
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 73, Number 1, Pages 153–164 (2024)
DOI:10.31801/cfsuasmas.1282587
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received: March 15, 2023; Accepted: October 9, 2023

AFFINE MAPPINGS AND MULTIPLIERS FOR WEIGHTED

ORLICZ SPACES OVER THE AFFINE GROUP R+ × R

Rüya ÜSTER

Department of Mathematics, Faculty of Science, İstanbul University, İstanbul, TÜRKİYE

Abstract. Let A = R+ × R be the affine group with a right Haar measure

µ, ω be a weight function on A and Φ be a Young function. We characterize

the affine continuous mappings on the subsets of LΦ(A, ω). Moreover we show
that there exists an isometric isomorphism between the multiplier of the pair

(L1(A) ∩ LΦ(A), L1(A)) and the space of bounded measures M(A).

1. Introduction

Orlicz spaces are an important concept in analysis and applications (see [19,
23, 24]). This concept extends the classical concept of Lp Lebesgue spaces for
p ≥ 1. A convex function Φ(x) is used in place of the function xp appearing in the
definition of Lp spaces. This function Φ is called a Young function. In addition to
Lp spaces, several function spaces can be considered as Orlicz spaces; for example
L log+ L Zygmund spaces, which are Banach spaces related to Hardy-Littlewood
maximal functions. Moreover, Sobolev spaces can be also considered as subspaces of
Orlicz spaces (see [5]). Most of the features of Orlicz spaces have been investigated
thoroughly (see [23], for example), especially, Orlicz spaces determined on measure
spaces (see for example [12, 14, 17, 23]). In recent years, Orlicz spaces and their
weighted cases are examined as Banach algebras over locally compact groups (lcg).
Moreover their several properties are also studied (see [1, 20–22,27,28]).

On the other hand one of the basic problems in harmonic analysis is the de-
scription of multipliers. Multipliers have been considered in several contexts, for
example Banach algebras and Banach modules theories, partial differential equa-
tions, the existence of invariant means, etc. Our aim in this paper is to investigate
the affine continuous mappings for the weighted Orlicz space LΦ(A, ω) over the
affine group A and study the multiplier problem for LΦ(A) ∩ L1(A). The affine
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group chosen is a prime example of a nonabelian group on which harmonic analysis
and even more applied time-frequency analysis questions are studied (see [8, 9]).

For Lp spaces, in [16], Lau studied the affine mappings T between the subsets of

Lebesgue spaces. In [27], Üster and Öztop studied continuous affine mappings on
the subsets of Orlicz spaces. On the other hand the characterization of multipliers
for weighted Lebesgue spaces has been given by Gaudry [10]. (See also [7].) In
[10], Gaudry showed that the multiplier space of L1(G,ω) can be characterized by

M(G,ω). Moreover in [28], Üster characterized the compact mulipliers of LΦ(G,ω).
Here G denotes a lcg. (See Section 2 for notation.)

The paper is organized as follows. In Section 2, we recall some basic definitions
and notions on Orlicz and weighted Orlicz spaces. In Section 3, we study contin-
uous affine mappings on subsets of weighted Orlicz space LΦ(A, ω) and we give a
characterization for the multipliers of LΦ(A) ∩ L1(A).

2. Preliminaries

We start this section by introducing some basic facts for an affine group and
essential constructions on it.

Let A := (R+ × R, ·A) be the affine group equipped with the multiplication

(s, t) ·A (x, y) = (sx, sy + t), (1)

for (s, t), (x, y) ∈ A. Note that (1, 0) ·A (s, t) = (s, t) ·A (1, 0) = (s, t) and
(s, t) ·A (s−1,−s−1t) = (s−1,−s−1t) ·A (s, t) = (1, 0). Thus A, endowed with the
multiplication (1), becomes a group and this group is called the affine group.

Since a mapping of the real line can be defined by Fs,t : R → R such that

Fs,t(x) = (s, t) · x = sx+ t, x ∈ R

for any (s, t) ∈ A, the affine group is also called the sx+ t group. Fs,t is the affine
mapping of the real line R and this operation is coherent with (1).

