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Abstract
We use Phragmén-Lindelöf-Liouville argument to prove the uniqueness for the determining
the initial state of solution for the time fractional diffusion equation with distributed
order derivative. Several numerical experiments are presented to show the accuracy and
efficiency of the algorithm.
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1. Introduction and main results
In recent years, the time-fractional diffusion equations (tFDEs) are found to be more

adequate than the integer-order models in describing problems in many fields including
biology, polymer physics, chemistry and biochemistry, see e,g.,[5, 12]. For example, the
tFDEs achieved great success in modeling the diffusion in the heterogeneous anomalous
medium. Moreover tFDEs can be used to model some anomalous diffusion processes in
a lightly heterogeneous aquifer [2], and well capture the long-tailed profile which cannot
be described by Gaussian processes, see, e.g., Bouchaud and Georges [3], Hatano [9] and
the references therein. Regarding physical and practical importance, in this paper, we
consider the following one dimensional tFDE

∂w
t u− ∂2

xu = 0, in (0, 1) × (0, T ) (1.1)
with the distributed order derivative ∂w

t which is usually defined as follows

∂w
t g(t) :=

∫ 1

0
w(α)∂α

t g(t)dα,

where ∂α
t is the Caputo derivative of order α ∈ (0, 1), which defined as follows

∂α
t u(t) = 1

Γ(1 − α)

∫ t

0

u′(τ)
(t− τ)α

dτ, t > 0,

where Γ(·) is the Gamma function.
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The above distributed order time-fractional diffusion equations are usually used in de-
scribing the ultraslow diffusion in e.g., polymer physics, kinetics of particles moving in the
quenched random force fields, iterated map models where the mean square displacement
has a logarithmic growth, see e.g., Caputo [4], Chechkin et al. [6], Mainardi et al. [23]
and the references therein.

For various properties of the Caputo derivative, we refer to Kilbas, Srivastava and
Trujillo [13], Podlubny [1] and the references therein.

In this paper, we are concerned with the recovery of the initial state of one-dimensional
fractional diffusion equation with distributed order derivative from lateral Cauchy data.
Inverse Problem: We assume that u is a solution to the equation (1.1). u(x, 0) is
unknown to be determined from the lateral Cauchy observation

u(1, t), ux(1, t), 0 < t < T.

This is the inverse problem considered in this paper, and we have the following important
topics related to this problem:

(1) (Uniqueness) Whether the additional lateral Cauchy data u(1, t), ux(1, t) (0 <
t < T ) determine u(x, 0) uniquely.

(2) (Reconstruction) We need propose an efficient algorithm to reconstruct the un-
known initial value.

Inverse problems have received a lot of attention from the mathematical community
over the last decade, owing it to the major impact they made in many areas, including
for time-fractional equations, we can refer to many works: Sakamoto and Yamamoto [24],
Liu and Yamamoto [19], Li and Yamamoto [21], Tuan, Huynh, Ngoc, and Zhou [27].
As for numerical approaches, see Tuan, Long and Tatar [28], Gong, Li, Wang and Xu
[8], Wang and Liu [29], Wang, Wei and Zhou [30] and the references therein. It reveals
that most of the existing literature concerned with the backward problem by using the
final overdermination data. For other kind of inverse problems, we refer to e.g., in Jiang,
Li, Liu and Yamamoto [11]. Liu, Hu and Yamamoto [15] determining moving source
profile functions in evolution equations with a derivative order in time. Zhang and Xu
[32], [14] and [25] for the inverse problems in determining the spatially varying source
term from the data at a fixed time, and we refer to Zhang [31] and Liu, Rundell and
Yamamoto [22] for the determination of the temporally component of the source term,
Cheng, Nakagawa, Yamamoto and Yamazaki [7] and Li and Yamamoto [20] for the inverse
problems of identification of the fractional orders. Although there has been a lot of research
done for the inverse problems of FDEs, there is little work on the determining the initial
state of solution for the FDEs.

Different from integer order equation, the non-local nature of fractional derivative makes
it generally not satisfy the Leibniz formula and chain rule of classical differential, which
makes some powerful tools for dealing with integer order equation unable to be used, such
as Carleman estimates. And then, leads to the difficulty in the study of the fractional
diffusion equation.

