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Abstract 
 

This paper analyzes the role of fixed costs in an evolutionary entry 
game with Bertrand players. A stable state fails to exist when entry is free, 
regardless of whether capacity constraints are present or not. When a fixed 
entry cost is introduced, there is a unique evolutionarily stable strategy 
(ESS) identical to the ESS outcome of Soytas and Becker (2003) and 
resembling the separating equilibrium of Milgrom and Roberts (1982). The 
unique ESS emerges even when capacity constraints are imposed. However, 
the fixed cost must be sufficiently large for the ESS to prevail if the 
incumbent has capacity limitations.  
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Öz 
 
Bertrand Oyunculu Evrimsel Piyasaya Giriş Oyununda Sabit 

Maliyetlerin Rolü 
 

Bu makalede fiyat bazlı rekabet eden oyuncuların bulunduğu evrimsel 
bir piyasaya giriş oyununda sabit maliyetlerin rolü incelenmiştir. Kapasite 
kısıtlamaları olsun veya olmasın, giriş serbest iken popülasyonun kararlı bir 
dengesi yoktur. Sabit maliyetler modele eklendiğinde ise tek bir evrimsel 
kararlı stratejiler vektörü ortaya çıkmaktadır. Bu evrimsel kararlı stratejiler 
Soytas ve Becker (2003) de bulunan evrimsel kararlı stratejilere ve Milgrom 
ve Roberts’ın (1982) ortaya koyduğu ayrıştırılabilir dengedeki stratejilere 
benzeşmektedir. Fakat kapasite kısıtlamaları söz konusuyken bulunan 
dengenin kararlı olabilmesi için sabit maliyetlerin yeterince büyük olması 
gerekmektedir. 

 

Anahtar Sözcükler: Sabit maliyetler, kapasite kısıtları, giriş, Bertrand  
rekabeti, evrimsel kararlı stratejiler. 
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INTRODUCTION 
 
When we assume Bertrand competition with identical firms, even a 

duopoly yields the perfectly competitive outcome. However, when the players 
have to sink even a small amount of cost, the Bertrand Nash equilibrium yields 
negative payoffs for both players. When we allow free entry in the presence of 
sunk costs, we see that entry is deterred because the entrant conjectures that the 
Bertrand Nash equilibrium will hold upon entry.  Hence, he chooses to stay out.  
Entry deterrence arises as a result of the existence of sunk costs and the belief 
structure of the players.   

 
Microeconomic theory tells us that the monopolist chooses an output or 

price level at which marginal revenue equals marginal cost, and enjoys 
monopoly profit.  This is due to the implicit assumption that there are 
significant entry barriers in the industry that protect the monopolist.  In other 
words, the existence of entry barriers is taken for granted.  The relaxation of this 
assumption, by the emergence of industrial organization as a field, was one of 
the main contributions to the study of imperfect competition. Therefore, most of 
the interest in the entry deterrence literature that followed was on analyzing the 
strategic interaction of the incumbent and the potential entrant when the main 
assumption underlying the Bain-Sylos postulate is abandoned (Kreps, 1990). 
Furthermore, the potential entrant’s decision will depend on how he perceives 
the post entry game.  However, the results may change when the information 
structure of the players can be modeled differently. For example, Milgrom and 
Roberts (1982) show that in the face of incomplete information limit pricing 
may be possible.  They also point out how potential entrants may treat pre-entry 
output of incumbents as signals for post-entry competition. Soytas and Becker 
(2003) show that in an evolutionary game with Cournot players and where the 
potential entrant must pay a fixed amount upon entry, limit pricing strategy of 
the low cost incumbent is an evolutionarily stable strategy (ESS). An ESS is an  
equilibrium strategy that survives the invasion of mutant strategies.  
Strategy α* is an ESS for all α ≠ α∗ if the following conditions are  
satisfied (Samuelson; 1997: p.38). 

 
i) if π(α∗, α∗) ≥ π(α, α∗)       and 
 
ii) if π(α∗, α∗) = π(α , α∗), then π(α∗, α) > π(α, α). 
 