We can represent the affine group A in matrix form as

A :=

{(
s t
0 1

)
: s > 0, t ∈ R

}
.

The inverse and the identity elements are given by(
s−1 −s−1t
0 1

)
, I =

(
1 0
0 1

)
.

The operations of the inversion and multiplication are continuous in the product
topology. Thus the affine group A is a locally compact group and

dν(x, y) =
dx

x2
dy

dµ(x, y) =
dx

x
dy
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are the left and right Haar measures, respectively (for more details see [13]). Now
since

dν(x, y) =
dx

x2
dy =

1

x
dµ(x, y),

the affine group is not unimodular. The modular function on the affine group is
∆(x, y) = x−1.

Throughout this work we use the right Haar measure dµ on A.
Let f : A → C and (s, t) ∈ A. We use L(s,t) for the left translation and R(s,t) for

the right translation given by

(L(s,t)f)(x, y) := f((s, t)−1 ·A (x, y)) and (R(s,t)f)(x, y) := f((x, y) ·A (s, t)−1).

Next we give some notions regarding Orlicz spaces, weighted Orlicz spaces and
Young functions. Our main references are [12] and [23].

Definition 1. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is
convex, Φ(0) = 0 and lim

t→∞
Φ(t) = +∞.

For a Young function Φ, its conjugate function Ψ is given by

Ψ(t) = sup{st− Φ(s) : s ≥ 0} (t ≥ 0).

The pair (Φ,Ψ) of Young functions Φ,Ψ is said to be (Young) conjugate and we
have

st ≤ Φ(s) + Ψ(t) (∀s, t ≥ 0). (2)

In this paper we only consider the real-valued Young functions. Clearly Φ is
continuous and limt→∞ Φ(t) = ∞. Note that the continuity of Φ may not imply
the continuity of Ψ.

Let us recall the following facts about Orlicz spaces. Let (Φ,Ψ) be conjugate
Young functions. Then the Orlicz space LΦ(A) is defined to be

LΦ(A) = {f : A → C :

∫
A

Φ(α|f(x, y)|) dx
x
dy < ∞ for some α > 0}.

Here f and g in LΦ(A) are equivalent if f = g a.e. Recall that an Orlicz space is a
Banach space with respect to (Orlicz) norm which is defined by

∥f∥Φ = sup

{∫
A

|f(x, y)ν(x, y)| dx
x
dy :

∫
A

Ψ(|ν(x, y)|) dx
x
dy ≤ 1

}
for f ∈ LΦ(A). Here (Φ,Ψ) are conjugate Young functions.

Another norm on an Orlicz space is the Luxemburg norm NΦ(f) defined by

NΦ(f) = inf

{
λ > 0 :

∫
A

Φ

(
|f(x, y)|

λ

)
dx

x
dy ≤ 1

}
.

Note that the Orlicz and Luxemburg norms are equivalent; that is,

NΦ(·) ≤ ∥ · ∥Φ ≤ 2NΦ(·).
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We shall use the following definition in the last section. In [4] and [29], the main
motivation to use this definition is to estimate the norm of the dilation operator.
Here we use a result of Lemma 3.3 given in [29].

Given γ > 0 one can define

NΦ,γ(f) := inf{λ > 0 :

∫
A

Φ

(
|f(x, y)|

λ

)
dx

x
dy ≤ γ}.

Here NΦ,1 = NΦ and these norms are equivalent on LΦ(A):
γ1

γ2

NΦ,γ1
(f) ≤ NΦ,γ2

(f) ≤ NΦ,γ1
(f)

for 0 < γ1 ≤ γ2.
For Orlicz spaces an important notion is the ∆2-condition. Let us recall the

following definition.

Definition 2. Let Φ : [0,∞) → [0,∞] be a Young function. Then Φ is said to
satisfy ∆2-condition (globally), if

Φ(2x) ≤ MΦ(x) (x ≥ 0)

for some absolute constant M > 0.