To the first topic, we have the following main result.

Theorem 1.1. Let T > 0 be a fixed constant and u ∈ L∞(0, T ;H2(0, 1)) be a solution
to the fractional diffusion equation (1.1) with the initial value u(·, 0) ∈ H1(0, 1). Then we
have u(x, 0) = 0 for x ∈ (0, 1) provided that

u(1, t) = ux(1, t) = 0, t ∈ [0, T ].

When the highest order time derivative of the equation under consideration is one and
the lower order time derivative is less than one, we refer to the paper from Huang, Li
and Yamamoto [10] in which the stability of the inverse source problem was established
by using the Carleman estimates. However, their methods heavily relies on the first order
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time-derivative so that cannot work for our case. To the best of the authors’ knowledge,
this is the first result for the inverse problem of the determination of the initial value for
the distributed order fractional diffusion equation with lateral Cauchy data.

The remainder of the paper is divided into two sections. In Section 2, we set some
notations, lemmas which will be useful for the later discussion. Section 3 is devoted to the
proof of the main result. Section 4 is concerned with the second topic of this paper, that
is, the numerical algorithm to reconstruct the unknown initial value of the system (1.1).
Section 5 ends this paper with a brief conclusion.

2. Preliminary materials
2.1. Initial-boundary value problem

Let w ∈ L∞(0, 1) be non-negative and suppose that

∃α0 ∈ (0, 1), ∃δ ∈ (0, α0), ∀α ∈ (α0 − δ, α0), w(α) ≥ w(α0)
2

> 0.

We consider the following initial-boundary value problem (IBVP)
∂w

t u− ∂2
xu = 0 in (0, 1) × (0,∞),

u(·, 0) = u0 in (0, 1),
ux(0, ·) = g0, ux(1, ·) = 0 in (0,∞).

(2.1)

We have the estimate for the solution u.

Lemma 2.1. Assuming u0 ∈ H1(0, 1) and g0 ∈ W 1,∞(0,∞), then the IBVP (2.1) admits
a unique solution u ∈ L2(0, T ;H1(0, 1)). Moreover, let β ∈ (3

2 , 2) and m > 4, there exists
a positive constant C = C(β, µ,m) such that

∥Jmu(·, t)∥Hβ(0,1) ≤ CeCt∥u0∥L2(0,1) + CeCt∥g0∥W 1,∞(0,t), t > 0.

Proof. Step 1 Recalling the definition of the Caputo derivative ∂α
t := J−α in Hα(0, T ),

where α ∈ (0, 1), we see that Jm−α = J−αJm in Hα(0, T ), and we operate Jm to the both
sides of (2.1) to obtain

∂w
t (Jmu) − ∂2

x(Jmu) =
∫ 1

0
w(α)Jm−αu0dα.

Setting v := Jmu, we obtain

∂ω
t v − ∂2

xv =
∫ 1

0
w(α)J (m−α)u0dα in (0, 1) × (0,∞).

By an argument similar to the proof of Theorem 1.2 in Li, Liu and Yamamoto [17], we
can obtain v(·, 0) = 0, h0 := vx(0, · ) ∈ H(m−1)(0, T ) ⊂ C2[0, T ] and h0(0) = 0. In place of
u, we consider the solution v to

∂w
t v − ∂2

xv =
∫ 1

0 w(α)Jm−αu0dα in (0, 1) × (0,∞),
vx(0, t) = h0(t), vx(1, t) = 0, t > 0,
v(x, 0) = 0, x ∈ (0, 1).

(2.2)

Letting V := u− 1
2(x− 1)2h0(t), then V formally reads the following IBVP

∂w
t V − ∂2

xV = F, 0 < x < 1, t > 0,
V (x, 0) = 0, 0 < x < 1,
Vx(0, t) = Vx(1, t) = 0, t > 0.

(2.3)

Here
F (x, t) := 2h0(t) − (x− 1)2∂w

t h0(t) +
∫ 1

0
w(α)Jm−αu0dα.
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Let {λn, φn}n∈N be the eigensystem of ∂2
x with the domain D = {η ∈ H2(0, 1); ηx(0) =

ηx(1) = 0}. Moreover, for ε ∈ (0,+∞) and θ ∈
(

π
2 , π

)
, we define the following contour in

C,
γ(ε, θ) := γ−(ε, θ) ∪ γc(ε, θ) ∪ γ+(ε, θ).

