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The residual power series method for solving fractional Klein-Gordon
equation

Zeliha Korpmar”

ABSTRACT

In this article, the residual power series method (RPSM) for solving fractional Klein-Gordon equations is introduced.
Residual power series algorithm gets Maclaurin expansion of the solution. The solutions of our equation are computed
in the form of rapidly convergent series with easily calculable components by using mathematica software package.
Reliability of the method is given with graphical consequences and series solutions. The found consequences show
that the method is a power and efficient method in determination of solution the time fractional Klein-Gordon
equations.
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Kesirli Klein-Gordon denklemi i¢in residual power seri metodu
oz

Bu makalede kesirli Klein-Gordon denklemlerinin ¢6ziimleri i¢in Residual Power Seri metodu (RPSM) uygulanmustir.
Residual Power Seri algoritmasi ¢oziimiin Maclaurin a¢ilimini verir. Bu denklemlerin ¢6ziimleri, Mathematica
programi kullanilarak kolayca hesaplanan bilesenler ile hizli yakinsak seriler formunda hesaplanmistir. Metodun
giivenilirligi, seri ¢oziimler ve grafik sonuglar yardimiyla verilmistir. Bulunan sonuglar, kullandigimiz metodun kesirli
Klein-Gordon denklemlerinin seri ¢éziimlerinin belirlenmesinde gii¢lii ve etkili bir metot oldugunu gostermektedir.

Anahtar Kelimeler: Residual power seri metodu, Kesirli Klein-Gordon denklemleri, Seri ¢oziim.
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1. INTRODUCTION

In the last few years, considerable interest in fractional
calculus used in many fields, such as regular variation in
thermodynamics, biophysics, blood flow phenomena,
aerodynamics, viscoelasticity, electrical circuits, electro-
analytical chemistry, biology, control theory, etc. [1-4].
Besides there has been a significant theoretical
development in fractional differential equations and its
applications [5-10]. On the other hand, fractional
derivatives supply an important implement for the
definition of hereditary characteristics of different
necessaries and treatment. This is the fundamental
advantage of fractional differential equations in return
classical integer-order problems.

In this paper, we apply the RPSM to find series solution
for fractional Klein-Gordon equations. The RPSM was
developed as an efficient method for fuzzy differential
equations [11]. The RPSM is constituted with an repeated
algorithm. It has been successfully put into practiced to
handle the approximate solution of Lane-Emden
equation [12,13], predicting and representing the
multiplicity of solutions to boundary value problems of
fractional order [14], constructing and predicting the
solitary pattern solutions for nonlinear time-fractional
dispersive partial differential equations [15], the
approximate solution of the nonlinear fractional KdV-
Burgers equation [16], the approximate solutions of
fractional population diffusion model [17], and the
numerical solutions of linear non-homogeneous partial
differential equations of fractional order [18].The
proposed method is an alternative process for getting
analytic Maclaurin series solution of problems.

In this paper, we consider the following the time-
fractional Klein-Gordon equations of the form [19,20]

o“u(x,t) _ o*u(x,t)
ata - 2

+au(x,t) +bu®(x,t) +cu’(x,t),

1)
t>0,0<a<l.

In the second section of this work, some preliminary
results related to the Caputo derivative and the fractional
power series are described. In Section 3, base opinion of
the RPSM is constituted to construct the solution of the
time fractional Klein-Gordon equations and some
graphical consequens are included to demonstrate the
reliability and efficiency of the method. Finally,
consequences are introduced in Section 4.

2. BASIC DEFINITIONS OF
FRACTIONAL CALCULUS THEORY

We first illustrate the main descriptions and various
features of the fractional calculus theory [2] in this
section.
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Definition 2.1. The Riemann-Liouville fractional
integral operator of order a(« > 0) is defined as

Jf() = %E(x—t)“ f(t)dt, a>0,x>0,
I°F(x) = f(x). @)

Definition 2.2. The Caputo fractional derivatives of
order ¢ is defined as

dm
dt™

1 X

Df(X)=J"“D"f(X) = ——| (x-t)™*
(x) (%) r(m_a)j (x=1)
®)

m-1<a<m, x>0,
where D™ is the classical differential operator of order
m.
For the Caputo derivative we have

DX’ =0, f<a,
axﬂ - F(ﬂ"'l) Xﬁ—a ﬂ> a.
rB+l-a) '~

Definition 2.3. For N to be the smallest integer that
exceeds ¢, the Caputo time-fractional derivative
operator of order ¢ of u(X,t) is defined as [13,16],

. o“u(x,t 1 t e 0"U(X,
o =40 el o e e

n-l<a<n, (4)

o"u(x,t)

Dlu(x,t) = eN,

Definition 2.4. A power series (PS) expansion of the
form

D e t—t))™ =+ (t—t))“ +C,(t—t,)* +...,

m=0

O<m-l<as<mtxt,

is named fractional PS at =t [13].
Definition 2.5. A PS of the form

D O -t)™ = £, (0 + H00E—t)" + £, (I -t)* +..

