
 

SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERGİSİ 

SAKARYA UNIVERSITY JOURNAL OF SCIENCE 

 

e-ISSN: 2147-835X 

Dergi sayfası: http://dergipark.gov.tr/saufenbilder 

Geliş/Received 

04.08.2016 

Kabul/Accepted 

15.10.2016 

Doi 

10.16984/saufenbilder.283991 

 

 

 

 

The residual power series method for solving fractional Klein-Gordon 

equation 

 

Zeliha Körpınar*  

 
 

 
ABSTRACT 

 

In this article, the residual power series method (RPSM) for solving fractional Klein-Gordon equations is introduced. 

Residual power series algorithm gets Maclaurin expansion of the solution. The solutions of our equation are computed 

in the form of rapidly convergent series with easily calculable components by using mathematica software package. 

Reliability of the method is given with graphical consequences and series solutions. The found consequences show 

that the method is a power and efficient method in determination of solution the time fractional Klein-Gordon 

equations. 
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Kesirli Klein-Gordon denklemi için residual power seri metodu 
 

ÖZ 

 

Bu makalede kesirli Klein-Gordon denklemlerinin çözümleri için Residual Power Seri metodu (RPSM) uygulanmıştır. 

Residual Power Seri algoritması çözümün Maclaurin açılımını verir. Bu denklemlerin çözümleri, Mathematica 

programı kullanılarak kolayca hesaplanan bileşenler ile hızlı yakınsak seriler formunda hesaplanmıştır. Metodun 

güvenilirliği, seri çözümler ve grafik sonuçlar yardımıyla verilmiştir. Bulunan sonuçlar, kullandığımız metodun kesirli 

Klein-Gordon denklemlerinin seri çözümlerinin belirlenmesinde güçlü ve etkili bir metot olduğunu göstermektedir. 

 

Anahtar Kelimeler: Residual power seri  metodu, Kesirli Klein-Gordon denklemleri, Seri çözüm. 
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1. INTRODUCTION 

 

In the last few years, considerable interest in fractional 

calculus used in many fields, such as regular variation in 

thermodynamics, biophysics, blood flow phenomena, 

aerodynamics, viscoelasticity, electrical circuits, electro-

analytical chemistry, biology, control theory, etc. [1-4]. 

Besides there has been a significant theoretical 

development in fractional differential equations and its 

applications [5-10]. On the other hand, fractional 

derivatives supply an important implement for the 

definition of hereditary characteristics of different 

necessaries and treatment. This is the fundamental 

advantage of fractional differential equations in return 

classical integer-order problems. 

In this paper, we apply the RPSM to find series solution 

for fractional Klein-Gordon equations. The RPSM was 

developed as an efficient method for fuzzy differential 

equations [11]. The RPSM is constituted with an repeated 

algorithm. It has been successfully put into practiced to 

handle the approximate solution of Lane-Emden 

equation [12,13], predicting and representing the 

multiplicity of solutions to boundary value problems of 

fractional order [14], constructing and predicting the 

solitary pattern solutions for nonlinear time-fractional 

dispersive partial differential equations [15], the 

approximate solution of the nonlinear fractional KdV-

Burgers equation [16], the approximate solutions of 

fractional population diffusion model [17], and the 

numerical solutions of linear non-homogeneous partial 

differential equations of fractional order [18].The 

proposed method is an alternative process for getting 

analytic Maclaurin series solution of problems. 

In this paper, we consider the following the time-

fractional Klein-Gordon equations of the form [19,20] 
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In the second section of this work, some preliminary 

results related to the Caputo derivative and the fractional 

power series are described. In Section 3, base opinion of 

the RPSM is constituted to construct the solution of the 

time fractional Klein-Gordon equations and some 

graphical consequens are included to demonstrate the 

reliability and efficiency of the method. Finally, 

consequences are introduced in Section 4. 

 

2. BASIC DEFINITIONS OF 

FRACTIONAL CALCULUS THEORY  
 

We first illustrate the main descriptions and various 

features of the fractional calculus theory [2] in this 

section. 

Definition 2.1. The Riemann-Liouville fractional 

integral operator of order 0)(   is defined as 
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Definition 2.2. The Caputo fractional derivatives of 

order   is defined as 
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0,>,<1 xmm    

where mD  is the classical differential operator of order 

m . 

For the Caputo derivative we have 
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Definition 2.3. For n  to be the smallest integer that 

exceeds  , the Caputo time-fractional derivative 

operator of order   of ),( txu  is defined as [13,16], 
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Definition 2.4. A power series (PS) expansion of the 

form 
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is named fractional PS at 0= tt
[13]. 

Definition 2.5. A PS of the form 

...))(())(()(=))(( 2

020100

0=




  ttxfttxfxfttxf m

m

m                       

 

,,<10 0ttmm  
                                         

(5) 

is named fractional PS at 
0= tt [13]. 

Theorem 2.1.(see [16] for proof.) The fractional PS 

expansion of ),( txu  at 
0t  should be of the form  
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which is a Generalized Taylor's series formula. If one set 

1=  in Eq. (2.5), then the classical Taylor's series 

formula 
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is obtained [16]. 

 

3  APPLICATIONS FOR RPSM  

ALGORITHM AND GRAPHICAL RESULTS   
 

Example 1. 

Substituting 0=1,= ba  and 0=c  into Eq.(1), consider 

fractional linear Klein-Gordon equation with initial 

condition: 

1,<00,,=
2

2















tu
x

u

t

u
(7) ).(sin1=,0)( xxu    

(8) 

The exact solution for (7) for 1=  is [19] 
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We apply the RPSM to find out series solution for time 

fractional linear Klein-Gordon equation subject to given 

initial conditions by replacing its fractional power series 

expansion with its truncated residual function. From this 

equation a repetition formula for the calculation of 

coefficients is supplied, while coefficients in fractional 

PS expansion can be calculated repeatedly by repeated 

fractional differentiation of the truncated residual 

function [13,18]. 