Here
γ±(ε, θ) := {s ∈ C, arg s = ±θ, |s| ≥ ε},
γc(ε, θ) := {s ∈ C, | arg s| ≤ θ, |s| = ε}.

Now, we define operator with the domain L2(0, 1) and the range in itself by

S(t)ψ :=
+∞∑
n=1

1
2πi

∫
γ(ε,θ)

1
sw(s) + λn

estds (ψ,φn)φn, ψ ∈ L2(0, 1), t > 0. (2.4)

We can derive the unique existence of solution to the initial-boundary value problem
by following the argument used in the proof of Theorems 1.1 and 1.3 in [16]. For any
T ∈ (0,∞), we can get a unique weak solution V ∈ L2(0, T,H2(0, 1)) to the IBVP (2.3)
and it admits the following representation

V (t) =
∫ t

0
S(t− τ)F (τ)dτ, t ∈ [0, T ].

Step 2 In this step, we estimate V . Together with the existence of a solution V to
(2.3), we will estimate ∥V ( · , t)∥ and ∥Vxx( · , t)∥. Firstly, we have the following properties
concerning S(t).

Lemma 2.2 ([16, Lemmas 3.1 and 3.2]). Let S(t) be defined in (2.4). Then for a ∈
H1(0, 1) and t > 0, there hold:

∥S(t)a∥H2−ε(0,1) ≤ C t−βeCt∥a∥L2(0,1).

Here ε ∈ (0, 1) and β ∈ (1 − εα0
2 , 1).

Henceforth, C > 0 denote generic constants independent of t but may depend on µ.
On the basis of the above estimate for the operator S(t), it is not difficult to establish

the estimate of the function V as follows.

∥V (t)∥H2−ε(0,1) ≤ C

∫ t

0
eC(t−τ)(t− τ)−β∥F (τ)∥L2(0,1)dτ.

Recalling the definition of the function F and Riemann-Liouville fractional integral oper-
ator Jm−α, from the boundedness of the weight function w, we conclude that

∥F (t)∥L2(0,1) ≤ C
(
∥h0∥L∞(0,t) +

∫ 1

0

1
Γ(1 − α)

∫ t

0
(t− τ)−α| d

dτ
h0(τ)|dτdα

+
∫ 1

0
tm−αdα∥u0∥L2(0,1)

)
.

Moreover, a direct calculation yields∫ 1

0

1
Γ(1 − α)

∫ t

0
(t− τ)−α| d

dτ
h0(τ)|dτdα ≤ C

|1 − t|
| log t|

∥ d
dt
h0∥L∞(0,t))

and ∫ 1

0
tm−αdα ≤ C

tm−1|t− 1|
| log t|

.

Collecting all the above estimates, we find that

∥V (t)∥H2−ε(0,1) ≤C
∫ t

0
eC(t−τ) |1 − τ |h0(t− τ)m−1−β

| log τ |
∥u0∥L2(0,1)dτ

+ C

∫ t

0
eC(t−τ) (|1 − τ |)(t− τ)−β

| log τ |
dτ∥ d

dt
h0∥L∞(0,t).
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In the case of t ∈ (0, 1), by using the fact that 1−t
| log t| ≤ Ct−γ with β < γ+β < 1, we arrive

at the inequalities

∥V (t)∥H2−ε(0,1) ≤ CeCttm−β−γ∥u0∥L2(0,1) + Ct1−γ−βet∥ d
dt
h0∥L∞(0,t).

By choosing C > 1, we further see that

∥V (t)∥H2−ε(0,1) ≤ CeCt∥u0∥L2(0,1) + CeCt∥h0∥W 1,∞(0,t), 0 < t < 1.

For t ≥ 1, we see first that ∫ t

0
eC(t−τ) |1 − τ |(t− τ)−β

| log τ |
dτ

can be analyzed as follows∫ t

0
eC(t−τ) |1 − τ |(t− τ)t−β

| log τ |
dτ

=
∫ 1

0
eC(t−τ) |1 − τ |(t− τ)−β

| log τ |
dτ +

∫ t

1
eC(t−τ) |1 − τ |(t− τ)−β

| log τ |
dτ ≤ Cet + Ctet,

the last inequality is due to t−1
log t ≤ Ct, t > 1. Similarly, we have∫ t

0
eC(t−τ) |1 − τ |(t− τ)m−1−β

| log τ |
dτ ≤ Cet + Ctm−βet.

