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1. Introduction 

In classical cooperative game theory, the rewards for player coalitions are known with certainty; however, when 
uncertainty is included, the characteristic functions are not real-valued as in the crisp situation. In this case, they 
represent the uncertainty surrounding the outcomes of collaboration in a variety of ways, including stochastic, 
fuzzy, interval, and ellipsoidal uncertainty (Alparslan Gök et al., 2023; Granot, 1977; Mallozzi et al., 2011; 
Özcan et al., 2024; Özcan and Alparslan Gök, 2021;2022;2024; Özcan and Aytar, 2022; Özcan et al., 2023; Suijs 
et al., 1999; Tirkolaee et al., 2020). This study considers a brand-new type of uncertainty called bubbly grey 
uncertainty. 

A novel approach that concentrates on the analysis of issues involving small samples and incomplete 
information was developed by Deng, 1982. By creating, exploring, and extracting usable knowledge from what 
is already accessible, this approach works with uncertain systems with imperfectly understood information. 
Additionally, the notion of grey systems and information is powerful and has potential real-world applications to 
benefit society. The notion of grey numbers gave rise to several new mathematical theories, including grey 
system theory. Grey numbers, one of the cornerstones of grey system theory, have been used by numerous 
academics to address this ambiguity. Games are more meaningful when a grey number provides decision 
information. In fact, grey numbers, a cornerstone of grey system theory, have been widely used by academics to 

This paper introduces a novel category of cooperative games  called 
cooperative bubbly grey games, in which the value of each coalition 
is represented by a grey bubble rather than a numerical value. To be 
exact, rather than using actual numbers, the coalition values are 
represented as bubbles. Accordingly, we use the cooperative grey 
game model to overcome the bubbly uncertainty. Both the idea of 
the bubbly core and the cooperative bubbly game concept are 
introduced. Grey data may be used as a tool in cooperative grey 
games to address profit or cost sharing challenges. When 
considering cooperative grey bubbly games, we can take advantage 
of the fact that each bubble is characterized exactly by grey 
numbers, where the logarithmic grey price process is represented 
with bubbles. Additionally, the bubbly core, a novel solution 
concept, is presented. In addition, a numerical example is provided 
along with a necessary criterion for the non-emptiness of the bubbly 
grey core of such a game. The paper ends with a conclusion and an 
outlook on future studies. 
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handle ambiguity. Games are referred to as cooperative grey games when decision information is provided by 
grey numbers. The use of grey uncertainty has various applications in cooperative game theory (Olgun et al., 
2016; Özcan and Alparslan Gök, 2024; Palancı et al., 2015; Palancı et al., 2017; Ylmaz et al., 2018; Zhang et al., 
2005). 

In operational research, climate negotiations and policy, environmental management, and pollution control, 
among other applications, optimization, pattern recognition, and machine learning can all serve as different 
solution approaches to detect, forecast, and control bubble size, shape, and location. We present a novel 
mathematical approach for depicting the logarithmic grey pricing process using intervals. More specifically, 
interval bubbles rather than real numbers are used to symbolize the values of the coalitions. As a result, we 
employ the cooperative grey game model to address bubbly uncertainty. In cooperative grey games, grey data 
may serve as a tool to address profit and cost-sharing concerns. We propose a novel and innovative mathematical 
method in which intervals of the logarithmic pricing process are used to describe this process. Specifically, 
interval bubbles rather than actual numbers represent the coalition values. In light of this, we develop and use a 
novel model of cooperative interval games to handle bubbly uncertainty. We benefit from the fact that each 
bubble is precisely described by a grey number when considering cooperative grey bubbly games, as bubbles are 
used to represent the logarithmic grey pricing process. 

 
This paper is arranged as follows: Basic concepts and information from the theory of cooperative grey games 
and grey calculus are presented in Section 2. In Section 3, the cooperative bubbly game concept and the idea of 
the bubbly core are introduced. Section 4 presents a numerical example and a necessary condition for the non-
emptiness of the bubbly grey core of such a game. Finally, Section 5 concludes the paper. 

