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The goal of this research is to construct a generalization of a Kantorovich type of Szász operators 

involving negative-order Genocchi polynomials. With the aid of Korovkin’s theorem, modulus of 

continuity, Lipschitz class, and Peetre’s K-functional the approximation properties and convergence rate 

of these operators are established. To illustrate how operators converge to a certain function, we present 

some examples. 
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1. INTRODUCTION 

In analytic number theory, the generating functions method has an important place because this method 

provides to construct many useful and significant results, identities, and theorems for special polynomials and 

numbers (Simsek, 2008; 2012; 2013; 2017; 2018; Kucukoglu et al., 2019; Kucukoglu, 2022; Kilar & Simsek, 

2020). The following is a definition of the Genocchi polynomials' generating function: 

 (
2𝑡

𝑒𝑡 + 1
) 𝑒𝑥𝑡 = ∑ 𝐺𝑛(𝑥)

𝑡𝑛

𝑛!

∞

𝑛=0

, |𝑡| < 𝜋, (1) 

Horadam (1992) defined negative-order Genocchi polynomials and studied on their properties such as 

summation formula and complementary arguments. The generating functions of negative-order Genocchi 

polynomials are defined to be 

 ∑ 𝐺𝑛
−𝑘(𝑥)

𝑡𝑛

𝑛!

∞

𝑛=0

= (
1 + 𝑒𝑡

2𝑡
)

𝑘

𝑒𝑡𝑥, (2) 

where 𝑘 ∈ ℕ = {1,2,3, … } (Horadam, 1992). 

Some Genocchi polynomials ,𝐺𝑛
−1(𝑥), were given by A. F. Horadam as follows:  
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 𝐺0
−1(𝑥) = 𝑥 +

1

2
,  

 𝐺1
−1(𝑥) =

1

2
(𝑥2 + 𝑥 +

1

2
),  

 𝐺2
−1(𝑥) =

1

3
(𝑥 +

1

2
) (𝑥2 + 𝑥 + 1),  

 𝐺3
−1(𝑥) =

1

4
(𝑥4 + 2𝑥3 + 3𝑥2 + 2𝑥 +

1

2
),  

where 𝑥 ∈ [0, ∞). For more information on Genocchi polynomials and their applications, follow these 

references (Cangul et al., 2009; Kilar & Simsek, 2021; Srivastava & Choi, 2001; Srivastava et al., 2012)  

An example of the applied disciplines of generating functions of unique polynomials is approximation theory 

(Jakimovski & Leviatan, 1969; Davis, 1975; Lupas, 1995 Gupta & Rassias, 2019). Varma et al. (2012) 

provided a new generalization of the Szász type operators that are described using Brenke-type polynomials. 

Through the use of Korovkin's theorem, continuity's second modulus, and Peetre's K-functional, they could 

able to determine the approximation properties of their operators as well as the order of convergence (Varma 

et al., 2012). İçöz et al. (2016) presented the definition and proof of a new sort of approximation theorem for 

a series of type operators that includes generalized Appell polynomials. Menekşe Yilmaz (2022) provided an 

operator form that makes use of the generating function of order 𝛼 Apostol-Genocchi type polynomials. and 

reached the approximation of the operator by applying the Korovkin's theorem and using moments and central 

moments. Many techniques, including the K-functional, continuity's modulus, and continuity's second 

modulus, were used to calculate the operator's rate of convergence (Menekşe Yılmaz, 2022). Mursaleen et al. 

(2018) constructed a generalize Chlodowsky type Szász type operators involving Boas-Buck type polynomials 

and studied their some approximation properties such as Korovkin type theorem. Atakut and Büyükyazıcı 

(2016) presented some approximation properties of a generalization Kantorovich- Szász type operator 

including Brenke-type polynomials. Agyuz (2021a; 2021b; 2022; 2023) defined positive linear operators of 

Szász type and Kantorovich-Szász type by using generator functions of various family of special polynomials 

and examined the approximation these operators' characteristics. 