Again by choosing C > 1, we see that

∥V (t)∥H2−ε(0,1) ≤ CeCt∥u0∥L2(0,1) + CeCt∥h0∥W 1,∞(0,t), t ≥ 1.

Finally, we obtain

∥V (t)∥H2−ε(0,1) ≤ CeCt∥u0∥L2(0,1) + CeCt∥h0∥W 1,∞(0,t), t > 0.

This completes the proof of the lemma. □

2.2. Some results from complex analysis
Lemma 2.3 (Phragmén-Lindelöf’s principle). Let F (z) be a holomorphic function in a
sector S = {z ∈ C; θ1 < arg z < θ2} of angle π/β = θ1 − θ2, −π < θ1 < θ2 < π, and
continuous on the closure S. If

|F (z)| ≤ 1 (2.5)
for z ∈ ∂S: the boundary of S, and

|F (z)| ≤ CeC|z|γ

for all z ∈ S, where 0 ≤ γ < β and C > 0, then (2.5) holds also for all z in S.

The proof of the above lemma can be found in Stein and Shakarchi [26].

3. Proof of the main result
We first set v = Jmu and g0(t) := vx(0, t). From the conclusion of the above sections,

it follows that g0 ∈ C2[0, T ]. Therefore we can smoothly extend g0 for t > T such that
g0 = 0 in (T + 1,∞). If no conflict occurs, we still denote the extension as g0. Thus the
initial-boundary value problem (2.1) and the lateral Cauchy observation can be rephrased
into the initial-boundary value problem (2.2) with the additional condition

v(x, t) = 0, t ∈ (0, T ).
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Taking Laplace transform with respect to t on both sides of the equation in (2.1) implies
−∂2

xv̂(x; s) +
∫ 1

0
w(α)sαdαv̂(x; s) = F̂ (x; s), x ∈ (0, 1), s > 0,

v̂x(0; s) =
∫ T +1

0
g0(t)e−stdt, v̂x(1; s) = 0, s > 0.

(3.1)

Here
F̂ :=

∫ 1

0
w(α)sα−mdαu0.

Lemma 3.1. Let φ(x, ζ) := cos(ζx), then∫ 1

0
(−∂2

xv̂(x; s))φ(x, ζ)dx

=
∫ T +1

0
g(t)e−stdt+ ζ2

∫ 1

0
v̂(x; s)φ(x, ζ)dx+ φ′(1, ζ)v̂(1; s).

Proof. This can be directly done by integration by parts twice and taking the conditions
v̂x(1; s) = 0, v̂x(0; s) =

∫ T +1
0 g0(t)e−stdt and φ′(0, ζ) = 0 into account. □

Now multiplying φ(x, ζ) on the equation in (3.1), and integrating from x = 0 to x = 1,
from the above lemma, we find∫ 1

0
w(α)sα−mdα

∫ 1

0
u0(x)φ(x, ζ)dx

=
(∫ 1

0
w(α)sαdα+ ζ2

) ∫ 1

0
v̂(x; s)φ(x, ζ)dx+ φ′(1, ζ)v̂(1; s) +

∫ T +1

0
g0(t)e−stdt.

Letting ζ = i
√∫ 1

0 w(α)sαdα, hence
∫ 1

0 w(α)sαdα+ ζ2 = 0, we see that∫ 1

0
w(α)sα−mdα

∫ 1

0
u0(x)φ(x, ζ)dx = φ′(1, ζ)v̂(1; s) +

∫ T +1

0
g0(t)e−stdt. (3.2)

Based on this integral equation involved the initial value and boundary condition, we
can derive an estimate for the initial value as follows.

Lemma 3.2. Let T > 0 be a fixed constant and u ∈ L2(0, T ;H2(0, 1)) be a solution to the
problem (2.1). Then the exists a sufficiently large integer N such that the inequality∣∣∣∣∫ 1

0
u0(x)esxdx

∣∣∣∣ ≤ C

holds true for any s > 0, where the constant C is independent of s.