2. Preliminaries 

Basic information about cooperative grey game theory and grey calculus is provided in this section (Deng, 
1982). 

In this case, the precise value of the number is unknown, but it is known within what range it lies. A grey 
number in applications is typically an interval or a broad range of values. In this study, we take into account 
interval grey numbers. 
A grey number with both a lower limit 𝑎

_
 and a upper limit 𝑎 is called an interval grey number, denoted as 𝑤" ∈

$𝑎, 𝑎&. 

A cooperative grey game is an ordered pair < 𝑁,𝑤" >, where 𝑁 = {1,… , 𝑛} is the set of players, and 𝑤": 2# →
𝒢(ℝ) is the characteristic function such that 𝑤"(∅) ∈ [0,0], grey payoff function 𝑤"(𝑆) ∈ [𝐴$, 𝐴$] refers to the 
value of the grey expectation gain from coalition cooperation 𝑆 ∈ 2#, where 𝐴$	and 𝐴$ indicate the coalition of 𝑆 
highest and lowest feasible profits. As a result, a cooperative grey game can be considered of as a crisp 
cooperative game with grey profits 𝑤". We denote by 𝒢(ℝ)# the set of all such grey payoff vectors. The 
collection of all cooperative grey games is represented by 𝒢𝐺#. 

Now we address a few concepts from the theory of cooperative grey games. 
 
For 𝑤%, 𝑤& ∈ 𝐼𝐺# and 𝑤%" , 𝑤&" ∈ 𝒢𝐺# we say that 𝑤%" ∈ 𝑤% ≤ 𝑤&" ∈ 𝑤& if 𝑤%"(𝑆) ≤ 𝑤&"(𝑆), where 𝑤%"(𝑆) ∈ 𝑤%(𝑆) 
and 𝑤&"(𝑆) ∈ 𝑤&(𝑆) and, for each 𝑆 ∈ 2#. 
 
For 𝑤%" , 𝑤&" ∈ 𝒢𝐺# and 𝜆 ∈ ℝ' we define < 𝑁,𝑤%" +𝑤&" > and < 𝑁, 𝜆𝑤" > by (𝑤%" +𝑤&")(𝑆) = 𝑤%"(𝑆) + 𝑤&"(𝑆) 
and (𝜆𝑤")(𝑆) = 𝜆𝑤"(𝑆) for each 𝑆 ∈ 2#. For 𝑤%" , 𝑤&" ∈ 𝒢𝐺#, where 𝑤%" ∈ 𝑤%" , 𝑤&" ∈ 𝑤& with |𝑤%"(𝑆)| ≥ |𝑤&"(𝑆)| 
for each 𝑆 ∈ 2#, < 𝑁,𝑤%" −𝑤&" > is defined by (𝑤%" −𝑤&")(𝑆) = 𝑤%"(𝑆) − 𝑤&"(𝑆) ∈ 𝑤%(𝑆) − 𝑤&(𝑆). 
 
We call a game < 𝑁,𝑤" > grey size monotonic if < 𝑁, |𝑤"| > is monotonic, i.e., |𝑤"|(𝑆) ≤ |𝑤"|(𝑇) for all 
𝑆, 𝑇 ∈ 2# with 𝑆 ⊂ 𝑇. For further use we denote by 𝑆𝑀𝒢𝐺# the class of grey size monotonic games with player 
set 𝑁. 
 
We call a game 𝑤 ∈ 𝒢(ℝ)# is said to be superadditive if for all 𝑆, 𝑇 ⊂ 𝑁 with 𝑆 ∩ 𝑇 = ∅ the next two criteria 
are hold: 
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i) 𝑤"(𝑆 ∪ 𝑇) ≽ 𝑤"(𝑆) + 𝑤"(𝑇),                 
ii) |𝑤"|(𝑆 ∪ 𝑇) ≥ |𝑤"|(𝑆) + |𝑤"|(𝑇). 
 