By the inspired above studies, we offer a generalization Kantorovich type of Szász operators involving 

negative-order Genocchi type polynomials by way of their generating functions of when 𝑘 = 1 because 

negative-order Genocchi polynomials are positive for 𝑘 = 1. The operator is defined in the following 

definition:  

Definition 1.1. For all 𝑥 ∈ [0, ∞), we have  

 ℋ𝑛
∗(𝑓, 𝑥) =

2

𝑒 + 1
𝑛𝑒−𝑛𝑥 ∑

𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

∫ 𝑓(𝑡)𝑑𝑡

𝑘+1

𝑛

𝑘

𝑛

. (3) 

In this study, we explore the convergence properties of ℋ𝑛
∗(𝑓, 𝑥). First, we construct the Korovkin's theorem 

by using moment functions for ℋ𝑛
∗(𝑓, 𝑥). Second, we calculate the rate of convergence applying Peetre's K-

functional, the local Lipschitz class's constituents, and the continuity's modulus. Finally, we use the Maple to 

provide numerical examples to prove error estimate of our operator. 

2. MAIN RESULTS 

In this part, we examine the convergence properties of ℋ𝑛
∗(𝑓, 𝑥) using approximation methods such as 

modulus of continuity, Korovkin’s theorem, Peetre's K-functional and local Lipschitz class. To demonstrate 

these properties, first the moment and central moment functions are given for the operator ℋ𝑛
∗(𝑓, 𝑥). 

Consider the following definition of the class 𝐸:  
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 E: = {𝑓: 𝑥 ∈ [0, ∞),
𝑓(𝑥)

1 + 𝑥2
 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑎𝑠 𝑥 → ∞}.  

The moment functions of ℋ𝑛
∗(𝑓, 𝑥) are given at the subsequent lemma: 

Lemma 2.1. Let ∀𝑥 ∈ [0, ∞), the ℋ𝑛
∗(𝑓, 𝑥) yields at the following equations:  

 ℋ𝑛
∗(1, 𝑥) = 1, (4) 

 ℋ𝑛
∗(𝑠, 𝑥) = 𝑥 +

5𝑒 + 3

2𝑛(𝑒 + 1)
, (5) 

 ℋ𝑛
∗(𝑠2, 𝑥) = 𝑥2 +

6𝑒 + 4

𝑛(𝑒 + 1)
𝑥 +

6𝑒 + 2

𝑛2(𝑒 + 1)
. (6) 

Proof: Let 𝑡 = 1 and 𝑥 → 𝑛𝑥. If we take 𝑓 = 1 at Eq. (3), we give  

 ℋ𝑛
∗(1, 𝑥) =

2

𝑒 + 1
𝑛𝑒−𝑛𝑥 ∑

𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

∫ 𝑑𝑡

𝑘+1

𝑛

𝑘

𝑛

. (7) 

By taking an integral and applying the Eq. (2) at Eq. (7), we obtain  

 
ℋ𝑛

∗(1, 𝑥) =
2

𝑒 + 1
𝑛𝑒−𝑛𝑥 ((

1 + 𝑒

2
) 𝑒𝑛𝑥) (

𝑘 + 1

𝑛
−

𝑘

𝑛
) = 1. 

 

(8) 

Let 𝑓 = 𝑠. The ℋ𝑛
∗(𝑠, 𝑥) is described to be  

 ℋ𝑛
∗(𝑠, 𝑥) =

2

𝑒 + 1
𝑛𝑒−𝑛𝑥 ∑

𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

∫ 𝑡𝑑𝑡

𝑘+1

𝑛

𝑘

𝑛

. (9) 

By taking an integral and applying the Eq. (2) at Eq. (9), we obtain  

 
ℋ𝑛

∗(𝑠, 𝑥) =
2

𝑒 + 1
𝑛𝑒−𝑛𝑥 ∑

𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

(
(

𝑘 + 1

𝑛
)

2

2
−

(
𝑘

𝑛
)

2

2
) 

 

 

                  =
2

𝑒 + 1
𝑛𝑒−𝑛𝑥 ∑

𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

(
2𝑘 + 1

2𝑛2
),  

                   =
2

𝑒 + 1
𝑛𝑒−𝑛𝑥

1

2𝑛2
(∑

2𝑘𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

+ ∑
𝐺𝑘

−1(𝑛𝑥)

𝑘!

∞

𝑘=0

) (10) 

                                        = 𝑥 +
5𝑒 + 3

2𝑛(𝑒 + 1)
, 

where ∑
𝑘𝐺𝑘

−1(𝑛𝑥)

𝑘!