Proof. For ζ = i
√∫ 1

0 w(α)sαdα, we see that

|φ′(1, ζ)| = |ζ| | sin(ζ)| ≤ C|ζ|e|ζ|,

which combined with (3.2) implies∣∣∣∣∫ 1

0
u0(x)φ(x, ζ)dx

∣∣∣∣
≤ C∫ 1

0 w(α)sm−αdα
|ζ|e|ζ|

∣∣∣∣∫ ∞

0
v(1, t)e−stdt

∣∣∣∣ + 1∫ 1
0 w(α)sm−αdα

∣∣∣∣∣
∫ T +1

0
g0(t)e−stdt

∣∣∣∣∣ ,
for |ζ|2 =

∫ 1
0 w(α)sαdα. From Lemma 2.1, we see that |v(1, t)| ≤ CeCt, and using the fact

that v(1, t) = 0 for t ∈ [0, T ], we have∫ +∞

T
|v(1, t)|e−stdt ≤

∫ M

T
Ce(C−s)tdt = CeCT

s− C
e−sT , s > 2C.
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From the choice of g, we see that∣∣∣∣∣
∫ T +1

0
g0(t)e−stdt

∣∣∣∣∣ ≤ ∥g0∥L1(0,T +1), s > 0.

On the basis of the above calculation, we further arrive at the following inequality∣∣∣∣∫ 1

0
u0(x)φ(x, ζ)dx

∣∣∣∣
≤ C√∫ 1

0 w(α)sm−αdα
e

√∫ 1
0 w(α)sαdα eCT

s− C
e−sT + 1∫ 1

0 w(α)sm−αdα
∥g0∥L1(0,T +1), s > 2C.

Since α ∈ (0, 1) and m is large enough, we take s being sufficiently large and then we see
that ∣∣∣∣∫ 1

0
u0(x)φ(x, ζ)dx

∣∣∣∣ ≤ C, s >> 1.

From the Euler formula, it follows that∣∣∣∣∣
∫ 1

0
u0(x)e

iζx − e−iζx

2
dx

∣∣∣∣∣ ≤ C, s >> 1.

Which further implies that∣∣∣∣∣∣
∫ 1

0
u0(x)ex

√∫ 1
0 w(α)sαdα

dx

∣∣∣∣∣∣ ≤ C +

∣∣∣∣∣∣
∫ 1

0
u0(x)e−x

√∫ 1
0 w(α)sαdα

dx

∣∣∣∣∣∣ ≤ C, s >> 1.

By changing
√∫ 1

0 w(α)sαdα to s, we finally obtain∣∣∣∣∫ 1

0
u0(x)esxdx

∣∣∣∣ ≤ C, s >> 1.

This completes the proof of the lemma. □
Setting

H(z) :=
∫ 1

0
u0(x)φ(x, z)dx (3.3)

for z in the complex plane C. From Phragmén-Lindelöf principle in Lemma 2.3, it is not
very difficult to see that the function H(z) defined by (3.3) is holomophic on the complex
plane, and we conclude from Liouville theorem (see, e.g., Stein and Shakarchi[26].) that
H(z) must be constant on the whole complex plane. Moreover, we see that

Corollary 3.3. The function H(·) defined by (3.3) is identically vanished on the whole
complex plane.

Proof. From the above corollary, we can assume that H(z) = C, z ∈ C. Letting z > 0,
we consider the limit of H(z) as z → +∞. From the asymptotic behavior of the function
φ(x, z), we see that

lim
z→+∞

H(z) = lim
z→−∞

∫ 1

0
u0(x)ezxdx = 0.

That is, H(z) ≡ 0, z ∈ C. □
Now we are ready to give the proof of the uniqueness of our inverse problem.

Proof of Theorem 1.1. We first extend the function u0 by letting u0 = 0 outside of
x ∈ (0, 1), that is we have

ũ0(x) =
{
u0(x), x ∈ (0, 1),
0, x ∈ (1,∞).
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Based on the above notation, it follow easily that∫ 1

0
u0(x)ezxdx =

∫ ∞

0
ũ0(x)ezxdx = 0.

Letting z = −s, s ∈ C, we see that∫ ∞

0
ũ0(x)e−sxdx = 0, s ∈ C.