We call a game 𝑤" ∈ 𝐼𝐺# convex if 𝑤"(𝑆) + 𝑤"(𝑇) ≼ 𝑤"(𝑆 ∪ 𝑇) + 𝑤"(𝑆 ∩ 𝑇) and |𝑤"|(𝑆) + |𝑤"|(𝑇) ≤
|𝑤"|(𝑆 ∪ 𝑇) + |𝑤"|(𝑆 ∩ 𝑇) for all 𝑆, 𝑇 ∈ 2#. 
 
Let < 𝑁,𝑤" > be a cooperative grey game. Its grey core looks as follows: 

𝒞(𝑤") = O(𝑤%" , . . . , 𝑤(" ) ∈ 𝒢(ℝ)# ∣ Q𝑤)"
)∈#

= 𝑤"(𝑁),Q𝑤)"
)∈$

≽ 𝑤"(𝑆), ∀𝑆 ∈ 2# ∖ {∅}T. 

The interval core, as we observe, consists of those interval payoff vectors that ensure the distribution of the 
grand coalition’s uncertain worth such that each coalition of players could anticipate a marginally increased 
interval payoff than that coalition could independently anticipate, indicating that no coalition has any reason to 
disintegrate. 

3. On cooperative bubbly grey games and their core 

A bubble is defined as the difference between the company’s fundamental logarithmic price and the risky asset 
logarithmic price, denoted as ℬ = 𝒫 −𝒫∗. Here 𝒫 denotes the risky asset logarithmic price, whereas 𝒫∗ 
represents the fundamental logarithmic price. Furthermore, 𝒫,𝒫∗ ∈ 𝒢(ℝ). As previously stated, an interval is a 
specific type of bubble and ℬ ∈ 𝒢(ℝ) (Palancı et al, 2014). 

A cooperative grey game under bubbly uncertainty is an ordered pair < 𝑁,𝑤" >. Here 𝑁 = {1, . . . , 𝑛} is the set 
of companies, 𝑤": 2# → 𝒢(ℝ) is the characteristic function which assings to each coalition 𝑆 ∈ 2# a bubble such 
that 𝑤"(∅) ∈ [0,0], where 𝒢(ℝ) is the set of all nonempty, closed and bounded grey numbers in ℝ.  
A coalition’s worth 𝑆 in this research is taken to be the total of gains that the coalition 𝑆 may realize through an 
acceptable rearrangement, from which we get the associated bubbly grey game, < 𝑁,𝑤" >, as follows: 

𝑤"(𝑆) ∈Qℬ)
)∈$

. 

Note that here ℬ) is the grey bubble of the 𝑖 −th company. 

With the use of bubbly solution ideas, which link each cooperative bubbly game to a collection of bubble 
vectors, benefits or price issues in scenarios depicted by cooperative bubbly grey games may be solved. These 
methods assist disperse the grand coalition’s outcome among the businesses once the bubbly uncertainty has 
been addressed by informing the companies about the ranges of various payoffs produced the grand coalition’s 
collaboration. 
 
Next, the cooperative bubbly grey game core is then introduced. 
 
Definition 1.  Let < 𝑁,𝑤" > be a cooperative bubbly grey game. Its bubbly grey core is defined by 
 
 𝒞(𝑤") = X(ℬ%, . . . , ℬ() ∈ 𝒢(ℝ)# ∣ ∑ ℬ))∈# = 𝑤"(𝑁), ∑ ℬ))∈$ ≽ 𝑤"(𝑆), ∀𝑆 ∈ 2# ∖ {∅}Z. 

The example that follows shows how a cooperative bubbly grey game may be derived from a real-world 
circumstance. 