0O<m-l<a<mt>t,, ®)
is named fractional PS at t =t, [13].

Theorem 2.1.(see [16] for proof.) The fractional PS
expansion of u(x,t) at t, should be of the form

2 DM u(x,t,)

u(x,t) = t—t,)",
(X9 mzzo I'(ma +1) (t-%)
O<m-l<as<mxel,t, <t<t,+R, (6)
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which is a Generalized Taylor's series formula. If one set
a =1 in Eqg. (2.5), then the classical Taylor's series
formula

U(X’t) za u(Xt)(tm‘;),Xe|,t0St<t0+R,

m=

0
is obtained [16].

3 APPLICATIONS FOR RPSM
ALGORITHM AND GRAPHICAL RESULTS

Example 1.
Substituting a=1,b=0 and ¢ =0 into Eq.(1), consider

fractional linear Klein-Gordon equation with initial
condition:

a 2
ou 6—2+u t>0,0<a <1,(7) u(x,0)=1+sin(x).
a” X
(8)
The exact solution for (7) for a=1 is [19]
tna
u(x,t) =1+sin(x) + 8
x1)= ) Z:l“(n01+1)

We apply the RPSM to find out series solution for time
fractional linear Klein-Gordon equation subject to given
initial conditions by replacing its fractional power series
expansion with its truncated residual function. From this
equation a repetition formula for the calculation of
coefficients is supplied, while coefficients in fractional
PS expansion can be calculated repeatedly by repeated
fractional differentiation of the truncated residual
function [13,18].

The RPSM propose the solution for Egs. (7) and (8) with
a fractional power series at t =0 [11]. Suppose that the
solution takes the expansion form,

Z 2 (%) (tna )O<aS1,X€|,OSt<R.(9)
n=0 no

Next, we let u, to denote k. truncated series of U,

Zf()r(1 na)’

n=0
where Yo = fo(¥) =u(x,0) = f(x).
In this equatlons, the function u(x,t) is assumed to be a
function of time and space, which means that u(x,t) is
disappearing for t<0 and x <0 and this function is

considered to be analytic on t > 0. Also, the function
f (x) is considered to be analytic on x> 0.

Also, Eq. (10) can be written as

L 0<a<lxelo<t<Rr (10)

na

u, = f(x)+nZ:1:fn(x)r(1t+rm), (11)

0<a<1,0<t<R,xel, k=10

The residual power series method for solving fractional Klein-Gordon equation

At first, to find the value of coefficients f_(x),
n=1,2,3,...,k inseries expansion of Eq.(11), we define
residual function Res ; for Eq.(1) as

_0u du
Res=——— —
ot*  ox
and the K -th residual function, Res, as follows
o“u, o4
Res, :at—ak—yzk—uk,k =1,2,3,... (12)

As in [11-14], To give residual PS algorithm:
Firstly, we replace the K -th truncated series of U into

Eq.(7).

Secondly, we find the fractional derivative formula
DX of both Res,,, k =1,c0 and finally, we can
solve found system

D Res,, =00<a<lxel,t=0k=10 (13)
to get the required coefficients f (x) for N =1k. in

Eqg. (11).

Hence, to determine f,(x), we write k =1 in Eq. (12),
o%u, o

AERIF .

where
ta

u =—— . (x)+ f(x

e 0+ )
for

U, = fo(X) = f(X) = u(x,0) =1+sin(x).
Therefore,

e t
Tra) f, () - [l"(l )f(X)+f(X)]
From Eq. (13) we deduce that Res, =0 (t =0) and thus,
f,(x) =1.(15)
Therefore, the 1-st RPS approximate solutions are

Res, = f,(x)— " (x) -

a

u, = ﬁ +1+sin (X) (16)

Similarly, to find out the form of the second unknown
coefficient f,(x), we write k = 2 in Eq. (12)

o°u, o«
where
_f ta 2(1
4, = 100+ s 500 Faam P
Therefore,
Res, = f (e
e = 00+ gy 00~ T 0010 00
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t2a . ta
—m f, (X)—(f(x)+m f,(x)
tZa
Frar2a) 2

From Eq. (13) we deduce that D Res, =0 (t =0) and
thus,

f,(x)=1 17
Therefore, the 2 -st RPS approximate solutions are
ta tZa

+1+sin (X).