Note that if Φ ∈ ∆2, then LΦ(A)∗ ∼= LΨ(A), here ∗ denotes the dual [23,
Corollary 3.4.5]. Moreover if Ψ ∈ ∆2, then LΦ(A) is a reflexive Banach space
(see [14,23] for more general cases.)

On the other hand, the weighted Orlicz space LΦ(G,ω) is defined by Osançlıol

and Öztop in [20] over a lcg G and they consider the Banach algebra structure for
LΦ(G,ω).

A weight function ω is a positive, locally integrable function on A. In this paper
we assume that ω is continuous (see [25, Section 3.7]). The space LΦ(A, ω) is defined
by {f : fω ∈ LΦ(A)}. We also set

Nω
Φ (f) = NΦ(fω) (3)

for f ∈ LΦ(A, ω). Then Nω
Φ (·) defines a norm on LΦ(A, ω) and LΦ(A, ω) is a

Banach space with respect to this norm. Moreover, LΨ(A, ω−1) is the dual space
of (LΦ(A, ω), Nω

Φ (·)) if Φ fulfills the ∆2-condition. Here the duality is given by

⟨f, h⟩ =
∫
A

f(x, y)h(x, y)
dx

x
dy (f ∈ LΦ(A, ω), h ∈ LΨ(A, ω−1)),

where (Φ,Ψ) are conjugate Young functions and the space LΨ(A, ω−1) is endowed

with the norm Nω−1

Ψ (f) = NΨ(
f
ω ). So if Φ,Ψ fulfill the ∆2-condition then LΦ(A, ω)

is a reflexive Banach space (for the general case see [20]).

For Φ(x) = xp

p , 1 < p < ∞, the conjugate Young function is Ψ(y) = yq

q , where
1
p + 1

q = 1. Then LΦ(A, ω) and its norm are equal to the Lebesgue space Lp(A, ω)



AFFINE MAPPINGS AND MULTIPLIERS 157

and its norm. For p = 1 and Φ(x) = x the conjugate Young function is

Ψ(y) =

{
0, 0 ≤ y ≤ 1
∞, otherwise

and we have LΦ(A, ω) = L1(A, ω). Note that for p = 1, the Banach algebra L1(A, ω)
always has a bounded approximate identity.

As usual, M(A, ω) is the set of all complex bounded regular Borel measures λ
on A with

∥λ∥ω =

∫
A

ω(s, t)dλ(s, t) < ∞.

We denote the space of all continuous functions f on A vanishing at infinity
by C0(A, ω−1) with the norm ∥f∥∞,ω−1 = ∥ f

ω∥∞. Then M(A, ω) is realized as

(C0(A, ω−1))∗ by

⟨λ, f⟩ =
∫
A

f(x, y)dλ(x, y)

(for the general case see [11]). If λ ∈ M(A, ω) and f ∈ LΦ(A, ω) the convolution of
λ and f is defined by

(λ ∗ f)(x, y) =
∫
A

f((s, t)−1 ·A (x, y))dλ(s, t).

Moreover if f, g are measurable functions on A the convolution of f and g is defined
by

(f ∗ g)(x, y) =
∫
A

f(s, t)g((s, t)−1 ·A (x, y))
ds

s
dt ((x, y) ∈ A).

For each (s, t) ∈ A, let δ(s,t)(E) = 1E(s, t), where 1E is the characteristic function
of E ⊆ A. Then

(δ(s,t) ∗ f)(x, y) = f((s, t)−1 ·A (x, y)) = L(s,t)f(x, y) ((s, t) ∈ A)

where L(s,t)−1 is the left translation operator. For a function f on A, we use f̃

defined by f̃(x, y) = f((x, y)−1) for each (x, y) ∈ A.
Throughout the paper we study LΦ(A, ω) with the weight ω and the ∆2-condition

on a Young function Φ.

