OPF can be written as shown in Equation (1) [21, 22]. 
 

 
Minimize    𝑂(𝑠, 𝑐) 

subject to  {
𝑔(𝑠, 𝑐) = 0

ℎ(𝑠, 𝑐) ≤ 0
 

 

(1) 

 
where 𝑂 shows the objective function, 𝑠 and 𝑐 are the 

dependent and independent variable vectors of the OPF 
problem. 𝑔(𝑠, 𝑐) and ℎ(𝑠, 𝑐) represent the set of equality 
and inequality constraints. 
 

2.1. Dependent variables 
 

The active power of the swing bus (𝑃𝑔𝑠𝑤𝑖𝑛𝑔
), the 

voltage value of the load bus (𝑉𝑙), the reactive power of 
the generator bus (𝑄𝑔), and the transmission line loading 

(𝑆𝐿) are the dependent variables. Equation (2) gives the 
dependent variables vector (s). In the equation, 𝑁𝑃𝑄, 𝑁𝐺, 
and 𝑁𝐿 show the number of load buses, generator buses, 
and transmission lines. 
 

𝑠 = [𝑃𝑔𝑠𝑤𝑖𝑛𝑔
, 𝑉𝑙1

… 𝑉𝑙𝑁𝑃𝑄
, 𝑄𝑔1

… 𝑄𝑔𝑁𝐺
, 𝑆𝐿1

… 𝑆𝐿𝑁𝐿
 ] (2) 

 
2.2. Independent variables 

 
 

Equation (3) gives the independent variables vector 
(c) of the OPF problem 
 

𝑐 = [𝑃𝑔2
… 𝑃𝑔𝑁𝐺

, 𝑉𝑔1
… 𝑉𝑔𝑁𝐺

, 𝑄𝑐1
… 𝑄𝑐𝑁𝐶 , 𝑇1 … 𝑇𝑁𝑇 ] (3) 

 

where 𝑃𝑔 is the active power of generation units 

except the swing generator, 𝑉𝑔 represents the voltage 

magnitude of the generator buses. 𝑄𝑐  and 𝑇 indicate the 
output of shunt VAR compensators and the tap setting of 
transformers, respectively. 𝑁𝑇 and 𝑁𝐶 represent the 
number of transformers and shunt VAR compensators.  
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2.3. OPF constraints 
 
2.3.1. Equality constraints 

Active and reactive power balance Equations (4-5) 
are the equality constraints of the OPF problem [22]. 

 

𝑃𝑔𝑚
− 𝑃𝑑𝑚

− 𝑉𝑚 ∑  𝑉𝑛 [𝐺𝑚𝑛 cos(𝛿𝑚 − 𝛿𝑛) +

𝑁𝐵

𝑛=1

𝐵𝑚𝑛 sin(𝛿𝑚 − 𝛿𝑛)] = 0   ∀𝑚 ∈ 𝑁𝐵 (4) 

  

𝑄𝑔𝑚
− 𝑄𝑑𝑚

− 𝑉𝑚 ∑  𝑉𝑛  [𝐺𝑚𝑛 sin(𝛿𝑚 − 𝛿𝑛) +

𝑁𝐵

𝑛=1

𝐵𝑚𝑛 cos(𝛿𝑚 − 𝛿𝑛)] = 0     ∀𝑚 ∈ 𝑁𝐵 (5) 

 
 

where 𝑃𝑑  and 𝑄𝑑  indicate active and reactive power 
demands. 𝐺𝑚𝑛and 𝐵𝑚𝑛 are conductance and susceptance 
between bus m and bus n. 𝑁𝐵 shows the number of buses. 
 
2.3.2. Inequality constraints 
 

The following inequality constraints (Equations 6-12) 
are considered to ensure the secure operation of power 
systems. 
 

• Generator constraints 
 

𝑃𝑔,𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑘 ≤ 𝑃𝑔,𝑘

𝑚𝑎𝑥          ∀𝑘 ∈ 𝑁𝐺 (6) 

  

𝑄𝑔,𝑘
𝑚𝑖𝑛 ≤ 𝑄𝑔,𝑘 ≤ 𝑄𝑔,𝑘

𝑚𝑎𝑥        ∀𝑘 ∈ 𝑁𝐺 (7) 

  

𝑉𝑔,𝑘
𝑚𝑖𝑛 ≤ 𝑉𝑔,𝑘 ≤ 𝑉𝑔,𝑘

𝑚𝑎𝑥         ∀𝑘 ∈ 𝑁𝐺 (8) 

 
• Shunt capacitor constraints 

 

𝑄𝑐,𝑘
𝑚𝑖𝑛 ≤ 𝑄𝑐,𝑘 ≤ 𝑄𝑐,𝑘

𝑚𝑎𝑥          ∀𝑘 ∈ 𝑁𝐶 (9) 

 
• Transformer constraints 

 

𝑇𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑘 ≤ 𝑇𝑘

𝑚𝑎𝑥          ∀𝑘 ∈ 𝑁𝑇 (10) 
 

• Security constraints 
 

𝑉𝑙,𝑘
𝑚𝑖𝑛 ≤ 𝑉𝑙,𝑘 ≤ 𝑉𝑙,𝑘

𝑚𝑎𝑥       ∀𝑘 ∈ 𝑁𝑃𝑄 (11) 

  

|𝑆𝐿,𝑘| ≤ 𝑆𝐿,𝑘
𝑚𝑎𝑥                    ∀𝑘 ∈ 𝑁𝐿 (12) 

 
 

2.4. Objective functions 
 

In the study, single and multi-objective OPF objectives 
were optimized. Multi-objective OPF problems are 
converted into single-objective optimization by 
weighting the objective functions and solved in that way. 

 
2.4.1. Single-objective OPF objectives  
 

• Fuel cost  
 

Fuel cost minimization is widely used objective 
function in OPF problems. Mathematically, the fuel cost 
objective function can be written as follows [22]: 
 

𝐹𝐶(𝑃𝑔) = ∑ 𝑝𝑖 + 𝑟𝑖𝑃𝑔,𝑖 + 𝑤𝑖𝑃𝑔,𝑖
2

𝑁𝐺

𝑖=1

 (13) 

 
where 𝑃𝑔,𝑖  shows the active power of i-th generator in 

MW. 𝑝𝑖 , 𝑟𝑖 , and 𝑤𝑖  represent the cost coefficients of the 
same generator. 
 

• Voltage deviation  
 

Voltage deviation is one of the most important 
indicators that reflects the voltage quality of the network. 
The voltage deviation objective function is formulated as 
the cumulative deviation of all load buses from the 
nominal value (1 p.u) [22]. 
 