Baumol, Panzar, and Willig (1982) have developed the concept of 

perfectly contestable markets, in which there are no sunk costs, and entry and 
exit is free. Another assumption underlying the contestable market setting is 
that the potential competitors have identical cost structures with incumbents.  
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The potential entrants can enter and exit before the incumbents can respond to 
entry by changing prices.   

 
The sustainability-contestability approach may best be applied to an 

industry with a homogeneous product and increasing returns to scale to analyze 
the efficiency in that natural monopoly industry. Indeed, Becker (1986) shows 
that in an industry with fixed costs and free entry the profit-maximizing 
incumbent prefers a quantity setting strategy rather than a price setting strategy, 
and establishing as the von Stackelberg quantity leader.  Therefore, he argues 
that there may be an inconsistency between the contestability theory and profit 
maximization hypothesis. Furthermore, according to von Weizsacker (1980), 
quantity competition with free entry may result in higher than socially optimal 
number of firms in the industry. Hence, Becker’s (1986) example adds to the 
doubts about the relevance of the contestability theory to efficiency 
considerations.   

 
The criticisms do not invalidate the contestable market outcome being a 

benchmark result. The interesting question to ask becomes what kind of 
strategic interactions may yield the perfectly contestable outcome.  It is easy to 
see that in a Cournot setting the perfectly contestable outcome is an extreme 
case that can be achieved only in the limit (as number of firms approaches 
infinity).  Furthermore, in the Bertrand game existence of two firms is enough 
to reach the contestable outcome.  When we allow entry into the Bertrand 
setting with fixed costs, even one firm in the industry gives us the benchmark 
result as long as there is at least one potential entrant standing by.   

 
Indeed, the unique Nash equilibrium of the game is that the incumbent 

pursues an average cost pricing strategy; whereas, the potential entrant stands 
by, ready to enter and charge a price equal to the average cost.  In the 
equilibrium, price equals average cost, both players have zero payoffs, and the 
outcome corresponds to the perfectly contestable outcome.  Hence, firms 
rationally choosing strategies among their strategy sets can achieve the perfectly 
contestable outcome. 

 
A variation of the Bertrand game is when firms are constrained by their 

capacities, such that the low price firm fails to meet the entire demand. Hence, 
the high price firm has a positive residual demand. Here, one can assume 
efficient rationing in the sense that the consumers who value the good most are 
served first by the low price firm (Church and Ware, 2000, p. 265). If the two 
firms have the same cost structure and sufficient capacity, then the outcome is 
Bertrand equilibrium, when competition is in prices. On the other hand, if the 
two firms have different cost structures and sufficient capacity, then the low 
cost firm charges a price equal to the marginal cost of the rival and serves the 
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entire market. However, if both capacity constraints are binding, then they 
produce to capacity and the market demand is simply the sum of the capacities 
of the two firms when we assume identical firms. In the case of only one firm 
constrained by its capacity, we observe an Edgeworth cycle, such that there is 
no equilibrium in pure strategies and firms continuously switch from low to 
high prices and vice versa. Dixit (1980) reports that the capacity level may be 
used as a precommitment device by the incumbent firm to deter entry. However, 
he also acknowledges that his study needs to be extended by including several 
firms and periods into the game.  

 
Recently, there have been several studies on Bertrand competition. 

Elberfeld and Wolfstetter (1999) show that in a repeated game of simultaneous 
entry and pricing, the probability that the market breaks down gets higher as the 
number of potential entrants exceed two. They also point out that the social 
welfare declines with more competition. Thomas (2002) on the other hand 
studies a Bertrand game when entrants have asymmetric entry costs. He finds 
that the welfare must rise when a sufficiently small cost competitor enters the 
market. Boccard and Wauthy (2000) analyze a game with imperfect 
commitment to capacity and find that a range of prices may emerge under the 
equilibrium. Paech (1998) shows that in a contestable market, for the threat of 
entry by the potential entrant to work, there must be exit barriers in the industry. 
Hence, in the literature some studies examine Bertrand competition with 
asymmetric entry costs when entry is observed, whereas some studies are 
concerned with the outcome when firms learn the type of the rival after 
simultaneously setting prices. However, the models discussed above assume 
rational players and suffer from the multiple equilibria problem. 