∞
𝑘=0  is the first derivative of −1 order Genocchi polynomials in terms of their generating 

function for 𝑡 = 1 and 𝑥 → 𝑛𝑥 and is defined to be  
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∑
𝑘𝐺𝑘

−1(𝑛𝑥)

𝑘!

∞

𝑘=0

=
1

2
𝑒𝑛𝑥(𝑛𝑥 + 𝑒(𝑛𝑥 + 2) + 1). 

Let 𝑓 = 𝑠2. The ℋ𝑛
∗(𝑠2, 𝑥) is defined to be  

 ℋ𝑛
∗(𝑠2, 𝑥) =

2

𝑒 + 1
𝑛𝑒−𝑛𝑥 ∑

𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

∫ 𝑡2𝑑𝑡

𝑘+1

𝑛

𝑘

𝑛

. (11) 

By taking an integral and applying the Eq. (2) at Eq. (11), we obtain  

 
ℋ𝑛

∗(𝑠2, 𝑥) =
2

𝑒 + 1
𝑛𝑒−𝑛𝑥 ∑

𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

(
(

𝑘 + 1

𝑛
)

3

3
−

(
𝑘

𝑛
)

3

3
) 

 

 

                    =
2

𝑒 + 1
𝑛𝑒−𝑛𝑥 ∑

𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

(
3𝑘2 + 3𝑘 + 1

3𝑛3
),  

 

                  =
2

𝑒 + 1
𝑛𝑒−𝑛𝑥

1

3𝑛3
(∑

3𝑘2𝐺𝑘
−1(𝑛𝑥)

𝑘!

∞

𝑘=0

+ ∑
3𝑘𝐺𝑘

−1(𝑛𝑥)

𝑘!

∞

𝑘=0

+ ∑
𝐺𝑘

−1(𝑛𝑥)

𝑘!

∞

𝑘=0

) 

(12) 

                                        = 𝑥2 +
6𝑒 + 4

𝑛(𝑒 + 1)
𝑥 +

6𝑒 + 2

𝑛2(𝑒 + 1)
, 

where ∑
𝑘2𝐺𝑘

−1(𝑛𝑥)

𝑘!

∞
𝑘=0  is part of the second derivative of −1 order Genocchi polynomials in terms of their 

generating function for 𝑡 = 1 and 𝑥 → 𝑛𝑥 is defined to be  

∑
𝑘2𝐺𝑘

−1(𝑛𝑥)

𝑘!

∞

𝑘=0

=
1

2
𝑒𝑛𝑥(𝑛𝑥(𝑛𝑥 + 2) + 𝑒𝑛𝑥(𝑛𝑥 + 1)(𝑛𝑥 + 3)) +

1

2
𝑒𝑛𝑥(𝑛𝑥 + 𝑒(𝑛𝑥 + 2) + 1). 

Therefore, the desired results are obtained. 

We need central moments to estimate for our operator’s rate of convergence. The central moments of ℋ𝑛
∗(𝑓, 𝑥) 

are given at the subsequent lemma: 

Lemma 2.2. For all 𝑥 ∈ [0, ∞), the ℋ𝑛
∗(𝑓, 𝑥) provides at the following equations:  

 ℋ𝑛
∗((𝑠 − 𝑥), 𝑥) =

5𝑒 + 3

2𝑛(𝑒 + 1)
, (13) 

 ℋ𝑛
∗((𝑠 − 𝑥)2, 𝑥) =

𝑥

𝑛
+

6𝑒 + 2

𝑛2(𝑒 + 1)
. (14) 

Proof: Via the use of linearity property of ℋ𝑛
∗(𝑓, 𝑥), we discover  

 ℋ𝑛
∗((𝑠 − 𝑥), 𝑥) = ℋ𝑛

∗(𝑠, 𝑥) − 𝑥ℋ𝑛
∗(1, 𝑥) =

5𝑒 + 3

2𝑛(𝑒 + 1)
, (15) 
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and  

                    ℋ𝑛
∗((𝑠 − 𝑥)2, 𝑥) = ℋ𝑛

∗(𝑠2, 𝑥) − 2𝑥ℋ𝑛
∗(𝑠, 𝑥)+𝑥2ℋ𝑛

∗(1, 𝑥) 

                                                    =
𝑥

𝑛
+

6𝑒 + 2

𝑛2(𝑒 + 1)
. 

 

(16) 

In view of the above equations, we obtain the desired results. 