𝑉𝐷 = ( ∑ |𝑉𝑙𝑚
− 1|

𝑁𝑃𝑄

𝑚=1

) (14) 

 
• Power loss 

 
Real power loss is inevitable in power systems due to 

the inherent resistance of transmission lines. The real 
power loss objective function can be modeled as follows 
[22]: 
 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐺𝑝𝑖𝑗
[ 𝑉𝑖 

2 + 𝑉𝑗 
2 − 2 𝑉𝑖  𝑉𝑗  𝑐𝑜𝑠(𝛿𝑖𝑗)]

𝑁𝐿

𝑝=1

 (15) 

 
• Enhancement of voltage stability  

 
The L-index value of the load buses is an important 

indicator of voltage stability. This index takes values 
between 0 and 1. If the value of the L-index is close to 0, 
the power system is stable, and when it is 1, voltage 
collapse occurs. The L-index value of the j-th bus (𝐿𝑗) is 

calculated using Equation 16 [22]: 
 

𝐿𝑗  = |1 − ∑ 𝐹𝑗𝑖

𝑉𝑖

𝑉𝑗

𝑁𝐺

𝑖=1

|       𝑗 = 1, 2, … , 𝑁𝑃𝑄 (16) 

 
The objective function of system stability can be 

formulated using Equation 17 [22]: 
 

𝐿𝑚𝑎𝑥 = max(𝐿𝑗)    where  𝑗 = 1, 2, … , 𝑁𝑃𝑄 (17) 
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2.4.2. Multi-objective OPF objectives  
 

• Optimization of both fuel cost and voltage 
deviation 

 

The objective function including simultaneous 
optimization of fuel cost and voltage deviation is given in 
Equation (18). In the equation, the value of the weight 
coefficient is set to 𝜆𝑉𝐷=100 [22]. 

• Optimization of both fuel cost and enhancement 
of voltage stability 

 

Equation (19) gives the objective function used in the 
simultaneous optimization of both fuel cost and 
enhancement of voltage stability. In that equation, the 
value of the weight coefficient is set to 𝜆𝐿=100 [22].

 

𝑂(𝑠, 𝑐) = ∑(𝑝𝑖 + 𝑟𝑖𝑃𝑔,𝑖 + 𝑤𝑖𝑃𝑔,𝑖
2

𝑁𝐺

𝑖=1

) + (𝜆𝑉𝐷 ×  𝑉𝐷) (18) 

  

𝑂(𝑠, 𝑐) = ∑(𝑝𝑖 + 𝑟𝑖𝑃𝑔,𝑖 + 𝑤𝑖𝑃𝑔,𝑖
2

𝑁𝐺

𝑖=1

) + (𝜆𝐿 ×  𝐿𝑚𝑎𝑥) (19) 

 
 

3. Circulatory System-based Optimization  
 

Circulatory system-based optimization (CSBO) is a 
bio-inspired optimization algorithm with a high 
convergence performance developed by Ghasemi et al. in 
2022 [17]. The optimizer is inspired by the function of 
the body's blood vessels and mimics the pulmonary and 
systematic circulation to perform the optimization task. 
Its simple structure, easy applicability, and lack of user-
defined parameters are important advantages. The 
optimization steps of the CSBO algorithm are described 
in detail below. 
 

• Initialization  
 

An initial population of blood particles is generated as 
shown in Equation (20). In that equation, 𝑁 and 𝐷 show 

the numbers of population size and design parameters. 
The position of the blood particles in the search space 
(𝑋𝑖 =  [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷]) represents a possible solution to 
the optimization problem. 
 

𝑃 = [
𝑋1

⋮
𝑋𝑁

] = [

𝑥11 ⋯ 𝑥1𝐷

⋮ ⋱ ⋮
𝑥𝑁1 ⋯ 𝑥𝑁𝐷

]

𝑁×𝐷

 (20) 

 
• Movement of blood particles in veins  

 
This step of the circulation cycle determines the new 

position of the i-th blood particle (𝑋𝑖
𝑛𝑒𝑤) using the 

particle's current position and fitness value (Equation 
21). 

 
𝑋𝑖

𝑛𝑒𝑤 = 𝑋𝑖 + 𝐾𝑖1 × 𝑝𝑖 × (𝑋𝑖 − 𝑋1) + 𝐾23 × 𝑝𝑖 × (𝑋3 − 𝑋2) (21) 
  

𝐾𝑖𝑗 =
𝑓(𝑋𝑗) − 𝑓(𝑋𝑖)

|𝑓(𝑋𝑗) − 𝑓(𝑋𝑖)| + 𝜀
= {

1      𝑓(𝑋𝑖) ≤  𝑓(𝑋𝑗)

−1     𝑓(𝑋𝑖) >  𝑓(𝑋𝑗)

0     𝑓(𝑋𝑖) = 𝑓(𝑋𝑗)

 (22) 

 
 
where 𝐾𝑖𝑗  indicates the direction of movement of the 

blood mass. 𝑝𝑖  determines the amount of displacement. It 
takes a value between 0 and 1. 
 

• Blood mass flow in the pulmonary circulation 
 

The CSBO algorithm ranks the blood population at 
each iteration and directs the population's weakest 
solution candidates to the pulmonary circulation system 
(Equation 23). 
 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + (

𝑟𝑎𝑛𝑑𝑛

𝑖𝑡𝑒𝑟
) × 𝑟𝑎𝑛𝑑𝑐 (1, 𝐷), 𝑖 = 1: 𝑁𝑟 (23) 

 
where 𝑟𝑎𝑛𝑑𝑛 shows the random normal number. 𝑖𝑡𝑒𝑟 

represents the current iteration number. 𝑟𝑎𝑛𝑑𝑐 
represents Cauchy probability distribution function. In 
this phase, 𝑝𝑖  is updated based on the number of the 
weakest population (𝑁𝑟) (Equation 24). 

 
𝑝𝑖 = 𝑟𝑎𝑛𝑑 (1, 𝐷),    𝑖 = 1: 𝑁𝑟 (24) 

 
• Blood mass flow in the systematic circulation 

 
The remainder of the blood particles in the 

population (𝑁𝑙 = 𝑁-𝑁𝑟)enters the pulmonary circulation 
(Equation 25). 
 

𝑋𝑖,𝑗
𝑛𝑒𝑤 = 𝑋1,𝑗 + 𝑝𝑖 × (𝑋3,𝑗 − 𝑋2,𝑗) (25) 

 
In the systematic circulation, the value of 𝑝𝑖  is 

updated as shown in Equation 26: 
 

𝑝𝑖 =
𝑓(𝑋𝑖) − 𝑓𝑤𝑜𝑟𝑠𝑡

𝑓𝑏𝑒𝑠𝑡 − 𝑓𝑤𝑜𝑟𝑠𝑡

,    𝑖 = 1: 𝑁𝑙 (26) 

 
The search process lifecycle steps (movement of 

blood particles in the veins, pulmonary circulation, and 
systematic circulations) of the CSBO algorithm continue 
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until the termination criterion is met. The pseudocode of 
the CSBO algorithm is given in Figure 1 [17]. 
 

1. Begin 
2. Create a random initial blood population (P) as shown 

in Equation (20) 
3. Calculate 𝑝𝑖 using Equations (24) and (26) 
4. iter ← 0 
5. FEs ← N 
6. while FEs ≤ maxFEs do 
7. iter← iter +1 
8. Step 1: Movement of blood particle in the veins  
9. for i=1: N do 
10. Calculate 𝐾𝑖1 and 𝐾23 using Equation 

(22) 
11. Create a new blood particle using 

Equation (21) 
12. Update the new position of i-th blood 

particle 
13. FEs = FEs + 1 
14. end for 
15. Step 2: Pulmonary Circulation 
16. for i=1: 𝑁𝑟 do 
17. for j=1: 𝐷 do 
18. if rand > 0.9 
19. Apply pulmonary circulation using 

Equation (23) 
20. else 
21. 𝑋𝑖,𝑗

𝑛𝑒𝑤 = 𝑋𝑖,𝑗 

22. end if 
23. end for 
24. FEs = FEs + 1 
25. Calculate 𝑝𝑖 using Equation (24) 
26. end for 
27. Step 3: Systematic Circulation 
28. for i=1: 𝑁𝑙 do 
29. Apply systematic circulation using 

Equation (25) 
30. Update the new position of i-th blood 

particle 
31. Calculate 𝑝𝑖 using Equation (26) 
32. FEs = FEs + 1 
33. end for 
34. Update the best solution 
35. end while 
36. Display the best solution 

Figure 1. Pseudocode of CSBO algorithm. 
 