 
In a recent study, Rhode and Stegeman (2001) apply Darwinian dynamics 

to a symmetric, differentiated duopoly and find that on the average the 
Darwinian price is lower than the Bertrand Nash equilibrium price. Their game 
involves rational decision makers as well as imitators and the strategy space is 
infinite. The resulting non-Nash equilibria are stable and unique. They argue 
that pure imitation is an unrealistic approximation of behavior; however, they 
also report that when rational and imitative decision makers are mixed a purely 
imitative outcome may emerge. Soytas and Becker (2003) show that in an 
evolutionary entry game with Cournot competition and asymmetric information, 
limit pricing is observed in the stable state of the population.  

 
In this paper, using the same game structure in Soytas and Becker (2003) 

I analyze the role of fixed costs in an evolutionary entry game with Bertrand 
players. I first conjecture that entry is free and then introduce a fixed entry cost 
and compare the results. Furthermore, capacity limitations are imposed with 
both free entry and a fixed entry cost. I assume that the players change their 
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strategies via imitating the strategies that yield strictly higher payoffs. Hence, 
the game does not require fully rational players. In that respect, this paper 
utilizes a complementary approach to traditional game theory in the entry 
deterrence literature.  

 
I find that in the absence of fixed entry costs the game does not have an 

evolutionary stable strategy (ESS) outcome whether the firms face capacity 
limitations or not. Therefore even the outcome that implies the contestable 
market result is not immune to invasion by rare mutant strategies (different rules 
adopted or imitated by the players). When a fixed entry cost is introduced, the 
ESS outcome resembles the separating equilibrium of Milgrom and Roberts 
(1982) such that the low cost incumbents play the limit output in the first stage 
and the potential entrants that observe limit output choose to stay out, whereas 
the high cost incumbents adopt the monopoly output in the first stage and 
potential entrants that observe monopoly output enter the market. The ESS 
outcome is identical to the stable state in Soytas and Becker (2003). When the 
potential entrant has capacity limitations, for the ESS to prevail, the fixed entry 
cost must be sufficiently large. 

 
The organization of the paper is as follows. The evolutionary entry game 

and solution methodology is introduced in section 2. Section 3 introduces 
capacity constraints into the picture and compares the results. Section 4 
provides a brief summary of the results and concludes. 

 
 
I. THE EVOLUTIONARY ENTRY GAME 
 
The first mover is a trivial player, the Nature. Nature randomly chooses 

one incumbent and one potential entrant from their respective populations to 
play the two stage entry game. The population of incumbents is divided into 
two: The low cost incumbents and the high cost incumbents with marginal costs 
cL and cH respectively. The proportion of low cost incumbents is δ and the 
proportion of high cost incumbents is (1 – δ). In the first stage, the incumbent 
chooses either the limit pricing strategy or the monopoly price. The limit price 
refers to the highest price that is believed to deter entry.  

 
The proportions of low cost incumbents and high cost incumbents that 

play limit price are p1 and p2 respectively. Hence, (1 – p1) of low cost and (1 – 
p2) of high cost incumbents follow the monopoly price strategy in the first stage. 
In the second stage, the potential entrant with a marginal cost of cE (where cL < 
cE < cH) decides whether to enter or not. The incumbent is aware of its cost 
structure, whereas the potential entrant does not know the type of the 
incumbent. I assume that the potential entrant cannot tell the cost structure of 
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the incumbent regardless of the first stage price choices since a monopoly price 
in the first stage by either type of incumbent firm will indicate the lack of an 
entry deterring signal. Each potential entrant also follows a simple rule. The p3 
proportion of potential entrants play Enter when they observe limit pricing, and 
(1 – p3) proportion play Stay out when limit price is observed. Likewise, p4 
proportion of potential entrants play Enter when monopoly price is charged in 
the first stage, and (1 – p4) play Stay out given monopoly price. Another 
assumption I have to make is that all strategies are represented with positive 
probabilities in the initial populations. The game tree is represented in Figure 1. 
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Figure-1: The Game Tree 

 
Where the superscripts L, B, and M refer to limit price, Bertrand, and monopoly; 
subscripts L, H, LE and HE refer to low cost incumbent, high cost incumbent, entrant 
that faces a low cost incumbent and entrant that faces a high cost incumbent, 
respectively. 
 