From the uniqueness of the Laplace transform, we must have ũ0 = 0, which finishes the
proof of the theorem. □

4. Numerical Simulation
In this section, we are devoted to developing an effective numerical method for the

numerical reconstruction of the unknown initial value in (0, 1) from the addition data
u(1, t), ux(1, t) in (0, T ).

4.1. Inversion algorithm description
In this subsection, we give a direct description for our proposed inversion algorithm.

Obviously, the solution u(x, t) to the direct problem (2.1) is relative to the boundary
condition g0(t) and initial value u0(x). We denote by u(g0, u0)(x, t) the solution to the
corresponding direct problem. Similarly, the corresponding observation data u(g0, u0)(1, t)
is denoted by H(t). As we know, the observation errors are inevitable. We assume the
noise contaminated measurement data Hδ(t) satisfy the following estimate

∥H(·) −Hδ(·)∥L2(0,T ) ≤ δ.

Based on the optimal ideal for solving the inverse problem, we transform the inverse
problem into the following least square functional optimization problem

min
(g0,u0)∈A

1
2

∥u(g0, u0)(1, ·) −Hδ(·)∥2
L2(0,T ), (4.1)

where A = C[0, T ] × C[0, 1]. In order to conveniently describe the inversion algorithm,
we adopt the principle of superposition to make the boundary condition homogeneous.
Let ū(x, t) = g1−g0

2 x2 + g0x. By direct derivation, v(x, t) = u(x, t) − ū(x, t) satisfies the
following homogeneous Neumann boundary value problem

∂w
t v − ∂2

xv = f(x, t) in (0, 1) × (0,∞),
v(·, 0) = v0, in (0, 1),
vx(0, ·) = 0, vx(1, ·) = 0 in (0,∞).

Where

v0 = u0 − g1(0) − g0(0)
2

x2 − g0(0)x, (4.2)

f(x, t) = g1 − x2

2
∂w

t g1 − g0 + (x
2

2
− x)∂w

t g0. (4.3)

Similarly, based on the principle of superposition we have v(x, t) = V (f)(x, t)+W (v0)(x, t),
where V (f)(x, t) and W (v0)(x, t) meet the following subproblem P1 and subproblem P2,
respectively.

P1)


∂w

t V − ∂2
xV = f(x, t) in (0, 1) × (0,∞),

V (·, 0) = 0, in (0, 1),
Vx(0, ·) = 0, Vx(1, ·) = 0 in (0,∞),

(4.4)
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P2)


∂w

t W − ∂2
xW = 0 in (0, 1) × (0,∞),

W (·, 0) = v0, in (0, 1),
Wx(0, ·) = 0, Wx(1, ·) = 0 in (0,∞).

(4.5)

Therefore, we can rewrite the functional optimization problem (4.1) as follows

min
(g0,u0)∈A

1
2

∥V (f)(1, ·) +W (v0)(1, ·) + ū(1, t) −H(·)∥2
L2(0,T ). (4.6)

Next, we change the infinite dimensional optimization problem into the finite dimensional
optimization problem by taking function approximation technique. Here we take the
finite element interpolation technique to approximate the u0(x) and the termed Fourier
series expansion method to approach functions g0(t). We firstly divide the space domain
[0, 1] with regular partitions Sh. The regular partition Sh is composed of M1 equal space
subintervals. Let {xι}M1

ι=0 be the set of the space nodes, i.e., xι = ι ∗ h, where h = 1
M1

. We
denote Wh the continuous piecewise linear finite element space defined over Sh, i.e.,

Wh = { s : s ∈ C[0, 1], s
∣∣∆h

∈ P1(∆h), ∀ ∆h ∈ Sh }.

Then any sh ∈ Wh can be repeated as sh(x) =
M1∑
ι=0

sιϕ
ι(x), where sι is the value of sh(x)

at point xι. ϕι(x) are the piecewise linear basis functions defined as follows,

ϕ0(x) =
{

−x−x1
h , x ∈ [x0, x1],

0, othewise, ϕM1(x) =
{

x−xM1−1
h , x ∈ [xM1−1, xM1 ],

0, otherwise,

ϕι(x) =


x−xι−1

h , x ∈ [xι−1, xι],
−x−xι+1

h , x ∈ (xι, xι+1],
0, otherwise.