Figure 2 gives the steps followed to solve the OPF 
problem with CSBO and other competitive optimization 
algorithms. 
 
4. Results and Analysis 
 

This section presents a comparative performance 
analysis of the CSBO and other well-known optimization 
algorithms (ARO, AVOA, and CGO) in solving the OPF 
problem. The performance of the algorithms is tested for 
optimization of non-convex OPF objectives i.e., fuel cost, 
voltage deviation (𝑉𝐷), enhancement of voltage stability 
(L-index), and real power loss (𝑃𝑙𝑜𝑠𝑠). OPF case studies 
performed on IEEE 57- and 118-bus power systems are 
summarized in Table 1. 

Data for IEEE 57- and 118-bus power networks are 
taken from [17, 23]. All algorithms were coded in 
MATLAB R2016a [24] software and simulation studies 
were performed on PC with 11th Gen Intel (R) Core (TM) 

i5-1135G7 @ 2.40 GHz /16 GB RAM/x64-based 
processor. MATPOWER 7.1 [23, 25] package program 
was used for OPF power flow calculations. For each OPF 
case study, the optimization algorithms were run 30 
times. The algorithms were run using the settings given 
in their original article. The maximum number of fitness 
function evaluations (maxFEs) was used as the 
termination criterion of the metaheuristic search 
process. The maxFEs value for OPF case studies on IEEE 
57- and 118-bus power networks are set to 42000 and 
300000, respectively. 
 

Table 1. Configuration of OPF case studies. 

Case 
no 

IEEE 57-bus system IEEE 118-bus 
system 

Fuel 
Cost 

𝑉𝐷 L-
index 

Fuel Cost 𝑃𝑙𝑜𝑠𝑠 

Case-1 ●     

Case-2 ● ●    

Case-3 ●  ●   

Case-4  ●    

Case-5    ●  

Case-6     ● 

 
4.1. Simulation results of OPF case studies 
 

• Case-1: Optimization of fuel cost 
 

In this case, the fuel cost of the IEEE 57-bus power 
system is optimized. The results of the fuel cost objective 
function obtained by metaheuristic optimization 
algorithms are given in Table 2. As can be seen from the 
table, the fuel cost value is calculated to be 41666.2344 
$/h, 41668.8301 $/h, 41676.0759 $/h, and 41668.1817 
$/h by CSBO, ARO, AVOA, and CGO algorithms, 
respectively. Based on the numerical data, it is seen that 
the CSBO method offered the best fuel cost value. To put 
it more clearly, the CSBO algorithm yielded a profit of 
9.8415 $/h, 2.5957 $/h, and 1.9473 $/h in fuel cost 
compared to the results of the AVOA, ARO, and CGO 
methods. 
 

• Case-2: Optimization of both fuel cost and 
voltage deviation 

 
Case-2 handles the simultaneous minimization of the 

fuel cost and voltage deviation objectives on an IEEE 57-
bus power system. In the present OPF case, objective 
functions are weighted and transformed into a single-
objective optimization framework as shown in Equation 
(18). Considering the simulation results given in Table 2, 
it is seen that the CSBO algorithm reaches the best fitness 
value with 41774.4578, while AVOA gives the worst 
result with 41780.1955. The fuel cost and voltage 
deviation objective function values obtained with CSBO 
are 41697.22 $/h and 0.7723 p.u, respectively. 
 

• Case-3: Optimization of both fuel cost and 
enhancement of voltage stability 

 

In Case 3, simultaneous optimization of the both fuel 
cost and enhancement of voltage stability (L-index) on an 
IEEE 57-bus power system is studied. In this OPF case, 
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objective functions are weighted and converted into a 
single-objective optimization as shown in Equation (19). 
As can be seen in Table 2, the fitness value of Case-3 is 
obtained to be 41693.9633, 41696.7465, 41701.7993, 
and 41695.6204 by CSBO, ARO, AVOA, and CGO 
algorithms, respectively. Accordingly, CSBO gave the best 

result, followed by CGO. In addition, ARO and CGO 
algorithms have obtained competitive results. The fuel 
cost and L-index objective function values were 
calculated to be 41666.10 $/h and 0.2785 for the CSBO 
algorithm. 
 

 
 

 
Figure 2. A flowchart for application of metaheuristic optimization algorithms to OPF problem. 

 
 

• Case-4: Optimization of voltage deviation 
 

Case-4 minimizes the voltage deviation of load buses 
in the IEEE 57-bus power network. As seen in Table 2, the 
voltage deviation value obtained by CSBO, ARO, AVOA, 
and CGO algorithms is 0.5871 p.u, 0.6151 p.u, 0.6329 p.u, 
and 0.6014 p.u, respectively. It is clear that the CSBO 
algorithm reached the best result, followed by CGO. In 
other words, CSBO reduced the voltage deviation by 
4.5521%, 7.2365%, and 2.3777% compared to the ARO, 
AVOA, and CGO algorithms. 
 

• Case-5: Optimization of fuel cost 
 

This case aims to minimize the fuel cost of the IEEE 
118-bus system. Based on the results given in Table 2, the 
fuel cost value is calculated to be 134934.3140 $/h, 
135023.4711 $/h, 134985.7415 $/h, and 135149.3384 
$/h for CSBO, ARO, AVOA, and CGO algorithms, 
respectively. From the numerical results, it is noticed 
that the CSBO method offered the best fuel cost value. To 
be more specific, the CSBO algorithm yielded a profit of 

89.1571 $/h, 51.4275 $/h, and 215.0244 $/h in fuel cost 
compared to the results of the ARO, AVOA, and CGO 
algorithms. 
 

• Case-6: Optimization of active power loss 
 

In Case-6, active power loss minimization of the IEEE 
118-bus power system is performed. As can be seen from 
Table 2, the power loss objective function value is 
calculated to be 16.4688 MW, 17.3497 MW, 21.9025 MW, 
and 19.2740 MW by CSBO, ARO, AVOA, and CGO 
algorithms, respectively. Considering the numeric 
results, it is noticed that the CSBO offered the lowest 
active power loss value of 16.4688 MW. In other words, 
CSBO reduced the power loss by 5.0773%, 24.8085%, 
and 14.5543% compared to the ARO, AVOA, and CGO 
algorithms. 