u, = +

I'l+a) T'(l+2a)
Similarly to determine f,(X), we write k=3 in Eq. D)
(12),

a 2
where
U= 00+ 00+ = 00+ 10
I'l+ea) I'(l+2a) T'(1+3a)
Therefore,
Res,(x,t) = fl(x)+L fz(x)+L f5(x)
I'l+ea) I'l+2a)
_(f" 09+ te o 0+ t2e ¢ ) Figure 1.The surface graph of the exact solution u(x,t)
Il+a) * r(1+2a) ° and the u.(x,t) approximate solution of the time
N 3« £ () = (F(x) + t” £(%) fractional linear Klein-Gordon equation (a =0.3)(a)
r(l+3a) ° rl+a) ' (18) Us(x,1)» (B)u(x,t) -
tZa t3a
Tarze " raraa #) 20
From Egs. (13) we deduce that D*“Res, =0 (t =0) and a5
thus, A
(=1 (19) =
2 asll
Then, — s
U, = ta + t + t= +1+sin (X). (20) X
I'l+a) T(l+2a) 2I(1+3a) —
Similarly,
,(x) = 1 F.(X) = 1 1) Figure 2. uy(x,t) and u(x,t) solutions of the time
! 6" ° 24" fractional linear Klein-Gordon equation when ¢ =05,
Therefore, t=04.
U = 1+sin(x)+ ’ N £ These figure clear that u,(x,t) solution are closing the
s I'l+a) T'(1+2a) exact solution.
(22) Example 2.
{3« tée t5¢ Substituting a =0,b = -1 and ¢ =0 into Eq.(1),consider
+ 2T (1+32) + 6T (1+ 4a) + 24T (1+5¢) fractional nonlinear Klein-Gordon differential equation
) o"u(x) _ ou(x.t) +u(x,t)®> =0, (23)
ot” Ox?
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t>00<a<l xeR,
by the initial condition
u(x,0) =1+sin (x). (24)

For equation (23), the K -th residual function, Res, as
follows:

a 2
u u
Res, = 0" 0 *+uf,k=123,.. (25)
ot*  ox
We apply repeating process as in the former application,
f (x,t) =—1-3sin (x) —sin*(X), b)

f,(x,t) =2—2c0s(2x) +11sin (x) +8sin?(X) + 2sin > (X),
fo(xt) = % (—153+ 244 cos(2x) —3cos(4x)
—306sin (x) + 58sin (3x)),

(26)
f,(01) = é (657 —1292¢0s(2x) + 83c0s(4X)
+1322sin (x) —5975sin (3x) + 3sin (5x)), c)

f (1) = 9—16 (—14442 + 31009¢0s(2X)

—5990c0s(4x) +15c0s(6x) —29616sin (x)

+22100sin (3x) —552sin (5x)),
Therefore,

a

(26)

Us =1+sin (x) + (—1—3sin (X) —sin? (X))F(l+ )

2a

t
I'l+2a)

+(2—2005(2x) +11sin (x) +8sin 2 (X) + 25in3(x)) d)

+ (; (=153 + 244cos(2x) — 3cos(4x) — 306sin (x) +58sin (3x))J

t3a

+ (i (657 —1292c0s(2x) +83cos(4x) +1322sin (x)
I'l+3a) 12

4a

+ (?1(5 (~14442+31009c0s(2X) S

—5975sin (3x) + 3sin (5x)) 1+ 42)
(04

tSzx

—5990c0s(4x) +15c0s(6x) —29616sin (x) + 22100sin (3x) —552sin (5x))) .
FigliréR. The surface graph of y_(x,t) approximate

solution of the two dimensional time fractional nonlinear
Klein-Gordon equation(a) u.(x,t) when «=0.1, (b)

us(x,t) when =03, (c)u(xt) when «=06, (d)
us(x,t) when o =0.9.
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Figure 3.u,(x,t) solution of the two dimensional time

fractional nonlinear Klein-Gordon equation when
a=0.5,0.6,0.7,0.8,0.9 (t=0.01 and t=0.09 ).

50

100

10 0 10 20

— u-Pm

Figure 5.y (x,t) and u,., (xt) solution of the two
dimensional time fractional nonlinear Klein-Gordon
equation when ¢ =0.5, t=0.8.

In figure 5, comparison among approximate solutions
with known results is made.These results obtained by
using residual power series method and homotopy
perturbation method [19].

Example 3.