 
In the first stage, the incumbent earns either a monopoly profit or a limit 

price profit (loss if high cost). Upon entry firms compete in prices by 
simultaneously setting their strategies. If entry does not occur, the incumbent 
enjoys monopoly profits in the second stage and the potential entrant receives a 
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equilibrium price charged by the low cost incumbent is slightly lower than cE, it 
follows that the limit price profit is higher than the Bertrand profit for the low 
cost incumbent if the demand is inelastic. The reverse is true for the high cost 
incumbent, because the limit price generates a loss, whereas the Bertrand price 
competition yields 0 profits. Furthermore, the monopoly profits are higher than 
the limit price profits for both types of incumbents. The payoff to the incumbent 
firm is the sum of the payoffs in each stage. 

 
Schlag (1997) shows that when players change their strategies only 

through simple imitation the limiting case of the learning process resembles the 
replicator dynamics. Furthermore, the relative insensitivity of stable states to the 
specification of the dynamic system is noted by Samuelson (1997). He also 
points out that replicator dynamics may emerge as a result of a learning process 
that involves simple imitation.  

 
Taylor and Jonker (1978) was first to introduce the following replicator 

dynamics.  
 
dpi/dt = [π(ai, p) - π(pi, p)]pi       (1) 

 
where ai ∈ Ai, π(ai, p) is the payoff to player type i (i = 1, 2, 3, 4), when he 
plays strategy ai against the population state p = {(p1, 1 – p1), (p2, 1 – p2),       
(p3, 1 – p3), (p4, 1 – p4)}, and π(pi, p) is the payoff to pi when he faces the 
population state p, thus representing the average payoff to type i in the 
population. If the strategy ai yields a more than average payoff, more players 
will imitate it and the population proportion of the players that follow strategy ai 
would rise. If the strategy yields a less than average payoff, then players will 
imitate a relatively more successful strategy and the proportion of players who 
adopt ai would be wiped out and will not be observed in the population ever 
again, since the replicator dynamics is based on “reproduction” of the existing 
strategies (Samuelson, 1997, p. 67).   

 
Hence, following the steps of Gardner and Morris (1991) the replicator 

dynamics may be rewritten as in (2): 
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where the superscripts L, B, and M refer to limit price, Bertrand, and monopoly; 
subscripts L, H, LE and HE refer to low cost incumbent, high cost incumbent, 
entrant that faces a low cost incumbent and entrant that faces a high cost 
incumbent, respectively. The four replicator equations in this game constitute a 
system of autonomous differential equations that are Lipschitz continuous 
(Samuelson, 1997, p.67), as in Soytas and Becker (2003). 

 
If p* = {(p1*, 1 – p1*), (p2*, 1 – p2*), (p3*, 1 – p3*), (p4*, 1 – p4*)} is an 

ESS, then p* is a dynamic stable equilibrium of the system, according to a 
Liapunov theorem (Gardner and Morris, 1991). Selten (1980) shows that mixed 
strategies cannot be ESS of asymmetric games.  Therefore, it suffices to study 
all possible population states for which the pi (i = 1, 2, 3, 4) are either 1 or 0.  
The Jacobian of the system of equations is as in (3): 

 
         ∂ϕ1/∂p1          ∂ϕ1/∂p2 ∂ϕ1/∂p3       ∂ϕ1/∂p4 
         J(p) = ∂ϕ2/∂p1       ∂ϕ2/∂p2 ∂ϕ2/∂p3       ∂ϕ2/∂p4  (3) 

 ∂ϕ3/∂p1       ∂ϕ3/∂p2 ∂ϕ3/∂p3          ∂ϕ3/∂p4 
        ∂ϕ4/∂p1       ∂ϕ4/∂p2 ∂ϕ4/∂p3       ∂ϕ4/∂p4 
 

 
where ϕi = dpi/dt.   