ι = 1, · · · ,M1 − 1.

Applying the piecewise linear interpolation technique, we can approximate the initial
value u0(x) in the finite element space Wh as follows

u0(x) ≈ u0,h(x) =
M1∑
ι=0

u0,ιϕ
ι(x),

where u0,ι := u0(xι), ι = 0, · · · ,M1. Based on the idea of subspace projection, here we
adopt the truncated Fourier series expansion method to finitely approximate the boundary
condition g0(t), i.e.,

g0(t) ≈ g0,τ (t) =
K1∑
ι=0

g0,ιϱ
ι(t),

where g0,ι := (g0(t), ϱι(t)), ι = 0, 1, · · · ,K1, the symbol (·, ·) represents the scalar product
on the interval [0, T ] and

ϱι(t) =


√

1
2 sin (ι+1)πt

2 , ι is odd number,√
1
2 cos ιπt

2 , ι is even number.

Denoted by f̄(x, t) = g1(t)− x2

2 ∂
w
t g1(t), fl(x, t) = (x2

2 −x)∂w
t ϱ

ι(t)−ϱι(t), ū0(x) = x2

2 −x.
Substituting u0(x) and g0(t) by u0,h(x) and g0,τ (t) in expression (4.2) and (4.3), we get
the following approximating relationships

v0(x) ≈
M1∑
ι=0

u0,ιϕ
ι(x) − x2

2
g1(0) + ū0(x)

[ K1
2 ]∑

ι=0
g0,2ι,

f(x, t) ≈
K1∑
ι=0

fl(x, t)g0,ι + f̄(x, t).
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Therefore, the infinite dimensional optimization problem (4.6) can be approximated by
the following finite dimensional optimization problem

min
g⃗0 ∈ RK1+1

u⃗0 ∈ RM1+1

1
2

∥∥∥ K1∑
ι=0

g0,ι(V (fι)(1, ·)+
1
2
ϱι)+

M1∑
ι=0

u0,ιW (ϕι)(1, ·)+
[ K1

2 ]∑
ι=0

g0,2ιW (ū0)(1, ·)−H̄
∥∥∥2

L2(0,T )
,

where H̄(t) = H(t) − V (f̄)(1, t) +W (x2

2 )(1, t)g1(0) − 1
2g1(t), g⃗0 = (g0,0, · · · , g0,K1)T , u⃗0 =

(u0,0, · · · , u0,M1)T . For briefness, we introduce the following notation

aι(t) = W (ϕι)(1, t), ι = 0, 1, · · · ,M1,

aM1+ι+1(t) = V (fι)(1, t) + 1
2
ϱι(t) + χιW (ū0)(1, t), ι = 0, 1, · · · ,K1,

where χι is defined by

χι =
{

1, ι is even,
0, ι is odd.

Then the above finite dimensional optimization problem can be rewritten into the following
form

min
g⃗0 ∈ RK1+1

u⃗0 ∈ RM1+1

1
2

∥
M1∑
ι=0

u0,ιaι(·) +
K1∑
ι=0

g0,ιaM1+1+ι(·) − H̄(·)∥2
L2(0,T ), (4.7)

By the necessary conditions of the extremum problem, we can obtain the normal equations
of quadratic functional (4.7) as follows

AΦ = F, (4.8)

where 
Ai,j = (ai, aj), i, j = 0, 1, · · · ,M1 +K1 + 1,
Φ = (u0,0, u0,1, · · · , u0,M1 , g0,0, g0,1, · · · , g0,K1)T ,

Fi = (ai, H̄(t)), i = 0, 1, · · · ,M1 +K1 + 1.