3. Main Results

In this section we characterize the affine continuous mappings for LΦ(A, ω) over
the affine gorup A and we study the multiplier problem for the space LΦ(A, ω) ∩
L1(A, ω). Let us first give the following definitions.

Definition 3. Let C ⊆ LΦ(A, ω). Then C is called left invariant if L(x,y)f ∈ C
for each f ∈ C and (x, y) ∈ A.
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Notice that for f ∈ LΦ(A, ω) and (x, y) ∈ A we have L(x,y)f ∈ LΦ(A, ω) and
Nω

Φ (L(x,y)f) ≤ ω(x, y)Nω
Φ (f) (for the general lcgs see [20, Lemma 2.3]).

Definition 4. Let X and Y be normed spaces and C, D be convex subsets of X
and Y respectively. Then a mapping f : C → D is called affine if

f(αx+ (1− α)y) = αf(x) + (1− α)f(y)

for each x, y ∈ C and α ∈ [0, 1].

For the subset K of LΦ(A, ω), we use coK for the convex hull of K. In addition
to the norm topology on LΦ(A, ω), we will take the weak topology w and the weak∗

topology w∗ for the pair (LΦ(A, ω), LΦ(A, ω)∗) where (Φ,Ψ) is a conjugate pair.
Moreover, we make use of the following subsets of M(A, ω):
(i) P (A, ω) = {µ ∈ M(A, ω) : ∥µ∥ω = 1 and µ ≥ 0},

(ii) P1(A, ω) = {h ∈ L1(A, ω) : ∥h∥1,ω = 1 and h ≥ 0},

(iii) E(A, ω) = { δ(x,y)

ω(x,y) : (x, y) ∈ A}.
We omit the proof of the following Lemma which appears in [28] for general locally
compact abelian groups. One can get the same result for nonabelian groups in a
similar way.

Lemma 1. We have P (A, ω) = P1(A, ω)
w∗

= coE(A, ω)
w∗

. Here · w∗
indicates

weak∗ closure.

Lemma 2. The following are true.

(i) Let f ∈ LΦ(A, ω). Then the mapping µ 7→ µ ∗ f is continuous from
(M(A, ω), w∗) to (LΦ(A, ω), w).

(ii) Let f ∈ L1(A, ω). Then the mapping h 7→ f ∗ h is continuous from
(LΦ(A, ω), w) to (LΦ(A, ω), w).

Proof. (i) Let {µα}α ⊆ M(A, ω) be a net that is weak* convergent to µ, (Φ,Ψ)
a conjugate Young pair and f ∈ LΦ(A, ω). Since LΦ(A, ω) is M(A, ω)-module
the mapping µ ∗ f is well defined (see [20]). Let T ∈ (LΦ(A, ω))∗, so there exists
g ∈ LΨ(A, ω−1) such that

T (f) =

∫
A

f(x, y)g(x, y)
dx

x
dy = ⟨f, g⟩.

Thus we obtain that

T (µα ∗ f) = ⟨µα ∗ f, g⟩

=

∫
A

(µα ∗ f)(x, y)g(x, y) dx
x
dy



AFFINE MAPPINGS AND MULTIPLIERS 159

=

∫
A

∫
A

f((s, t)−1 ·A (x, y)) dµα(s, t)g(x, y)
dx

x
dy

=

∫
A

∫
A

f̃((x, y)−1 ·A (s, t))g(x, y)
dx

x
dy dµα(s, t)

=

∫
A

(g ∗ f̃)(s, t) dµα(s, t)

= ⟨g ∗ f̃ , µα⟩.

Since f ∈ LΦ(A, ω) and g ∈ LΨ(A, ω−1), we have g∗f̃ ∈ C0(A, ω−1) (for the general

case see [20].) This implies that T (µα ∗ f) = ⟨g ∗ f̃ , µα⟩ → ⟨g ∗ f̃ , µ⟩ = ⟨µ ∗ f, g⟩ =
T (µ ∗ f), i.e., µα ∗ f weakly converges to µ ∗ f in LΦ(A, ω).