Korovkin-type theorems offer elementary and effective methods for assessing whether an accepted series of 

positive linear operators acting on a function space is functioning approximatively or, alternatively, if it greatly 

converges to the identity operator. In general, these theorems offer a variety of test subsets of functions that, 

if they are true, warranty that the approximation (or convergence) feature is true across the board. 

The phrase "Theorems of the Korovkin kind" alludes to P. P. Korovkin, who showed in 1953 that the functions 

1, 𝑥, and 𝑥2 have such a property in the collection of all continuous functions on the real interval [0,1] known 

as 𝐶([0,1]). (Korovkin, 1953; 1960; Altomare, 2010). 

Now, we give a theorem to show uniformly convergence of ℋ𝑛
∗(𝑓, 𝑥) as below: 

Theorem 2.3. Let 𝑓 ∈ 𝐶[0, ∞) ∩ 𝐸. We give,  

 lim
𝑛→∞

ℋ𝑛
∗(𝑓, 𝑥) = 𝑓(𝑥), (17) 

uniformly on all of the compact subsets of [0, ∞). 

Proof: We know for a fact that  

 lim
𝑛→∞

ℋ𝑛
∗(1, 𝑥) = lim

𝑛→∞
1 = 1  

 lim
𝑛→∞

ℋ𝑛
∗(𝑠, 𝑥) = lim

𝑛→∞
(𝑥 +

5𝑒 + 3
2𝑛(𝑒 + 1)

) = 𝑥  

 lim
𝑛→∞

ℋ𝑛
∗(𝑠2, 𝑥) = lim

𝑛→∞
(𝑥2 +

6𝑒 + 4
𝑛(𝑒 + 1)

𝑥 +
6𝑒 + 2

𝑛2(𝑒 + 1)
) = 𝑥2  

The Korovkin's theorem can be used to obtain the desired result. 

As stated in its definition, continuity's modulus is shown by 

 
ω(f, δ): = 𝑠𝑢𝑝⏟

𝑥,𝑦∈[0,∞)
|𝑥−𝑦|≤𝛿

|𝑓(𝑥) − 𝑓(𝑦)|, 
(18) 

where 𝑓 is a function that is continuous throughout [0, ∞), and that 𝛿 > 0. A property of the modulus of 

continuity is given at the subsequent inequality:  

 |𝑓(𝑥) − 𝑓(𝑦)| ≤ ω(f, δ) (
|𝑥 − 𝑦|

δ
+ 1). (19) 

By using the definition and property of the continuity's modulus, we have a theorem for ℋ𝑛
∗(𝑓, 𝑥) as follows: 

Theorem 2.4. Let 𝑓 ∈ 𝐶𝐵[0, ∞) ∩ 𝐸, then  

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ 2ω(f, δ𝑛), (20) 

where δ𝑛(𝑥) = √ℋ𝑛
∗

((𝑠 − 𝑥)2, 𝑥) . 
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Proof Lemma 2.1 and the monotonicity property of ℋ𝑛
∗(𝑓, 𝑥) lead to this conclusion  

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ ℋ𝑛

∗(|𝑓(𝑥) − 𝑓(𝑦)|; 𝑥). (21) 

By using Eq. (19), what Eq. (21) reveals to us is as follows:  

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ ω(f, δ𝑛) (1 +

1

𝛿
ℋ𝑛

∗(|𝑥 − 𝑦|, 𝑥)). (22) 

When we consider Eq. (22)’s right side and apply the Cauchy-Schwarz inequality, we obtain 

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ ω(f, δ𝑛) (1 +

1

𝛿
√ℋ𝑛

∗((𝑥 − 𝑦)2, 𝑥)). (23) 

The evidence is concluded if the answer is 𝛿 ≔ δ𝑛(𝑥) = √ℋ𝑛
∗ ((𝑠 − 𝑥)2, 𝑥) in Eq. (23). 

An estimate of the approximation error of ℋ𝑛
∗ operators to 𝑓, similarly the modulus of continuity, is given by 

the Lipschitz class, which is defined below:  

 𝐿𝑖𝑝𝑀(𝛼): = {𝑓 ∈ 𝐶𝐵[0, ∞): |𝑓(𝑡) − 𝑓(𝑥)| ≤ 𝑀|𝑡 − 𝑥|𝛼; 𝑡, 𝑥𝜖[0, ∞)},  

where 𝐶𝐵[0, ∞) is the set of spaces of continuous and bound functions, 𝑀 > 0, and 𝛼 ∈ (0,1]. 