Example 3.1.  We take into account three companies, namely companies 1, 2, and 3, which take collaboration 
into account. The risky asset logarithmic grey prices of the three companies are 𝒫% ∈ [12,17], 𝒫& ∈ [12,17] ∈
[15, 19] and 𝒫, ∈ [20,28] million euros, the fundamental logarithmic grey prices of the three companies are 
𝒫%∗ ∈ [6,9], 𝒫&∗ ∈ [11,14] and 𝒫,∗ ∈ [12,18], respectively. Then, the bubbles of these companies are ℬ% ∈ [6,8], 
ℬ& ∈ [4,5] and ℬ, ∈ [8,10]. Cooperative bubbly grey games may be used to simulate this scenario, where 𝑁 =
{1,2,3} represents the collection of firms, and the characteristic functions are as follows:  
 

𝑁 ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
𝑤′ [0,0]	 [6, 8] [4, 5] [8, 10] [10, 13] [14, 18] [12, 15] [18, 23] 

where 
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𝑤"({1}) ∈ 𝒫% −𝒫%∗,
𝑤"({2}) ∈ 𝒫& −𝒫&∗,
𝑤"({3}) ∈ 𝒫, −𝒫,∗,

𝑤"({1,2}) ∈ 𝑤"({1}) + 𝑤"({2}),
𝑤"({1,3}) ∈ 𝑤"({1}) + 𝑤"({3}),
𝑤"({2,3}) ∈ 𝑤"({2}) + 𝑤"({3}),

𝑤"({1,2,3}) ∈ 𝑤"({1}) + 𝑤"({2}) + 𝑤"({3}).

 

 

Remark 3.1.  One can see that ([6,8], [4,5], [8,10]) is an element of the bubbly grey core and gives [6,8] grey 
payoff to company 1, [4,5] grey payoff to company 2 and [8,10] grey payoff to company 3. 

We provide the following brief explanations to help you better understand the previously introduced new 
configurations and options. 
 
Examining logarithmic pricing rather than actual prices is a popular technique in the financial industry and in 
economics. The geometric evolution of many price processes, which is typically described and approximated by 
exponential growth mixed with random variation, is one key feature in this. The use of the natural logarithm may 
be seen as a linearization that converts the geometric progression into a arithmetic one. The analysis is then 
greatly eased. By removing the slope, or switching to incremental changes in the logarithmic prices, we can 
show that even this linearity frequently becomes more simple in the presence of leaps, or additional 
impulsiveness in the dynamics. Then, random variation and leaps are positioned at the level 0 constant value. In 
our setting of cooperative grey games, the so called Lévy processes are left for further research (Savku and 
Weber, 2018;2021;2022). 
 
Remark 3.2.  The gap between the lower and higher boundaries of the asset logarithmic grey price is always 
greater than the difference between the lower and upper bounds of the fundamental logarithmic grey price, 
which is a fundamental truth in both economics and finance. Since cooperative bubbly grey games fall within 
this category, the partial subtraction operator used throughout this work is always provided for this class. 

4. Some results on the bubbly grey core 

In this section, we provide a crucial requirement for a cooperative bubbly-grey game’s core not being empty. 

Consider the map 𝜆: 2#\{∅} → ℝ' is called a balanced map if ∑ 𝜆$∈&!\{∅} (𝑆)𝑒$ = 𝑒#. Here, 𝑒$ is the 
characteristic vector for coalition 𝑆 with 

𝑒)$ = e1,   ef 𝑖 ∈ 𝑆,0,   ef 𝑖 ∈ 𝑁\𝑆. 

Definition 4.2.  Let < 𝑁,𝑤" > be a cooperative bubbly grey game. We say that < 𝑁,𝑤" > is grey bubbly-
balanced (in short: 𝒢B-balanced) if for each balanced map 𝜆: 2#\{∅} → ℝ' we have ∑ 𝜆$∈&!\{∅} (𝑆)𝑤"(𝑆) ≼
𝑤"(𝑁). 

Proposition 4.1.  If a cooperative bubbly grey game has a non-empty bubbly core then it is 𝒢B-balanced. 
 
We now give an example of how Proposition 4.1 might be applied in a situation with bubbly uncertainty in the 
reality. 
 