(ii) Let {hα}α ⊆ LΦ(A, ω) be a net that is weakly convergent to h and f ∈
L1(A, ω). We have limα⟨hα, g⟩ = ⟨h, g⟩ for all g ∈ (LΦ(A, ω))∗. Thus we obtain
that

⟨hα ∗ f, g⟩ =
∫
A

(hα ∗ f)(x, y)g(x, y)dx
x
dy

=

∫
A

∫
A

hα(s, t)f((s, t)
−1 ·A (x, y))g(x, y)

ds

s
dt

dx

x
dy

=

∫
A

∫
A

hα(s, t)f̃((x, y)
−1 ·A (s, t))g(x, y)

ds

s
dt

dx

x
dy

=

∫
A

hα(s, t)(g ∗ f̃)(s, t)
ds

s
dt

= ⟨hα, g ∗ f̃⟩.

This gives that ⟨hα ∗ f, g⟩ = ⟨hα, g ∗ f̃⟩ → ⟨h, g ∗ f̃⟩ = ⟨h ∗ f, g⟩. □

Theorem 1. Let C,D be convex, closed, left invariant subsets of LΦ2(A, ω) and
LΦ1(A, ω) respectively. If T : C → D is a continuous and affine mapping then the
following are equivalent.

(i) T (L(x,y)f) = L(x,y)(Tf) for each (x, y) ∈ A and f ∈ C.
(ii) T (ν ∗ f) = ν ∗ T (f) for each ν ∈ P1(A, ω) and f ∈ C.

Proof. (i ⇒ ii) Let f ∈ C and assume that T (L(x,y)f) = L(x,y)(Tf) for each
(x, y) ∈ A and ν ∈ P1(A, ω). Using Lemma 1, there exists a net {να}α in coE(A, ω),

να =
nα∑
i=1

λi
α δ(sα

i
,tα

i
)

ω(sαi ,tαi ) and να weak* converges to ν. Then by Lemma 2, {να ∗ f}α



160 R.ÜSTER

weakly converges to ν ∗ f for each f ∈ C. Thus we have

να ∗ f =

(
nα∑
i=1

λi
α

δ(sαi ,tαi )

ω(sαi , t
α
i )

)
∗ f =

nα∑
i=1

λα
i

ω(sαi , t
α
i )

L(sαi ,tαi )−1f.

As C is convex and left invariant, the net {να ∗ f}α is contained in C. Now using
Lemma 2 it follows that ν ∗ f ∈ C.

On the other hand since C and D are convex and closed they are weakly closed.
Moreover since T is continuous and affine T is weakly continuous when C and D
have their respective weak topologies (see [6, 26]). Then we get that

T (ν ∗ f) = lim
α

T (να ∗ f)

= lim
α

T

(( nα∑
i=1

λα
i

δ(sαi ,tαi )

ω(sαi , t
α
i )

)
∗ f
)

= lim
α

T

( nα∑
i=1

λα
i

ω(sαi , t
α
i )

(
δ(sαi ,tαi ) ∗ f

)

= lim
α

T

( nα∑
i=1

λα
i

ω(sαi , t
α
i )

(L(sαi ,tαi )−1f)

)

= lim
α

nα∑
i=1

λα
i

ω(sαi , t
α
i )

T (L(sαi ,tαi )−1f)

= lim
α

nα∑
i=1

λα
i

ω(sαi , t
α
i )

L(sαi ,tαi )−1T (f)

= lim
α

( nα∑
i=1

λα
i

δ(sαi ,tαi )

ω(sαi , t
α
i )

)
∗ T (f)

= lim
α

να ∗ T (f)

= ν ∗ T (f).