The subsequent theorem satisfies a prediction for the error of the operator ℋ𝑛
∗ to a function 𝑓 belonging to the 

Lipschitz class of order 𝛼 by above equation. 

Theorem 2.5. We suppose that 𝑓 ∈ 𝐶𝐵[0, ∞). For 𝑥 ≥ 0, we give  

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ Mδ𝑛

𝛼(𝑥), (24) 

where δ𝑛(𝑥) = √ℋ𝑛
∗

((𝑠 − 𝑥)2, 𝑥). 

Proof: According to the monotonicity characteristics of the operators ℋ𝑛
∗, we obtain  

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ Mℋ𝑛

∗(|𝑠 − 𝑥|𝛼; 𝑥). (25) 

The following can be written using the Hölder inequality and from (25),  

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ M (ℋ𝑛

∗
((𝑠 − 𝑥)2, 𝑥))

𝛼
2

.  

Consequently, the theorem's proof is complete. 

In approximation theory, the Peetre's K-functional proved to be a highly useful tool for calculating the error. 

The Peetre's K functional is given to be as follows:  

 𝒦(𝑓, 𝛿) = inf {‖𝑓 − ℎ‖𝐶𝐵[0,∞) + 𝛿‖ℎ‖𝐶𝐵
2[0,∞)},  

where 𝛿 > 0, 𝑓 ∈ 𝐶𝐵[0, ∞) and 𝐶𝐵
2[0, ∞) ≔ {ℎ ∈ 𝐶𝐵[0, ∞): ℎ′, ℎ′′ ∈ 𝐶𝐵[0, ∞)}, here the norm is defined to 

be as  

‖ℎ‖𝐶𝐵
2[0,∞) ≔ ‖ℎ‖𝐶𝐵[0,∞) + ‖ℎ′‖𝐶𝐵[0,∞) + ‖ℎ′′‖𝐶𝐵[0,∞) (DeVore & Lorentz, 1993). 
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We will use the definition of Peetre's K-functional at the subsequent theorem to assess the degree of 

approximation for this purpose. 

Theorem 2.6. Let 𝑓 ∈ 𝐶𝐵[0, ∞) and 𝑥 ∈ [0, ∞). The inequality that follows is true  

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ 2𝒦(𝑓, 𝜑𝑢(𝑥)), (26) 

where 𝜑𝑢
(𝑥) =

1

4𝑛
𝑥 +

2𝑒[(2𝑛+1)(𝑒+1)+(𝑒−1)]

8𝑛2(𝑒+1)2 . 

Proof: Suppose that ℎ ∈ 𝐶𝐵
2 [0, ∞). Using the linearity property of ℋ𝑛

∗ operators and Taylor's expansion, we 

bring 

 ℋ𝑛
∗(ℎ, 𝑥) − ℎ(𝑥) = ℎ′(x)ℋ𝑛

∗
(𝑠 − 𝑥, 𝑥) +

ℎ′′(𝜏)

2
ℋ𝑛

∗
((𝑠 − 𝑥)2, 𝑥), 𝜏 ∈ (𝑥, 𝑠).  

The aforementioned equality allows for the writing 

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ (

1

4𝑛
𝑥 +

2𝑒[(2𝑛 + 1)(𝑒 + 1) + (𝑒 − 1)]

8𝑛2(𝑒 + 1)2
) ‖ℎ‖𝐶𝐵

2[0,∞) (27) 

As opposed to that, applying Lemma (2.1) and expression (27), we obtain  

 

|ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ |ℋ𝑛

∗(𝑓 − ℎ, 𝑥)| + |ℋ𝑛
∗(ℎ, 𝑥) − ℎ(𝑥)| + |𝑓(𝑥) − ℎ(𝑥)| 

                                   ≤ 2‖𝑓 − ℎ‖𝐶𝐵[0,∞) + |ℋ𝑛
∗(ℎ, 𝑥) − ℎ(𝑥)| 

                                   ≤ 2 (‖𝑓 − ℎ‖𝐶𝐵[0,∞) + 𝜑𝑢(𝑥)‖ℎ‖𝐶𝐵
2[0,∞)) 

(28) 

Catching the upper limit to the right of Eq. (28) over all ℎ ∈ 𝐶𝐵
2 [0, ∞), we obtain the subsequent inequality.  

 |ℋ𝑛
∗(𝑓, 𝑥) − 𝑓(𝑥)| ≤ 2𝒦(𝑓, 𝜑𝑢(𝑥)).  