Given the results of OPF case studies are together, it 
is observed that the solution quality of the CSBO 
algorithm is superior compared to its competitors. The 
optimum parameter settings obtained with CSBO 
algorithm are given in Tables 3-5.  
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4.2. Convergence analysis 
 

This subsection analyzes the convergence 
performance of metaheuristic algorithms for OPF case 
studies on IEEE 57- and 118-bus power systems. In this 
context, convergence curves were drawn to show the 
variation of the fitness value over the number of maxFEs. 
Figure 3 gives the convergence curves of CSBO, ARO, 
AVOA, and CGO algorithms. Considering the convergence 
curves for the OPF case studies carried out on the IEEE 
57-bus power system (Figure 3 a, b, c, d), it is seen that 
the CSBO and CGO algorithms exhibit a more successful 
search performance than their competitors. The 
convergence speed and solution quality of these two 
algorithms are impressive. On the other hand, it is seen 
that the ARO and AVOA algorithms cannot successfully 
converge to the global optimum. The underlying reason 
behind it is thought to be the premature convergence 
problem of these algorithms. From the convergence 
curves for the OPF case studies performed on the IEEE 
118-bus power system (Figure 3 e, f), it is observed that 
the CSBO algorithm converges rapidly and produces 
better results than the compared ones. 

 
4.3. Box-Plots 
 

Box plots were prepared to observe the fitness value 
obtained by the algorithms over 30 independent runs. 
Each box plot includes the minimum, average, and 
maximum values of fitness value. A narrow box shows 

that the algorithm exhibits a robust search performance. 
Figure 4 shows box plots of CSBO, ARO, AVOA, and CGO 
algorithms for OPF case studies. As is seen in the figure, 
the CSBO algorithm exhibited a stable and robust search 
performance in the optimization of OPF problems. 
 
4.4. Statistical analysis 
 

Performance metrics (minimum, mean, maximum, 
and standard deviation) calculated using data obtained 
from 30 runs are not sufficient to reveal the overall 
search performance of algorithms. In this context, 
statistical analysis of data is inevitable. This study applies 
Wilcoxon statistical test [35] for pairwise comparison 
between algorithms. Table 6 gives the Wilcoxon test 
results between CSBO and competitive algorithms. 
Considering ARO vs CSBO statistical test result for Case-
1 (1/464), it is seen that ARO achieved a better fitness 
value than the CSBO algorithm for only run 1. In the 
remaining OPF cases, the fitness value of CSBO is better 
than ARO in all runs. Given the AVOA vs CSBO statistical 
test result, it is observed that the CSBO algorithm gave 
better OPF results compared to AVOA in all runs. Based 
on the CGO vs CSBO statistical test results for Case-3 and 
Case-4 (2/463), it is seen that CGO obtained a better 
fitness value than the CSBO algorithm for only run 2. In 
other OPF case studies, the CSBO algorithm is superior to 
CGO. In a nutshell, the Wilcoxon test results confirmed 
that the CSBO algorithm achieved better quality results 
than its competitors. 

 
Table 2. Simulation results obtained from 30 runs. 

Algorithm Metric Case-1 Case-2  Case-3 Case-4 Case-5 Case-6 

CSBO 

Best 41666.2344 41774.4578 41693.9633 0.5871 134934.3140 16.4688 
Mean 41667.3685 41774.9323 41694.9648 0.5925 134953.0728 16.9596 
Worst 41670.0940 41775.6829 41697.0897 0.6063 134984.2226 17.4696 

Std. Dev. 1.0878 0.3915 0.8563 0.0046 14.5031 0.2769 

ARO 

Best 41668.8301 41778.1130 41696.7465 0.6151 135023.4711 17.3497 
Mean 41673.4410 41784.0492 41701.5898 0.6524 135108.9051 18.7526 
Worst 41681.4971 41793.9520 41707.6488 0.7139 135260.7873 21.8958 

Std. Dev. 3.1497 4.8270 2.7930 0.0201 56.7417 0.9142 

AVOA 

Best 41676.0759 41780.1955 41701.7993 0.6329 134985.7415 21.9025 
Mean 41706.4203 41794.0997 41728.6458 0.7158 135143.2439 31.3293 
Worst 41764.5797 41813.8279 41782.6629 1.1610 135617.5325 45.3612 

Std. Dev. 22.5228 9.3521 19.2953 0.0936 156.7355 5.4363 

CGO 

Best 41668.1817 41775.6618 41695.6204 0.6014 135149.3384 19.2740 
Mean 41692.2616 41782.2631 41715.7907 0.6201 135253.7785 20.5832 
Worst 41771.7204 41825.9333 41759.5148 0.6798 135748.6388 23.3513 

Std. Dev. 23.5681 9.5836 19.8783 0.0193 106.5352 0.9733 

 
 

4.5. Literature comparison 
 

In this study, it has been observed that OPF solutions 
obtained with CSBO are of higher quality than ARO, 
AVOA, and CGO methods. However, the success of the 
CSBO algorithm against other literature studies is 
unknown. To clarify this state, the OPF solutions 
obtained by CSBO are compared with the available 
literature. The comparative results are given in Table 7. 
Given that all the results are together, it is noticed that 
the CSBO algorithm offered better-quality solutions than 
the literature studies. 
 

5. Conclusion 
 

This paper presents a comparative performance 
analysis of the metaheuristic algorithms in the 
optimization of single and multi-objective OPF problems. 
In this direction, CSBO, ARO, AVOA, and CGO algorithms 
are applied to obtain OPF solutions of IEEE 57- and 118-
bus power systems. In the study, the fuel cost, voltage 
deviation, active power loss, and enhancement of voltage 
stability objectives are optimized. In the IEEE 57-bus 
power system, CSBO achieved 1.9473 $/h and 2.3777% 
better results in terms of fuel cost and voltage deviation 
objectives compared to the CGO algorithm, which 
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exhibited the second-best performance. The CSBO 
algorithm reduced the fuel cost and power loss of the 
IEEE 118-bus power system by 51.4275 $/h and 
5.0773%, respectively. Considering the simulation 
results, it is seen that the CSBO algorithm obtained the 
best results for all OPF case studies under study. 
Convergence curves, box plots, and Wilcoxon statistical 

test results showed that the CSBO algorithm exhibited a 
better convergence success compared to other 
optimizers considered in the study. The obtained OPF 
solutions from CSBO are compared with the literature 
studies and it is observed that the proposed algorithm 
gives better solutions. 

 
 

Table 3. Optimum solutions of CSBO algorithm for IEEE 57-bus OPF case studies. 
Parameters Min Max Case-1 Case-2 Case-3 Case-4 
𝑃𝐺𝑔1 (𝑀𝑊) 0 576 142.7350 142.6349 142.8443 352.9668 
𝑃𝑔2 (𝑀𝑊)  30 100 89.2764 88.3179 89.3849 32.3379 
𝑃𝑔3 (𝑀𝑊)  40 140 45.0011 45.0339 44.9871 134.2231 
𝑃𝑔6 (𝑀𝑊)  30 100 70.7775 71.6483 70.8617 30.5596 
𝑃𝑔8 (𝑀𝑊)  100 550 460.6593 460.3545 460.4950 272.6486 
𝑃𝑔9 (𝑀𝑊) 30 100 96.9825 97.8728 96.8019 99.8451 
𝑃𝑔12 (𝑀𝑊)  100 410 360.2274 360.5228 360.2750 348.9024 