The RPSM propose the solution for Eqs. (7) and (8) with 

a fractional power series at 0=t  [11]. Suppose that the 

solution takes the expansion form, 
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Next, we let 
ku  to denote k . truncated series of ,u  
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In this equations, the function ),( txu  is assumed to be a 

function of time and space, which means that ),( txu  is 

disappearing for 0<t  and 0<x  and this function is 

considered to be analytic on 0.>t  Also, the function 

)(xf  is considered to be analytic on 0>x . 

Also, Eq. (10) can be written as 
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At first, to find the value of coefficients ),(xfn

kn 1,2,3,...,=  in series expansion of Eq.(11), we define 

residual function Res ; for Eq.(1) as 
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and the k -th residual function, 
kRes  as follows: 
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As in [11-14], To give residual PS algorithm: 

 Firstly, we replace the k -th truncated series of u  into 

Eq.(7). 

 Secondly, we find the fractional derivative formula 
 1k

tD  of both ,,kuRes 1,=k  and finally, we can 

solve found system
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to get the required coefficients )(xfn
 for =n .1,k  in 

Eq. (11). 

Hence, to determine )(1 xf , we write 1=k  in Eq. (12), 
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From Eq. (13) we deduce that 0=1Res 0)=(t  and thus, 

1.=)(1 xf (15) 

Therefore, the 1-st RPS approximate solutions are 
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Similarly, to find out the form of the second unknown 

coefficient )(2 xf , we write 2=k  in Eq. (12) 
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Similarly to determine )(3 xf , we write 3=k  in Eq. 

(12), 
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Figure 1.The surface graph of the exact solution ),( txu  

and the ),(5 txu  approximate solution of the time 

fractional linear Klein-Gordon equation ( 0.3= )(a) 

),(5 txu , (b) ),( txu . 

 

 
Figure 2.

 
),(5 txu  and ),( txu  solutions of the time 

fractional linear Klein-Gordon equation when 0.5,=

0.4=t . 

These figure clear that ),(5 txu  solution are closing the 

exact solution. 

Example 2. 

Substituting 1=0,= ba  and 0=c  into Eq.(1),consider 

fractional nonlinear Klein-Gordon differential equation 
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Figure 2.The surface graph of ),(5 txu  approximate 

solution of the two dimensional time fractional nonlinear 

Klein-Gordon equation(a) ),(5 txu  when 0.1= , (b)

),(5 txu  when 0.3= , (c) ),(5 txu  when 0.6= , (d) 

),(5 txu  when 0.9.=  
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Figure 3. ),(5 txu  solution of the two dimensional time 

fractional nonlinear Klein-Gordon equation when 

7,0.8,0.90.5,0.6,0.=  ( 0.01=t  and 0.09=t ).      

 

 
Figure 5. ),(5 txu  and ),( txuHPM

 solution of the two 

dimensional time fractional nonlinear Klein-Gordon 

equation when 0.5,=  0.8=t . 

In figure 5, comparison among approximate solutions 

with known results is made.These results obtained by 

using residual power series method and homotopy 

perturbation method [19]. 

 

Example 3. 

Substituting 0=1,= ba   and 1=c  into Eq.(1),consider 

fractional nonlinear Klein-Gordon differential equation 
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c)

 

 
d) 

 

 
 

   Figure 6. The surface graph of ),(5 txu  approximate 

solution of the time fractional nonlinear Klein-Gordon 

equation(a) ),(5 txu  when 0.1= , (b) ),(5 txu  when 

0.3= , (c) ),(5 txu  when 0.6= , (d) ),(5 txu  when 

0.9.=  

 

 

 
   Figure 7. ),(5 txu  solution of the time fractional 

nonlinear Klein-Gordon equation when 

7,0.8,0.90.5,0.6,0.=  ( 0.01=t  and 0.09=t ).  

 

 
Figure 8. ),(5 txu  and ),( txuHPM

 solution of the two 

dimensional time fractional nonlinear Klein-Gordon 

equation when 0.8,=  0.8=t . 

           In figure 8, comparison among approximate 

solutions with known results is made.These results 

obtained by using residual power series method and 

homotopy perturbation method [19]. 

 

For example 3, we give a part of mathematica. 
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4  CONCLUSIONS 
 

           In this study the RPSM with new strategies has 

employed to obtain approximate analytical solution of 

Klein-Gordon equations.The fundamental objective of 

this paper to introduce in an algorithmic form and 

implement a new analytical repeated algorithm derived 

from on the RPS. This algorithm provides accurate 

numerical solutions without discretization for nonlinear 

differential equations. 

         For example 1, ),( txuRPSM
 and ),( txuExact

solutions of the time fractional linear Klein-Gordon 

equation compared in figure 2. For example 2, 

),( txuRPSM
 and ),( txuHAM solutions of the two 

dimensional time fractional nonlinear Klein-Gordon 

equation compared in figure 5 and For example 3, 

),( txuRPSM
 and ),( txuHAM solutions of the two 

dimensional time fractional nonlinear Klein-Gordon 

equation compared in figure 8. Graphical and numerical 

consequences are introduced to illustrate the solutions. 

From the results, it is clear that the RPSM yields very 

accurate and convergent approximate solutions using 

only a few iterates in fractional problems. The work 

emphasized our belief that the present method can be 

applied as an alternative to get analytic solutions of 

different kinds of fractional linear and nonlinear partial 

differential equations applied in mathematics, physics 

and engineering. 
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