(ii ⇒ i) Conversely let (x, y) ∈ A. Using Lemma 1 there exists a net {να}α ⊆
P1(A, ω) such that {να}α converges to δ(x,y)−1 in the weak* topology. If T (ν ∗f) =
ν ∗ T (f) for each ν ∈ P1(A, ω) and f ∈ C we have that

T (L(x,y)f) = T (δ(x,y)−1 ∗ f)

= lim
α

T (να ∗ f)

= lim
α

να ∗ T (f)

= δ(x,y)−1 ∗ T (f)

= L(x,y)T (f).
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This completes the proof. □

Theorem 2. Let B be a weakly compact, bounded, left invariant, closed subset
of LΦ(A, ω) and T be a continuous affine mapping from P1(A, ω) to B. Then T
commutes with all left translations if and only if there exists an f ∈ B such that
T (g) = g ∗ f for each g ∈ P1(A, ω).

Proof. Let (x, y) ∈ A and assume that T (L(x,y)g) = L(x,y)(Tg) for each g ∈
P1(A, ω). Using Theorem 1 we have T (k ∗ g) = k ∗ T (g) for k, g ∈ P1(A, ω).
Let {uα}α ⊆ P1(A, ω) be a bounded approximate identity for L1(A, ω). Since B is
weakly compact and T (uα) ∈ B is bounded, there exists f ∈ B such that {T (uα)}α
converges to f weakly. Thus

T (g) = lim
α

T (g ∗ uα)

= lim
α

g ∗ T (uα)

= g ∗ f

and the result follows.
For the converse let (x, y) ∈ A and assume that f ∈ B such that T (g) = g ∗ f

for all g ∈ P1(A, ω). Then

L(x,y)T (g) = L(x,y)(g ∗ f)
= δ(x,y)−1 ∗ (g ∗ f)
= (δ(x,y)−1 ∗ g) ∗ f
= L(x,y)g ∗ f
= T (L(x,y)g)

which gives the required result. □

Now our purpose is to obtain a characterization for the multipliers of LΦ(A) ∩
L1(A). We observe that the following result does not work for the weighted case
and we give the result for the unweighted case.

We start with the definition of the left multiplier of LΦ(A).

Definition 5. Let T be a bounded linear operator from LΦ1(A) to LΦ2(A). Then
T is said to be a left multiplier for (LΦ2(A), LΦ1(A)) if T (L(x,y)f) = L(x,y)(Tf) for

all f ∈ LΦ2(A) and (x, y) ∈ A. We write M(LΦ2(A), LΦ1(A)) for the set of left
multipliers of (LΦ2(A), LΦ1(A)).

Remark 1. Observe that the normed space L1(A)∩LΦ(A) is a Banach space with
the norm

|||f ||| = ∥f∥1 +NΦ(f)

and dense in L1(A).
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The following lemma is important to us for our last result (for the proof see [29,
Lemma 3.3].)

Lemma 3. Let Φ be a Young function satisfying the ∆2 condition. If f ∈ LΦ(A)
then lim(a,b)→(+∞,+∞) NΦ(f + L(a,b)f) = NΦ, 12

(f).

Now we have the tools to give a characterization of the multipliers of LΦ(A) ∩
L1(A).

Theorem 3. Let T : L1(A) ∩ LΦ(A) → L1(A) be a linear mapping. Then the
following are equivalent.

(i) T ∈ M(L1(A) ∩ LΦ(A), L1(A)).
(ii) There exists a unique measure µ ∈ M(A) such that Tf = µ ∗ f for each

f ∈ L1(A) ∩ LΦ(A).
Furthermore the correspondence between T and µ defines an isometric iso-
morphism of M(L1(A) ∩ LΦ(A), L1(A)) onto M(A).

Proof. Assume that T ∈ M(L1(A) ∩ LΦ(A), L1(A)). Then for each f ∈ L1(A) ∩
LΦ(A) we obtain that

∥Tf∥1 ≤ ∥T∥(∥f∥1 +NΦ(f)). (4)

By Lemma 3 we have lim(s,t)→(∞,∞) NΦ(f + L(s,t)f) = NΦ, 12
(f). Using this fact

together with (4) we have that

2∥Tf∥1 = lim
(s,t)→(∞,∞)

∥Tf + L(s,t)Tf∥1

= lim
(s,t)→(∞,∞)

∥T (f + L(s,t)f)∥1

≤ lim
(s,t)→(∞,∞)

∥T∥(∥f + L(s,t)f∥1 +NΦ(f + L(s,t)f))

= ∥T∥(2∥f∥1 +NΦ, 12
(f))

for each f ∈ L1(A) ∩ LΦ(A). Therefore we obtain

∥Tf∥1 ≤ ∥T∥(∥f∥1 + 2−1NΦ, 12
(f)).