𝑄𝑔1 (𝑀𝑉𝐴𝑟) -140 200 43.1142 40.8621 44.7284 -40.4167 

𝑄𝑔2 (𝑀𝑉𝐴𝑟)  -17 50 49.9947 49.9932 49.9931 49.6062 
𝑄𝑔3 (𝑀𝑉𝐴𝑟)  -10 60 30.9278 34.8576 35.6592 59.9374 
𝑄𝑔6 (𝑀𝑉𝐴𝑟)  -8 25 -7.8592 -3.9786 -7.6921 -7.9544 
𝑄𝑔8 (𝑀𝑉𝐴𝑟)  -140 200 53.6284 72.5680 49.7739 43.9786 
𝑄𝑔9 (𝑀𝑉𝐴𝑟) -3 9 8.9982 8.9983 8.9993 8.9826 

𝑄𝑔12 (𝑀𝑉𝐴𝑟) -150 155 60.1086 45.6496 58.3601 154.9041 
𝑉1 (𝑝. 𝑢) 0.95 1.10 1.0635 1.0333 1.0670 1.0081 
𝑉2 (𝑝. 𝑢) 0.95 1.10 1.0611 1.0317 1.0647 1.0064 
𝑉3 (𝑝. 𝑢) 0.95 1.10 1.0534 1.0272 1.0573 1.0165 
𝑉6 (𝑝. 𝑢) 0.95 1.10 1.0589 1.0427 1.0602 1.0019 
𝑉8 (𝑝. 𝑢) 0.95 1.10 1.0757 1.0627 1.0753 1.0214 
𝑉9 (𝑝. 𝑢) 0.95 1.10 1.0500 1.0285 1.0507 1.0107 
𝑉12 (𝑝. 𝑢) 0.95 1.10 1.0511 1.0191 1.0525 1.0392 

𝑄𝑐18 (𝑀𝑉𝐴𝑟) 0 20 7.9183 5.4348 8.4539 0.0436 
𝑄𝑐25 (𝑀𝑉𝐴𝑟) 0 20 13.7033 16.0706 13.1343 18.8307 
𝑄𝑐53 (𝑀𝑉𝐴𝑟) 0 20 12.3686 15.5759 12.0256 19.9985 

𝑇19 (𝑝. 𝑢) 0.90 1.10 0.9518 1.0443 0.9293 1.0425 
𝑇20 (𝑝. 𝑢) 0.90 1.10 1.0112 0.9529 1.0396 0.9447 
𝑇31 (𝑝. 𝑢) 0.90 1.10 1.0086 0.9902 1.0096 0.9691 
𝑇35 (𝑝. 𝑢) 0.90 1.10 1.0535 0.9325 1.0469 1.0986 
𝑇36 (𝑝. 𝑢) 0.90 1.10 0.9801 1.0999 0.9768 1.0190 
𝑇37 (𝑝. 𝑢) 0.90 1.10 1.0327 1.0219 1.0314 1.0022 
𝑇41 (𝑝. 𝑢) 0.90 1.10 0.9955 1.0181 0.9952 0.9948 
𝑇46 (𝑝. 𝑢) 0.90 1.10 0.9609 0.9390 0.9599 0.9195 
𝑇54 (𝑝. 𝑢) 0.90 1.10 0.9128 0.9000 0.9128 0.9000 
𝑇58 (𝑝. 𝑢) 0.90 1.10 0.9790 0.9671 0.9817 0.9310 
𝑇59 (𝑝. 𝑢) 0.90 1.10 0.9639 0.9648 0.9673 0.9831 
𝑇65 (𝑝. 𝑢) 0.90 1.10 0.9753 0.9850 0.9763 1.0184 
𝑇66 (𝑝. 𝑢) 0.90 1.10 0.9388 0.9369 0.9398 0.9000 
𝑇71 (𝑝. 𝑢) 0.90 1.10 0.9738 0.9699 0.9743 0.9631 
𝑇73 (𝑝. 𝑢) 0.90 1.10 0.9919 0.9983 0.9924 1.0017 
𝑇76 (𝑝. 𝑢) 0.90 1.10 0.9627 0.9425 0.9689 0.9087 
𝑇80 (𝑝. 𝑢) 0.90 1.10 1.0004 1.0078 1.0041 0.9920 

Fuel Cost ($/h) - 41666.2344 41697.22 41666.10 48524.40 
𝑃𝑙𝑜𝑠𝑠 (MW) - 14.8593 15.5851 14.8500 20.3134 
𝑉𝐷 (𝑝. 𝑢) - 1.7033 0.7723 1.7059 0.5871 
L-index - 0.2789 0.2930 0.2785 0.3008 
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Table 4. Optimum solutions of CSBO algorithm for Case-5. 
Parameters Bounds Values Parameters Values Parameters Values 

𝑃𝑔1 (𝑀𝑊) 30–100 30.0000 𝑉𝑔1 (𝑝. 𝑢) 1.0341 𝑄𝑐5 (𝑀𝑉𝐴𝑟) 24.9998 
𝑃𝑔4 (𝑀𝑊) 30–100 30.0002 𝑉𝑔 (𝑝. 𝑢) 1.0594 𝑄𝑐34 (𝑀𝑉𝐴𝑟) 0.1247 
𝑃𝑔6 (𝑀𝑊) 30–100 30.0000 𝑉𝑔6 (𝑝. 𝑢) 1.0531 𝑄𝑐37 (𝑀𝑉𝐴𝑟) 0.0017 
𝑃𝑔8 (𝑀𝑊) 30–100 30.0001 𝑉𝑔8 (𝑝. 𝑢) 1.0404 𝑄𝑐44 (𝑀𝑉𝐴𝑟) 3.5609 
𝑃𝑔10 (𝑀𝑊) 165-550 315.8477 𝑉𝑔10 (𝑝. 𝑢) 1.0483 𝑄𝑐45 (𝑀𝑉𝐴𝑟) 18.8540 

𝑃𝑔12 (𝑀𝑊) 55.5-185 67.3771 𝑉𝑔12 (𝑝. 𝑢) 1.0489 𝑄𝑐46 (𝑀𝑉𝐴𝑟) 0.0002 
𝑃𝑔15 (𝑀𝑊) 30–100 30.0000 𝑉𝑔15 (𝑝. 𝑢) 1.0455 𝑄𝑐48 (𝑀𝑉𝐴𝑟) 7.0132 
𝑃𝑔18 (𝑀𝑊) 30–100 30.0000 𝑉𝑔18 (𝑝. 𝑢) 1.0474 𝑄𝑐74 (𝑀𝑉𝐴𝑟) 24.9925 
𝑃𝑔19 (𝑀𝑊) 30–100 30.0000 𝑉𝑔19 (𝑝. 𝑢) 1.0455 𝑄𝑐79 (𝑀𝑉𝐴𝑟) 24.9999 

𝑃𝑔24 (𝑀𝑊) 30–100 30.0002 𝑉𝑔24 (𝑝. 𝑢) 1.0587 𝑄𝑐82 (𝑀𝑉𝐴𝑟) 24.9442 
𝑃𝑔25 (𝑀𝑊) 96-320 152.2763 𝑉𝑔25 (𝑝. 𝑢) 1.0718 𝑄𝑐83 (𝑀𝑉𝐴𝑟) 13.0013 
𝑃𝑔26 (𝑀𝑊) 124.2-414 220.4765 𝑉𝑔26 (𝑝. 𝑢) 1.08288 𝑄𝑐105 (𝑀𝑉𝐴𝑟) 24.8915 