As we all know, the initial value identification is ill-posed problem, which means the linear
algebra equations are ill-conditioned. Therefore, some regularized technique is necessary.
Here we adopt the truncated singular value decomposition method to solve the system
(4.8), the corresponding regularized solution is denoted by ΦN, where symbol N represents
the number of the truncated term. The number of the truncated term N is determined
by the following Morozov discrepancy principle

∥AΦN − F∥ = τ̄ δ,

where τ̄ ≥ 1 is a positive constant. In numerical implementations, we choose N = Nτ̄

satisfying the following inequality:

eNτ̄ ≤ τ̄ δ ≤ eNτ̄ −1, (4.9)

where eN = ∥AΦN − F∥. Hereto, we can formulate the inversion algorithm for the initial
function as follows
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Algorithm 1 inversion method for the initial function u0(x)

1: Input the observation data Hδ(t), the constant τ̄ and set N = 1.
2: Compute the subproblem (4.4) with f(x, t) = fi, (i = 0, · · · ,K1) in parallel and com-

pute subproblem (4.5) with v0(x) = ū0, ϕ
ι(ι = 0, · · · ,M1) in parallel to get the

elements Ai,j of the matrix A and the elements Fi of the vector F.
3: Obtain the regularization solution ΦN by solving system (4.8) with truncated singular

value decomposition method.
4: Check whether the stopping criterion (4.9) is met. If the stopping criterion (4.9) is met,

then go to step 5. Otherwise, update the number of the truncated term N := N + 1,
return step 3.

5: Output the regularized solution uNτ̄
0,h (x) =

M1∑
ι=0

ΦNτ̄ (ι)ϕι(x).

4.2. Numerical examples
In this subsection, several numerical examples are implemented to illustrate the effec-

tiveness of the inversion algorithm. Without loss of generality, we take T = 1 and g1(t) = 0
for all the numerical simulations. To obtain the (noisy) observation data Hδ(t), we first
endow the problem (2.1) with true initial function u⋆

0(x) and exact boundary condition
g⋆

0(t), and solve the direct problem (2.1) by finite difference method proposed in [18], then
add pointwise noise by Hδ(ti) = u(g⋆

0, u
⋆
0)(1, ti)(1 + δξ), where ti is the discretization time

nodal point, δ is the noise level and ξ is a uniform random variable on [−1, 1].

Example 4.1. Let ω(α) = Γ(6 − α) We take u0(x) = −x3 + 3
2x

2 + 10 as the exact
initial condition and g0(t) = sin(t) as the true boundary condition. In the numerical
implementations, we take M1 = 50, K1 = 2.

Figure 1. inversion solution for example 1 with different error levels

Example 4.2. Let ω(α) = 10 + α. We take u0(x) = x4 − 4
3x

3 + 20 − 10 cos(πx) as the
exact initial condition and g0(t) = sin(t) + 5 sin(3t) as the true boundary condition. In
the numerical procedure, we take M1 = 50, K1 = 4.
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Figure 2. inversion solution for example 2 with different error levels

Example 4.3. Let ω(α) = 10 + 5α2. We take g0(t) = sin(t) + 2 sin(5t) as the true
boundary condition, and the exact initial function as the following piece-wise linear form

u0(x) =


20x, x ∈ [0, 1

2
),

20(1 − x), x ∈ [1
2
, 1].

We take M1 = 50,K1 = 5 in the numerical inversion procedure.

Figure 3. inversion solution for example 3 with different error levels

The reconstructions for examples 4.1-4.3 are indicated in figure 1-3. From the three
figures, we can find that the smaller error level δ is, the better the computed approximation
is. In all, the numerical experiment shows the proposed method work effectively.
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5. Concluding remarks
In this paper, we considered the one-dimensional time-fractional diffusion equation

with distributed order derivative. By using Fourier and Laplace transforms argument,
we changed the inverse problem to an integral identity involving the initial value and
measurement data. On the basis of the above identity, the uniqueness of the inverse
problem was proved by using the Phragmén-Lindelöf principle and the Liouville theo-
rem (Phragmén-Lindelöf-Liouville argument for short). It should be pointed out that our
method cannot work for the case of the fractional order α ∈ (1, 2). The main reason is
because two initial conditions will lead to the appearance of multivalued functions in the
discussion. We will consider it in the next paper.

Let us mention that the Phragmén-Lindelöf-Liouville argument used heavily relies on
the dimension of the space. It would be interesting to investigate what happens about the
inverse problem with lateral Cauchy data in the general dimensional case.

In the numerical aspect, we have also applied the classical Tikhonov regularization
method to transform the inverse problem into a minimization problem, which is solved
by an iterative thresholding algorithm. Several numerical examples are presented to show
the accuracy and effectiveness of the proposed algorithm.
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