Applying this step n times we obtain

∥Tf∥1 ≤ ∥T∥(∥f∥1 + 2−nNΦ, 12
(f))

for f ∈ L1(A) ∩ LΦ(A). Since limn→∞ 2−n = 0 we deduce that ∥Tf∥1 ≤ ∥T∥∥f∥1.
Thus T defines a linear continuous mapping from L1(A)∩LΦ(A) to L1(A) com-

muting with left translations. Moreover since L1(A) ∩ LΦ(A) is dense in L1(A), T
determines a unique map S ∈ M(L1(A)) and ∥S∥ ≤ ∥T∥. Moreover there exists
a unique µ ∈ M(A) such that Sf = µ ∗ f for each f ∈ L1(A) and ∥µ∥ = ∥S∥
(see [30]). Therefore Tf = µ ∗ f for each f ∈ L1(A) ∩ LΦ(A) and ∥µ∥ ≤ ∥T∥.

Conversely, if µ ∈ M(A) and Tf = µ ∗ f for each f ∈ L1(A) ∩ LΦ(A) we obtain

∥Tf∥1 = ∥µ ∗ f∥1 ≤ ∥µ∥∥f∥1 ≤ ∥µ∥ |||f |||.
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Therefore T ∈ M(L1(A) ∩ LΦ(A), L1(A)) and ∥T∥ ≤ ∥µ∥.
This gives to equivalence of (i) and (ii).
It is clear that the correspondence between T and µ defines an isometric isomor-

phism from M(L1(A) ∩ LΦ(A), L1(A)) onto M(A). □
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[3] Birnbaum, Z. W., Orlicz, W., Über die Verallgemeinerung des Begriffes der zueinander kon-

jugerten Potenzen, Studia Math., 3 (1931), 1-67.

[4] Blasco, O., Osançlıol, A., Notes on bilinear multipliers on Orlicz spaces, Mathematische
Nachrichten, 292(12) (2019), 2522-2536. https://doi.org/10.1002/mana.201800551

[5] Cianchi, A., Pick, L., Slav́ıkova, L., Sobolev embeddings in Orlicz and Lorentz spaces with
measures, Journal of Mathematical Analysis and Applications, 485 (2020), Paper no. 123827.

https://doi.org/10.1016/j.jmaa.2019.123827

[6] Conway, J. B., A Course in Functional Analysis, 2nd Edition, Graduate Text in Mathematics,
Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4757-4383-8

[7] Edwards, R. E., The stability of weighted Lebesgue spaces, Trans. Amer. Math. Soc., 93

(1959), 369-394.
[8] Berge, E., Berge, S. M., Luef, F., Skrettingland, E., Affine quantum harmonic analysis, Jour-

nal of Functional Analysis, 282 (2022), 109327. https://doi.org/10.1016/j.jfa.2021.109327

[9] Berge, E., Berge, S. M., Luef, F., The affine Wigner distribution, Applied and Computational
Harmonic Analysis, 56 (2022), 150-175. https://doi.org/10.1016/j.acha.2021.08.006

[10] Gaudry, G. I., Multipliers of weighted Lebesgue and measure spaces, Proc. London Math.

Soc., 19 (1969), 327-340. https://doi.org/10.1112/plms/s3-19.2.327
[11] Ghahramani, F., Automorphism of weighted measure algebras, Conference on Automatic

Continuity and Banach Algebras, Canberra, Proc. Centre Math. Anal. Austral. Nat. Univ.,
21 (1989), 144-154.
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