𝑃𝑔27 (𝑀𝑊) 30-100 30.0000 𝑉𝑔27 (𝑝. 𝑢) 1.0506 𝑄𝑐107 (𝑀𝑉𝐴𝑟) 24.8057 
𝑃𝑔31 (𝑀𝑊) 32.1-107 32.1000 𝑉𝑔31 (𝑝. 𝑢) 1.0465 𝑄𝑐110 (𝑀𝑉𝐴𝑟) 24.9997 
𝑃𝑔32 (𝑀𝑊) 30–100 30.0000 𝑉𝑔32 (𝑝. 𝑢) 1.0489 𝑇8 (𝑝. 𝑢) 0.9857 
𝑃𝑔34 (𝑀𝑊) 30–100 30.0000 𝑉𝑔34 (𝑝. 𝑢) 1.0496 𝑇32 (𝑝. 𝑢) 1.0644 
𝑃𝑔36 (𝑀𝑊) 30–100 30.0000 𝑉𝑔36 (𝑝. 𝑢) 1.0474 𝑇36 (𝑝. 𝑢) 0.9804 
𝑃𝑔40 (𝑀𝑊) 30–100 30.00000 𝑉𝑔40 (𝑝. 𝑢) 1.0339 𝑇51 (𝑝. 𝑢) 0.9858 

𝑃𝑔42 (𝑀𝑊) 30–100 30.0006 𝑉𝑔42 (𝑝. 𝑢) 1.0360 𝑇93(𝑝. 𝑢) 0.9810 
𝑃𝑔46 (𝑀𝑊) 35.7-119 35.7000 𝑉𝑔46 (𝑝. 𝑢) 1.0524 𝑇95 (𝑝. 𝑢) 1.0013 
𝑃𝑔49 (𝑀𝑊) 91.2-304 161.7616 𝑉𝑔49 (𝑝. 𝑢) 1.0618 𝑇102(𝑝. 𝑢) 0.9653 
𝑃𝑔54 (𝑀𝑊) 44.4-148 44.4039 𝑉𝑔54 (𝑝. 𝑢) 1.0418 𝑇107 (𝑝. 𝑢) 0.9431 
𝑃𝑔55 (𝑀𝑊) 30-100 30.0000 𝑉𝑔55 (𝑝. 𝑢) 1.0415 𝑇127 (𝑝. 𝑢) 0.9895 
𝑃𝑔56 (𝑀𝑊) 30-100 30.0007 𝑉𝑔56 (𝑝. 𝑢) 1.0414 Fuel Cost ($/h) 134934.3140 
𝑃𝑔59 (𝑀𝑊) 76.5-255 124.7872 𝑉𝑔59 (𝑝. 𝑢) 1.0598 𝑉𝐷 (𝑝. 𝑢) 2.9658 
𝑃𝑔61 (𝑀𝑊) 78-260 122.7446 𝑉𝑔61 (𝑝. 𝑢) 1.0616 𝑃𝑙𝑜𝑠𝑠 (MW) 57.8922 

𝑃𝑔62 (𝑀𝑊) 30-100 30.0000 𝑉𝑔62 (𝑝. 𝑢) 1.0569 𝑃𝐺69 (Swing Bus) 370.0572 
𝑃𝑔65 (𝑀𝑊) 147.3-491 289.0389 𝑉𝑔65 (𝑝. 𝑢) 1.0622   

𝑃𝑔66 (𝑀𝑊) 147.6-492 288.9684 𝑉𝑔66 (𝑝. 𝑢) 1.0731   

𝑃𝑔70 (𝑀𝑊) 30-100 30.0004 𝑉𝑔69 (𝑝. 𝑢) 1.0701   

𝑃𝑔72 (𝑀𝑊) 30-100 30.0000 𝑉𝑔70 (𝑝. 𝑢) 1.0554   

𝑃𝑔73 (𝑀𝑊) 30-100 30.0001 𝑉𝑔72 (𝑝. 𝑢) 1.0625   

𝑃𝑔74 (𝑀𝑊) 30-100 30.0008 𝑉𝑔73 (𝑝. 𝑢) 1.0597   

𝑃𝑔76 (𝑀𝑊) 30-100 30.0001 𝑉𝑔74 (𝑝. 𝑢) 1.0420   

𝑃𝑔77 (𝑀𝑊) 30-100 30.0000 𝑉𝑔76 (𝑝. 𝑢) 1.0233   

𝑃𝑔80 (𝑀𝑊) 173.1-577 348.5164 𝑉𝑔77 (𝑝. 𝑢) 1.0480   

𝑃𝑔85 (𝑀𝑊) 30-100 30.0003 𝑉𝑔80 (𝑝. 𝑢) 1.0562   

𝑃𝑔87 (𝑀𝑊) 31.2-104 31.2000 𝑉𝑔85 (𝑝. 𝑢) 1.0600   

𝑃𝑔89 (𝑀𝑊) 212.1-707 384.3456 𝑉𝑔87 (𝑝. 𝑢) 1.0759   

𝑃𝑔90 (𝑀𝑊) 30-100 30.0000 𝑉𝑔89 (𝑝. 𝑢) 1.0723   

𝑃𝑔91 (𝑀𝑊) 30-100 30.0000 𝑉𝑔90 (𝑝. 𝑢) 1.0573   

𝑃𝑔92 (𝑀𝑊) 30-100 30.0002 𝑉𝑔91 (𝑝.𝑢) 1.0622   

𝑃𝑔99 (𝑀𝑊) 30-100 30.0000 𝑉𝑔92 (𝑝. 𝑢) 1.0612   

𝑃𝑔100 (𝑀𝑊) 105.6-352 177.4768 𝑉𝑔99 (𝑝. 𝑢) 1.0582   

𝑃𝑔103 (𝑀𝑊) 42-140 42.0007 𝑉𝑔100 (𝑝. 𝑢) 1.0605   

𝑃𝑔104 (𝑀𝑊) 30-100 30.0001 𝑉𝑔103 (𝑝. 𝑢) 1.0578   

𝑃𝑔105 (𝑀𝑊) 30-100 30.0002 𝑉𝑔104 (𝑝. 𝑢) 1.0531   

𝑃𝑔107 (𝑀𝑊) 30-100 30.0000 𝑉𝑔105 (𝑝. 𝑢) 1.0507   

𝑃𝑔110 (𝑀𝑊) 30-100 30.0000 𝑉𝑔107 (𝑝. 𝑢) 1.0441   

𝑃𝑔111 (𝑀𝑊) 40.8-136 40.8000 𝑉𝑔110 (𝑝. 𝑢) 1.0529   

𝑃𝑔112 (𝑀𝑊) 30-100 30.0000 𝑉𝑔111 (𝑝. 𝑢) 1,0619   

𝑃𝑔113 (𝑀𝑊) 30-100 30.0000 𝑉𝑔112 (𝑝. 𝑢) 1,0442   

𝑃𝑔116 (𝑀𝑊) 30-100 30.0001 𝑉𝑔113 (𝑝. 𝑢) 1,0555   

   𝑉𝑔116 (𝑝. 𝑢) 1.0600   
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Table 5. Optimum solutions of CSBO algorithm for Case-6. 
Parameters Bounds Values Parameters Values Parameters Values 