Substituting a =—1,b =0 and ¢ =1 into Eq.(1),consider

fractional nonlinear Klein-Gordon differential equation

o“u(x,t)  o°u(x,t)
ot” ox?

t>0,0<a<l,xeR,

by the initial condition

u(x,0) = —sech(x). (28)

+u(x,t)—u(xt)® =0, (27)

For equation (23), the K -th residual function,

Res, as follows:
_ 0y, %,
ot” OX?
We apply repeating process as in the former application,

Res, +u, —ul, k=123,.. (29

The residual power series method for solving fractional Klein-Gordon equation

f,(x,t) = sech(x) —sech(x) tanh2(X),
f,(x,t) = (-5+4cosh(2x)) sech®(x),

fo(xt) = % (117 —112cosh(2x) +8cosh(4x))sech’ (x),

F,(x0) = %(—5537 1 6000cosh(2x)

+840cosh(4x) +16.cosh(6x)) sech®(x), (30)
f.(x,t) = 2714 (436657 —523208c0sh(2x) +105320cosh(4x)

—5504cosh(6x) +32cosh(8x)) sech™(x),
Therefore,

a

u; = —sech(x) + (sech(x) - sech(x) tanh? (X))F(1+ a)

2a

+(-5+4cosh(2)sech’ () s
(24

+ ; (117 -112cosh(2x) +8cosh(4x))sech’ (x)

3a
Y 1 55374 6000c0sh(2x)
I(1+3a) 6

+840cosh(4x) +16 cosh(6x))

t4a

(31)

U 1 (436657 -523208c0sh(2%)
IF(1+4a) 24

+105320cosh(4x) —5504 cosh(6x)

t50{

r'(1+5a)

+32cosh(8x)) sech™(x)

a)
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~06 \I\ ﬁ/

R ¥ 4
-08 *\j’
0 1 2 3 4 5
X

Figure 7.u(x,t) solution of the time fractional

nonlinear Klein-Gordon equation when
«=0.5,0.6,0.7,0.8,0.9 (t=001 and t =0.09 ).

e

X

N

[uN

10 20

— UM

Figure 8.y (x,ty and u,, (xt) solution of the two
dimensional time fractional nonlinear Klein-Gordon
equation when ¢ =0.8, t =0.8.

In figure 8, comparison among approximate

> obtained by using residual power series method and

solution of the time fractional nonlinear Klein-Gordon homotopy perturbation method [19].

equation(a) ug(x,t) when «=0.1, (b)us(x,t) when
a =03, (c)us(x,t) when o =06, (d) uy(x,t) when  Forexample 3, we give a part of mathematica.
a =09
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£y [x] = -Sech[x]:

t
w [x] = fo[x] + f1[x] =
T[l+al

n, [x] = -Sech[x] + » £ [=]:

t
T[l+al

Simplify[D[u, Pl:—ia]} _D[DIu, x], x] +u—u!]

5 t*
-Sech[x] - Sez:h[:c]1 + Sech[x] Tanh([x]" + f; [®] + —— £; [x] +
T[1+a]

a 3
[Sech[x] - ki fl[x]] - 17 [x]
T[1+a] T[1:a]
P
— =0:
T[1:a]

Solve[

_Sech[x] + Sech[x] Tanh[x]? s f;[x] + 3 [ ] Sech[x] £ [x]% -

r[1+al

a 3
(t—] fix1° + (£10x] - 3 Sech[x]® £ [x] - £, [x]) =0, f;
T[1+a]
f; [x] -+ Sech[x] - Sech[x] Tanh[x]:

T[1+a]

4 CONCLUSIONS

In this study the RPSM with new strategies has
employed to obtain approximate analytical solution of
Klein-Gordon equations.The fundamental objective of
this paper to introduce in an algorithmic form and
implement a new analytical repeated algorithm derived
from on the RPS. This algorithm provides accurate
numerical solutions without discretization for nonlinear
differential equations.

For example 1, Ugpgy, (X,1) and ug,,. (X, t)

solutions of the time fractional linear Klein-Gordon
equation compared in figure 2. For example 2,

Urpsyy (X,) and Upay (X, 1) solutions of the two

dimensional time fractional nonlinear Klein-Gordon
equation compared in figure 5 and For example 3,

Urpsy (%, 1) and Upay (X, 1) solutions of the two

dimensional time fractional nonlinear Klein-Gordon
equation compared in figure 8. Graphical and numerical
consequences are introduced to illustrate the solutions.
From the results, it is clear that the RPSM vyields very
accurate and convergent approximate solutions using
only a few iterates in fractional problems. The work
emphasized our belief that the present method can be
applied as an alternative to get analytic solutions of
different kinds of fractional linear and nonlinear partial
differential equations applied in mathematics, physics
and engineering.
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