Example 4.2.  Consider the game in Example 3.1. The game features a non-empty bubbly grey center, as shown 
above. We determine that the game is 𝒢B-balanced based on Proposition 4.1. 
 
Before we conclude Section 4, we look into some fundamental characteristics of the bubbly grey core 𝒞(𝑤") . 
 
Proposition 4.2.  Let < 𝑁,𝑤" > be a cooperative bubbly grey game. Then, 𝒞(𝑤") is a convex set. 
 
Proposition 4.3.  Let < 𝑁,𝑤" > be a cooperative bubbly grey game. Then, 𝒞(𝑤") is a superadditive map. 
Proof. We have to prove that 𝒞(𝑤%") + 𝒞(𝑤&") ⊆ 𝒞(𝑤%" +𝑤&"). First, we note that the inclusion holds if 𝒞(𝑤%") =
∅ or 𝒞(𝑤&") = ∅. Otherwise, we take (I%, . . . , I() ∈ 𝒞(𝑤%") and (𝒥%, . . . , 𝒥() ∈ 𝒞(𝑤&"). Then, 
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QI1
1∈#

+Q𝒥1
1∈#

∈ 𝑤%"(𝑁) + 𝑤&"(𝑁),

Q (I1 + 𝒥1)
1∈#

∈ (𝑤%" +𝑤&")(𝑁).
 

For each 𝑆 ∈ 2#\{∅}, ∑ ℐ11∈$ ≽ 𝑤%"(𝑆) and ∑ 𝒥11∈$ ≽ 𝑤&"(𝑆) implying that ∑ I11∈$ ≥ 𝑤%
" (𝑆) and ∑ 𝒥11∈$ ≥

𝑤&
" (𝑆). Then, for every 𝑆 ∈ 2#\{∅}, 

QI1
1∈$

+Q𝒥1
1∈$

≥ 𝑤%
" (𝑆) + 𝑤&

" (𝑆),

QI1
1∈$

+ 𝒥1 ≥ j𝑤%
" +𝑤&

" k(𝑆).
 

Similarly, 

QI1 + 𝒥1
1∈$

≥ j𝑤%" +𝑤&"k(𝑆). 

Hence, the bubbly grey core 𝒞(𝑤") is a superadditive map. 

5. Conclusions and outlook 

We propose a new category of cooperative grey games with bubbly uncertainty in this study. Our work is driven 
by the requirement for cooperation as well as several real-world sources of uncertainty. Additionally, we present 
a fresh idea for a solution: the core of cooperative bubbly grey games. This solution approach for cooperative 
interval games is an extension of the interval core since bubbles make it possible to take player correlations into 
account and go beyond intervals (Alparslan Gök, 2009;2010, Alparslan Gök et al., 2009). 

The Log Periodic Power Law (LPPL), a theory created by D. Sornette and his colleagues, may be used to predict 
the speculative financial bubbles (Kürüm et al., 2014) described in the book chapter. Here, the crash’s most 
likely timing is determined. Each parameter is predicted using a genetic technique for optimization. The signals 
given by LPPL before to the crisis in 1987 may be seen through analysis of a 1987 S&P1500 time series. S&P 
stands for Standard & Poor’s in this context, which is an index of dangerous stock prices and benchmark value to 
contrast with one potentially risky price, for example, evaluating or optimizing a portfolio. Additionally, we 
show and explore antibubbles, which likewise follow a log-periodic power law but oscillate at an accelerating 
rate and are typically likely to be bearish. A novel alternative geometrical approach to financial bubbles is also 
introduced by authors in (Kürüm et al., 2014), and it is supported by machine learning, current optimization, and 
the theory of inverse issues (Kürüm et al., 2018). 
 
The class of cooperative bubbly grey games is applicable to a variety of operations research and economic 
challenges, including sequencing issues, cost allocation issues resulting from connection circumstances, supply 
chain, inventory, and manufacturing processes. It would be intriguing to expand on our findings to investigate 
collaboration in various Operations Research game scenarios where there is grey bubble ambiguity. 
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