𝑃𝑔1 (𝑀𝑊) 30–100 69.6586 𝑉𝑔1 (𝑝. 𝑢) 1.0418 𝑄𝑐5 (𝑀𝑉𝐴𝑟) 18.8284 

𝑃𝑔4 (𝑀𝑊) 30–100 30.0001 𝑉𝑔 (𝑝. 𝑢) 1.0566 𝑄𝑐34 (𝑀𝑉𝐴𝑟) 0.0007 

𝑃𝑔6 (𝑀𝑊) 30–100 30.3765 𝑉𝑔6 (𝑝. 𝑢) 1.0527 𝑄𝑐37 (𝑀𝑉𝐴𝑟) 0.0006 

𝑃𝑔8 (𝑀𝑊) 30–100 30.0081 𝑉𝑔8 (𝑝. 𝑢) 1.0375 𝑄𝑐44 (𝑀𝑉𝐴𝑟) 4.6913 

𝑃𝑔10 (𝑀𝑊) 165-550 165.0001 𝑉𝑔10 (𝑝. 𝑢) 1.0451 𝑄𝑐45 (𝑀𝑉𝐴𝑟) 17.7797 

𝑃𝑔12 (𝑀𝑊) 55.5-185 134.5671 𝑉𝑔12 (𝑝. 𝑢) 1.0514 𝑄𝑐46 (𝑀𝑉𝐴𝑟) 24.9838 

𝑃𝑔15 (𝑀𝑊) 30–100 87.3883 𝑉𝑔15 (𝑝. 𝑢) 1.0502 𝑄𝑐48 (𝑀𝑉𝐴𝑟) 7.47022 

𝑃𝑔18 (𝑀𝑊) 30–100 30.0006 𝑉𝑔18 (𝑝. 𝑢) 1.0501 𝑄𝑐74 (𝑀𝑉𝐴𝑟) 24.9999 

𝑃𝑔19 (𝑀𝑊) 30–100 60.1661 𝑉𝑔19 (𝑝. 𝑢) 1.0496 𝑄𝑐79 (𝑀𝑉𝐴𝑟) 24.9971 

𝑃𝑔24 (𝑀𝑊) 30–100 30.0002 𝑉𝑔24 (𝑝. 𝑢) 1.0579 𝑄𝑐82 (𝑀𝑉𝐴𝑟) 24.9465 

𝑃𝑔25 (𝑀𝑊) 96-320 96.0000 𝑉𝑔25 (𝑝. 𝑢) 1.0671 𝑄𝑐83 (𝑀𝑉𝐴𝑟) 10.9260 

𝑃𝑔26 (𝑀𝑊) 124.2-414 124.2000 𝑉𝑔26 (𝑝. 𝑢) 1.0546 𝑄𝑐105 (𝑀𝑉𝐴𝑟) 24.9992 

𝑃𝑔27 (𝑀𝑊) 30-100 48.4661 𝑉𝑔27 (𝑝. 𝑢) 1.0525 𝑄𝑐107 (𝑀𝑉𝐴𝑟) 0.15651 

𝑃𝑔31 (𝑀𝑊) 32.1-107 62.2590 𝑉𝑔31 (𝑝. 𝑢) 1.0519 𝑄𝑐110 (𝑀𝑉𝐴𝑟) 18.5319 

𝑃𝑔32 (𝑀𝑊) 30–100 37.1864 𝑉𝑔32 (𝑝. 𝑢) 1.0518 𝑇8 (𝑝. 𝑢) 0.98264 

𝑃𝑔34 (𝑀𝑊) 30–100 65.6885 𝑉𝑔34 (𝑝. 𝑢) 1.0462 𝑇32 (𝑝. 𝑢) 1.04261 

𝑃𝑔36 (𝑀𝑊) 30–100 55.2984 𝑉𝑔36 (𝑝. 𝑢) 1.0435 𝑇36 (𝑝. 𝑢) 0.97987 

𝑃𝑔40 (𝑀𝑊) 30–100 99.9999 𝑉𝑔40 (𝑝. 𝑢) 1.0403 𝑇51 (𝑝. 𝑢) 0.98036 

𝑃𝑔42 (𝑀𝑊) 30–100 99.9987 𝑉𝑔42 (𝑝. 𝑢) 1.0387 𝑇93(𝑝. 𝑢) 1.00009 

𝑃𝑔46 (𝑀𝑊) 35.7-119 81.1353 𝑉𝑔46 (𝑝. 𝑢) 1.0364 𝑇95 (𝑝. 𝑢) 0.99712 

𝑃𝑔49 (𝑀𝑊) 91.2-304 142.2017 𝑉𝑔49 (𝑝. 𝑢) 1.0349 𝑇102(𝑝. 𝑢) 0.97309 

𝑃𝑔54 (𝑀𝑊) 44.4-148 147.9995 𝑉𝑔54 (𝑝. 𝑢) 1.0294 𝑇107 (𝑝. 𝑢) 0.96532 

𝑃𝑔55 (𝑀𝑊) 30-100 70.3444 𝑉𝑔55 (𝑝. 𝑢) 1.0289 𝑇127 (𝑝. 𝑢) 0.96915 

𝑃𝑔56 (𝑀𝑊) 30-100 99.9989 𝑉𝑔56 (𝑝. 𝑢) 1.0288 Fuel Cost ($/h) 155741.09 
𝑃𝑔59 (𝑀𝑊) 76.5-255 254.1118 𝑉𝑔59 (𝑝. 𝑢) 1.0282 𝑉𝐷 (𝑝. 𝑢) 2.5323 
𝑃𝑔61 (𝑀𝑊) 78-260 78.0000 𝑉𝑔61 (𝑝. 𝑢) 1.0289 𝑃𝑙𝑜𝑠𝑠 (MW) 16.4688 
𝑃𝑔62 (𝑀𝑊) 30-100 64.0547 𝑉𝑔62 (𝑝. 𝑢) 1.0276 𝑃𝐺69 (Swing Bus) 3.4037 
𝑃𝑔65 (𝑀𝑊) 147.3-491 147.3110 𝑉𝑔65 (𝑝. 𝑢) 1.0349   