 
An equilibrium point p* is asymptotically stable if all the characteristic 

roots of the Jacobian of the system of equations in (2) evaluated at p* have 
negative real parts (see Gandolfo (1996)).  As Weibull (1995) and Samuelson 
(1997) point out, since ESS and dynamic stability imply each other in 
asymmetric games, the same conditions apply to ESS. 

 
I.1. Free Entry 
 
If entry is costless, then there is no ESS. This implies that even the 

outcome that resembles the contestable market outcome is not stable. That is, 
the population state in which, low cost incumbents playing the limit pricing 
strategy in the first stage and potential entrants playing stay out is subject to 
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invasion by incumbents and/or potential entrants that try out a new rule or 
strategy (mutants). Furthermore, the absence of ESS also implies that limit 
pricing is not an ESS, contradicting the results of Milgrom and Roberts (1982) 
and Soytas and Becker (2003). The non-existence of a stable state is due to the 
fact that, the potential entrants that are matched against a low cost incumbent 
receive a payoff of zero regardless of their enter or stay out choice. Therefore, 
for p2 = 0 or p2 = 1, at least one of the eigenvalues of the Jacobian has a non-real 
part. Hence, there is no ESS under free entry. 

 
I.2. Fixed Entry Cost 
 
When I introduce a fixed entry cost, there exists a unique ESS. The low 

cost incumbents play limit price and the potential entrants that observe the limit 
price stay out. The low cost incumbents that play the monopoly price in the first 
stage and the potential entrants that play enter given limit price are wiped out. 
As for the high cost incumbents, bluffing or sending a wrong signal by playing 
the limit price does not survive the replicator dynamics. Hence, in the stable 
state of the population all high cost incumbents play the monopoly price pre-
entry, and all potential entrants that play stay out given monopoly price are also 
wiped out. The population state p = {(1, 0), (0, 1), (0, 1), (1, 0)} is the only state 
at which all the eigenvalues of the Jacobian matrix has negative real parts. 

 
 
II. FREE ENTRY WITH CAPACITY CONSTRAINTS  
 
The Bertrand games that take place upon entry in the evolutionary entry 

game assumed that firms do not have capacity constraints. When there are 
capacity constraints the outcome of the Bertrand game may change, and hence 
the stable state of the entire game may be subject to change. Note that the same 
Bertrand Nash equilibrium will prevail if the capacities of both firms are non-
binding. Hence, here I will discuss 3 scenarios where at least one of the firms’ 
capacities is binding. Also note that, in the presence of capacity constraints the 
monopoly price of the incumbent in the first stage refers to the maximum price 
at which the firm can sell to its capacity. Also at the limit price the incumbent 
can sell only up to its capacity.   

 
II.1. When both Firms are Capacity Constrained 
 
When the capacities of both firms are constrained, then in equilibrium 

both firms will charge prices such that the demand for each individual firm 
equals that firm’s capacity. Hence, even the entrants will have positive residual 
demands even if they are matched against the low cost incumbents. However, 
the possible stable states under these settings call for payoff structures that are 
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counter intuitive (monopoly profit less than limit price profit, negative profit to 
the entrant etc.). Hence, I conclude that even if capacity constraints are 
introduced, there is no ESS. Once again, all possible states of the population 
may be subject to invasion by rare mutants. 

 
II.2. When the Incumbent is Capacity Constrained 
 
The capacity limitation on the part of the incumbent allows the entrant to 

earn positive profits, regardless of the type of the incumbent. Indeed, the 
potential entrant will be more advantageous against the high cost incumbent 
than in the previous scenario. That is, the entrant can cut price and serve the 
market alone, leaving 0 profits for the high cost incumbent. Under these 
capacity and cost settings there is no ESS either. 