Therefore, the proof is completed. 

Now, we provide a few examples to help we obtain a higher limit for the error 𝑓(𝑥)−ℋ𝑛
∗(𝑓, 𝑥) by means of 

the continuity modulus. Maple2023TM was used to complete the computations for this paper. 

Example 2.7. The approximation of ℋ𝑛
∗(𝑓, 𝑥) to 𝑓(𝑥) = 𝑠𝑖𝑛(𝜋𝑥) depends on [0, ∞) is illustrated in the Table 

1. 

Table 1. Modulus of continuity-based error estimate for function 𝑓(𝑥) = 𝑠𝑖𝑛(𝜋𝑥)  

n 𝒔𝒊𝒏(𝝅𝒙)−𝓗𝒏
∗ (𝒇, 𝒙) 

10 0.9037367966 

102 0.06591390272 

103 0.006314114694 

104 0.0006286279188 

105 0.00006283494702 

106 0.000006283216246 

107 0.0000006283188400 
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Example 2.8. The approximation of ℋ𝑛
∗(𝑓, 𝑥) to 𝑓(𝑥) =

𝑥

√𝑥2+1
 depends on [0, ∞) is illustrated in the Table 2.  

Table 2. Modulus of continuity-based error estimate for function 𝑓(𝑥) =
𝑥

√𝑥2+1
  

n 
𝒙

√𝒙𝟐 + 𝟏
−𝓗𝒏

∗ (𝒇, 𝒙) 

10 0.2952150886 

102 0.02098369184 

103 0.002009847454 

104 0.0002000984836 

105 0.00002000098484 

106 0.000002000009848 

107 0.0000002000000984 

In these two examples, we use continuity’s modulu to numerically determine the approximations of ℋ𝑛
∗(𝑓, 𝑥) 

to the functions, respectively, 𝑓(𝑥) = 𝑠𝑖𝑛(𝜋𝑥) and 𝑓(𝑥) =
𝑥

√𝑥2+1
. We found that a tiny quantity of inaccuracy 

was produced when using ω. According to Table 1 and Table 2, we observe that the amount of error when 

using 𝜔 gets smaller as 𝑛 increases. 

3. CONCLUSION 

Many mathematicians, physicists, engineers, and other experts have extensively studied the generating 

functions method. Particularly, the generating functions of Genocchi type polynomials have found widespread 

application in a wide range of fields. Due to this, we have constructed a generalization of Kantorovich type of 

Szász linear positive operator, ℋ𝑛
∗(𝑓, 𝑥), using generating functions of −1 order Genocchi polynomials.  

We investigated convergence properties of ℋ𝑛
∗(𝑓, 𝑥). Firstly, we obtained moment and central moment 

functions of our operator. Secondly, we gave Korovkin’s theorem for ℋ𝑛
∗(𝑓, 𝑥) by using moment functions. 

By the help of this theorem, we satisfied uniformly convergence property of our operator. And then, we 

investigated to estimate rate of convergence of ℋ𝑛
∗(𝑓, 𝑥) by using some well-known approximation devices 

such as modulus of continuity, Lipshitz class, and Peetre’s K-functional. Finally, by means of the modulus of 

continuity, we have discovered a higher limit for the error 𝑓(𝑥) − ℋ𝑛
∗(𝑓, 𝑥) for particular functions. 

The study's methods were all employed to look at the created operator's characteristics, including convergence 

rate and uniform convergence. These methods have demonstrated that our operator smoothly converges to all 

functions under favorable conditions, and the approximation speed is adequate. 

In this work, we describe a generalization of positive linear operators involving −1 -order Genocchi 

polynomials that have important applications, particularly in analytical number theory. This study can be 

shown as an important example of defining the special polynomial families with the help of generator functions 

and forming linear positive operators. As a result, numerous fields, including operator theory, mathematics, 

and engineering, may benefit from this study's findings. 

The original results obtained in this study may inspire the use of special polynomial families defined in 𝑞- and 

(𝑝, 𝑞)-analysis to construct positive linear operators in approximation theory. 
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