𝑃𝑔66 (𝑀𝑊) 147.6-492 147.6050 𝑉𝑔66 (𝑝. 𝑢) 1.0362   

𝑃𝑔70 (𝑀𝑊) 30-100 30.0007 𝑉𝑔69 (𝑝. 𝑢) 1.0419   

𝑃𝑔72 (𝑀𝑊) 30-100 30.0001 𝑉𝑔70 (𝑝. 𝑢) 1.0439   

𝑃𝑔73 (𝑀𝑊) 30-100 30.0012 𝑉𝑔72 (𝑝. 𝑢) 1.0567   

𝑃𝑔74 (𝑀𝑊) 30-100 96.1758 𝑉𝑔73 (𝑝. 𝑢) 1.0499   

𝑃𝑔76 (𝑀𝑊) 30-100 99.9328 𝑉𝑔74 (𝑝. 𝑢) 1.0413   

𝑃𝑔77 (𝑀𝑊) 30-100 99.9809 𝑉𝑔76 (𝑝. 𝑢) 1.0314   

𝑃𝑔80 (𝑀𝑊) 173.1-577 286.763 𝑉𝑔77 (𝑝. 𝑢) 1.0429   

𝑃𝑔85 (𝑀𝑊) 30-100 32.2496 𝑉𝑔80 (𝑝. 𝑢) 1.0488   

𝑃𝑔87 (𝑀𝑊) 31.2-104 31.2013 𝑉𝑔85 (𝑝. 𝑢) 1.0554   

𝑃𝑔89 (𝑀𝑊) 212.1-707 212.1151 𝑉𝑔87 (𝑝. 𝑢) 1.0733   

𝑃𝑔90 (𝑀𝑊) 30-100 99.9387 𝑉𝑔89 (𝑝. 𝑢) 1.0645   

𝑃𝑔91 (𝑀𝑊) 30-100 30.0060 𝑉𝑔90 (𝑝. 𝑢) 1.0569   

𝑃𝑔92 (𝑀𝑊) 30-100 30.0003 𝑉𝑔91 (𝑝.𝑢) 1.0593   

𝑃𝑔99 (𝑀𝑊) 30-100 39.7779 𝑉𝑔92 (𝑝. 𝑢) 1.0543   

𝑃𝑔100 (𝑀𝑊) 105.6-352 105.6001 𝑉𝑔99 (𝑝. 𝑢) 1.0508   

𝑃𝑔103 (𝑀𝑊) 42-140 42.0015 𝑉𝑔100 (𝑝. 𝑢) 1.0519   

𝑃𝑔104 (𝑀𝑊) 30-100 32.9776 𝑉𝑔103 (𝑝. 𝑢) 1.0531   

𝑃𝑔105 (𝑀𝑊) 30-100 52.5637 𝑉𝑔104 (𝑝. 𝑢) 1.0507   

𝑃𝑔107 (𝑀𝑊) 30-100 57.7776 𝑉𝑔105 (𝑝. 𝑢) 1.0504   

𝑃𝑔110 (𝑀𝑊) 30-100 30.01218 𝑉𝑔107 (𝑝. 𝑢) 1.0506   

𝑃𝑔111 (𝑀𝑊) 40.8-136 40.80305 𝑉𝑔110 (𝑝. 𝑢) 1.0538   

𝑃𝑔112 (𝑀𝑊) 30-100 51.60743 𝑉𝑔111 (𝑝. 𝑢) 1.0628   

𝑃𝑔113 (𝑀𝑊) 30-100 30.00222 𝑉𝑔112 (𝑝. 𝑢) 1.0502   

𝑃𝑔116 (𝑀𝑊) 30-100 74.5478 𝑉𝑔113 (𝑝. 𝑢) 1.0563   

   𝑉𝑔116 (𝑝. 𝑢) 1.0326   
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Figure 3. Convergence curves: (a) Case-1, (b) Case-2), (c) Case-3, (d) Case-4, (e) Case-5, (f) Case-6. 
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Figure 4. Box-plots for (a) Case-1, (b) Case-2), (c) Case-3, (d) Case-4, (e) Case-5 (f) Case-6. 
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Table 6. Wilcoxon test results. 

Problem Cases 
ARO vs CSBO AVOA vs CSBO CGO vs CSBO 

R+ R- p-value R+ R- p-value R+ R- p-value 
Case-1 1 464 1.92 x 10-6 0 465 1.73 x 10-6 0 465 1.73 x 10-6 
Case-2 0 465 1.73 x 10-6 0 465 1.73 x 10-6 0 465 1.73 x 10-6 
Case-3 0 465 1.73 x 10-6 0 465 1.73 x 10-6 2 463 2.12 x 10-6 
Case-4 0 465 1.73 x 10-6 0 465 1.73 x 10-6 2 463 2.12 x 10-6 
Case-5 0 465 1.73 x 10-6 0 465 1.73 x 10-6 0 465 1.73 x 10-6 
Case-6 0 465 1.73 x 10-6 0 465 1.73 x 10-6 0 465 1.73 x 10-6 

 
Table 7. Comparison of the CSBO algorithm with literature studies. 

Case no. Algorithms Best Fitness Fuel Cost 𝑃𝑙𝑜𝑠𝑠 𝑉𝐷 L-index 

Case-1 

CSBO 41666.23 41666.23 14.8593 1.70336 0.2789 
SP-DE [22] 41667.82 41667.82 14.9090 1.54367 0.28123 

ECHT-DE [22] 41670.56 41670.56 14.9479 1.50319 0.28886 
SF-DE [22] 41667.85 41667.85 14.8864 1.64209 0.27971 

DE [26] 41682 41682 NA NA NA 
MSA [27] 41673.72 41673.72 15.0526 1.5508 0.28392 
ICBO [28] 41697.33 41697.33 15.5470 1.3173 0.27760 
DSA [29] 41686.82 41686.82 NA 1.0833 0.24353 

APFPA [30] 41628.75a 41628.75a 14.0470 3.5571a NA 
MICA-TLA [31] 41675.05 41675.05 15.0149 1.6161 NA 
ARCBBO [32] 41686 41686 15.3769 NA NA 
LTLBO [33] 41679.55 41679.55 15.1589 NA NA 

Case-2 

CSBO 41774.45 41697.22 15.5851 0.7723 0.2930 
SP-DE [22] 41774.75 41697.50 15.5897 0.7725 0.29228 

ECHT-DE [22] 41776.48 41694.82 15.5806 0.81659 0.29198 
SF-DE [22] 41775.09 41697.52 15.5616 0.77572 0.29262 
MSA [27] 41782.80 41714.98 15.9214 0.6782 0.29533 
MFO [27] 41786.66 41718.87 16.2189 0.6780 0.29525 
DSA [29] 41775.60 41699.40 NA 0.7620 0.2471 

MICA-TLA [31] 42013.08 41959.18 19.909 0.5390 NA 

Case-3 

CSBO 41693.96 41666.10 14.8500 1.7059 0.2785 
SP-DE [22] 41696.54 41668.45 15.012 1.60803 0.28092 

ECHT-DE [22] 41699.25 41671.09 15.0275 1.56188 0.28152 
SF-DE [22] 41695.55 41667.53 14.8963 1.61174 0.28022 
MSA [27] 41703.48 41675.99 15.0026 1.7236 0.27481 
MFO [27] 41707.66 41680.19 15.1026 1.7245 0.27467 
DSA [29] 41785.05 41761.22 NA 1.0573 0.2383 

Case-4 

CSBO 0.5871 48524.40 20.3134 0.58710 0.3008 
SP-DE [22] 0.59267 45549.49 18.4275 0.59267 0.30052 

ECHT-DE [22] 0.60416 46813.22 19.0821 0.60416 0.3008 
SF-DE [22] 0.59584 45246.02 18.4697 0.59584 0.30135 

DE [26] 0.5839b NA NA 0.5839b NA 
KHA [34] 0.5810b 42006.44 NA 0.5810b NA 

APFPA [30] 0.8909 43485.93 12.1513 0.8909 NA 

Case-5 
CSBO 134934.3 134934.3 57.8922 2.9658 NA 

SP-DE [22] 135055.7 135055.7 60.9596 1.0715 NA 

Case-6 
CSBO 16.4688 155741.09 16.4688 2.5323 NA 

SP-DE [22] 17.6946 155724.9 17.6946 0.8663 NA 
aLoad bus voltage constraint is violated, bLimits for shunt compensators are violated. 
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