 
II.3. When the Potential Entrant is Capacity Constrained 
 
When the entrant cannot meet the market demand, the high cost 

incumbent can earn positive profits. However, if the entrant is matched against a 
low cost incumbent whose choices are unconstrained, the low cost incumbent 
can capture the market by cutting price slightly below cE. Hence, upon entry the 
potential entrant always receives 0 profits when playing against a low cost 
incumbent. Therefore, an ESS does not exist, for at least one characteristic root 
of the Jacobian has a non-negative part.  

 
Hence, in the absence of a fixed entry cost the game does not have a 

stable state even if capacity constraints are accounted for. That is, neither state 
of the population is immune to invasion. This outcome is similar to the 
unconstrained result with free entry. Both types of incumbents in the population 
will continuously try different prices (limit price and monopoly price). 

 
II.4. Capacity Constraints with Fixed Entry Cost 
 
Here, I introduce a fixed cost that an entrant must incur to enter the 

industry.  
 
II.4.1. When both Firms are Capacity Constrained 
 
Once again, the fixed entry cost plays an important role in determining 

the stable state. As long as the fixed cost exceeds the Bertrand profits of the 
entrant when it faces a low cost incumbent, there is a unique ESS outcome. The 
stable state of the population is equivalent to the ESS outcome of the 
unconstrained game with fixed costs. 
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II.4.2. When the Incumbent is Capacity Constrained 
 
In the presence of fixed entry costs, similar arguments hold for this case. 

The fixed cost must be sufficiently high to ensure negative profits to the entrant 
when matched with a low cost incumbent in order the population state p = {(1, 
0), (0, 1), (0, 1), (1, 0)}to be stable. 

 
II.4.3. When the Potential Entrant is Capacity Constrained 
 
The mere presence of a fixed entry cost ensures the same unique stable 

state, regardless of the size of the fixed cost.   
 
Hence, when I introduce capacity constraints, in order for the game to 

have a stable state, a fixed cost must exist, and it must be sufficiently large if the 
potential entrant is unconstrained or when both firms face capacity constraints. 
The ESS is such that all low cost incumbents that play monopoly price and all 
potential entrants that play enter when they observe limit price are wiped out. 
Furthermore, all high cost incumbents play the monopoly price and all potential 
entrants that observe monopoly price enter.  

 
 

CONCLUSIONS 
 
In this paper, I investigate the role of fixed entry costs in an evolutionary 

entry game similar to Soytas and Becker (2003), but with Bertrand players. I 
also consider the case in which there are capacity constraints. I find that in the 
absence of fixed entry costs there is no stable state, regardless of whether 
capacity constraints are imposed or not. Potential entrants switch between 
entering and staying out when they observe a limit or monopoly price in the 
first stage. Likewise, the incumbents alternate between the limit price and the 
monopoly price strategies as if in an Edgeworth cycle with two prices. 

 
When fixed costs are introduced into the picture, a unique ESS outcome 

emerges. Regardless of whether the firms are capacity constrained or not, the 
population state p* = {(1, 0), (0, 1), (0, 1), (1, 0)} is stable. However, if the only 
firm with capacity constraints is the incumbent or both firms have capacity 
constraints, the fixed entry cost must be higher than the Bertrand equilibrium 
profit of the potential entrant for p* to be the ESS. If the fixed entry cost is 
sufficiently small, then an ESS does not exist. 

 
In the stable state, the low cost incumbents play limit price, and potential 

entrants that observe limit price play stay out. The high cost incumbents, on the 
other hand, play monopoly price as if they have given up advertising themselves 



Uğur SOYTAŞ 

 

218 

as strong incumbents. The potential entrants that observe the monopoly price in 
the first stage play enter in the stable state. The stable state of the game is 
identical to the stable state of Soytas and Becker (2003) and resembles the 
separating equilibrium of Milgrom and Roberts (1982). Soytas and Becker 
(2003) find that the limit pricing strategy is a part of the equilibrium when firms 
are Cournot competitors. I confirm their finding in a similar game with Bertrand 
players. Also note that, the results of this paper do not depend on either the 
rationality or the common knowledge of rationality assumptions. 
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