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Abstract 

The impact of tourism on economic growth and environmental degradation is one of the most relevant debated issues. 
Despite the huge strand of empirical literature on the topic, a formalized theoretical investigation of the link between tourism 
and sustainable economic growth is unfortunately still lacking. To this end, and in line with the literature on the tourist life-
cycle hypothesis, we present an endogenous growth model to study the impact of tourism activities and natural resource use 
on the long run steady state. The aim is to use the principles of bifurcation theory to gain hints on the global properties of 
the equilibrium, and show the existence of irregular patterns, either indeterminate or chaotic, which possibly suggest the 
emergence of a (low growth) poverty-environment trapping region. 
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1. Introduction 

Tourism economics is characterized by an 
explosive growing interest. Unfortunately, formalized 
theoretical studies are still lacking in this field to 
explore the complex relationship existing between 
tourism and a sustainable economic growth (see, Sachs 
and Warner, 2001). 

Nowadays economies basically share the common 
view that production of goods and services, especially 
for firms operating in the tourist sector, highly depend 
on natural resource overuse, and no growth is therefore 
possible without this input. Therefore, trying to 
understand the way an economy can grow along an 
optimal equilibrium path, without sacrificing the 
available natural resources, is one of the most debated 
and intriguing social claims, and is in line with the so-
called tourism-led-growth hypothesis (Brau et al., 
2007; Nowak et al., 2007; Baggio, 2008; Brida et al., 
2008; Katircioglu, 2009; Bornhost et al., 2010; 
Schubert et al., 2010). 

Interestingly, once natural resource exploitation is 
taken into account, attention can be immediately 
devoted to understand whether tourism might affect the 
long run dynamics towards a stable equilibrium, or if 
undesired indeterminacy problems may eventually 
arise. Moreover, the rise of indeterminacy in presence 
of an overuse of natural resources could be the major 
cause for the emergence of a vicious poverty-
environment trap, where public policies might not be 
able to avoid a non sustainable use of natural resources 
(see, for example, Finco, 2009). 

A wide strand of literature has focused on the 
conditions for the emergence of multiple equilibrium 
trajectories in the vicinity of the steady state, but only 
very few attempts have been made to study the 
conditions for global indeterminacy and possible 
chaotic solutions to occur outside such small 
neighborhood of the steady state. In this case, despite 
the initial conditions or other economic fundamentals, 
the agents’ decisions could locate the economy in a 
path which is not corresponding to the lowest 
exploitation level of natural resources (see, for 
example, Mattana and Venturi, 1999; Benhabib et al., 
2001; Bella and Mattana, 2014). 

In line with this strand of literature, we propose an 
endogenous growth model to study the impact of 

tourism activities and natural resource use on the long 
run steady state. The aim is to use the principles of 
bifurcation theory to gain hints on the global properties 
of the equilibrium, and show the existence of irregular 
patterns due to a sensitive dependence of our economy 
on the initial conditions. In particular, we study the 
presence of closed orbits, to detect the rise of economic 
fluctuations and periodic solutions around the steady 
state, which are empirically confirmed by the literature 
on the tourist life-cycle hypothesis (Butler, 1980). The 
problem is to understand the conditions under which 
these orbits are attracting, with equilibrium trajectories 
being captured by the orbit itself, that finally becomes 
a (indeterminate or maybe chaotic) limit set, which 
possibly suggests the emergence of a (low growth) 
poverty-environment trapping region. 

The rest of the paper is organized as follows. First, 
we present the model, derive the steady state 
conditions, and study the local dynamics. Second, we 
characterize the parametric space where periodic 
solutions emerge, and the equilibrium becomes 
indeterminate, and use the Andronov-Hopf bifurcation 
theorem to study the global properties of the steady 
state. Lastly, a final section concludes, and a 
subsequent Appendix provides all the necessary 
proofs. 

2. The model 

We consider an optimal control problem where a 
representative agents aims at maximizing the lifetime 
utility, U, subject to the constraints on the 
accumulation of both physical capital, k, and the stock 
of available natural resources, E, given their positive 
initial values 0(0) 0k k= >  and 0(0) 0E E= > . 

Let assume a standard CIES utility function, i.e. 
1 1
1
cU s

s
- -
-= , where c is per capita consumption, and s  

is the inverse of the intertemporal elasticity of 
substitution. Assume also that the level of investment 
in physical capital is given by the usual functional form 

k y c= -! , where output y is produced according to the 
function 

1y Ak Qa a-=      (1) 

where [ ]0,1aÎ  is the share of physical capital, A 

measures the stock of existing technology, with 
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physical capital, k, entering as an input along with the 
total amount of tourism services, Q. The latter is 
additionally specified, as depending on the amount of 
public spending used to promote the tourism sector, g, 
and the available amount of natural resources, E, in a 
Cobb-Douglas evolutionary law 

1Q g Eb b-=      (2) 

being b  a standard elasticity parameter. 

Additionally, we set the dynamic evolution of the 
environmental sector as represented by 

( ) ( )E N E Z Q= -! , which is negatively affected by 
the extractive use of natural resources employed in the 
production of tourism services, Z(Q), whereas N(E) 
determines the speed at which nature regenerates. To 
simplify the analysis, we propose a linear 
representation of these functions, namely: 
( )N E Ed=  and ( )Z Q Qq= , where d  and q  

denote constant parameters of scale (see also, Musu, 
1995; Rosendahl, 1996; Cole, 2009). 

Hence, under a constant time preference rate, r , 
the maximization problem explicitly becomes 

1

0( )

1

1

1 
1

. .

( )

t

c t

cMax e dt

s t

k Ak Q c
E E g E

s
r

a a

b b

s

d

-¥ -

-

-

-
-

= -

= -

ò

!

!

     (P) 

with an associated current value Hamiltonian given 
by 

1
(1 ) (1 )(1 ) 11 ( )

1C
cH Ak g E c E g E

s
a b a b a b bl µd

s

-
- - - -- é ù= + - + -ë û-

 

where l  and µ  represent the shadow prices of 
physical capital and natural resources, respectively. 

Solution to this optimal control problem implies the 
following first order necessary conditions: 

c s l- =      (3.1) 

(1 )(1 )Ak g Ea ba b al a µd -- =      (3.2) 

accompanied by the equation of motion for each 
costate variable, that can be derived with a bit of 
mathematical manipulation as 

1 (1 ) (1 )(1 )Ak g Ea b a b al r a
l

- - - -= -
!

     (4.1) 

(1 ) (1 )(1 ) 1(1 ) (1 ) 1 (1 )Ak g E g Ea b a b a b bµ l
r b a d b

µ µ
- - - - -é ù= - - - - - -ë û

!
     

(4.2) 

and the transversality condition  

lim [ ] 0t
t t t tt

e k Er l µ-

®¥
+ =      (5) 

that jointly constitute the canonical system. Since 
both Arrow's sufficiency theorem and the 
transversality condition hold, the problem is therefore 
bounded and concave. 
 

2.1 The reduced model 

The standard procedure is conducted in this section 
to study the transitional dynamics of Problem (P). 

Proposition 1 The maximum principle associated 
with the decentralized optimization problem (P) 
implies the following four-dimensional system of first 
order differential equations 

( )

1 (1 ) (1 )(1 )

1 (1 ) (1 )(1 )

1
(1 )

k cAk g E
k k
E g E
E
c Ak g E
c
g x g E
g

a b a b a

b b

a b a b a

b b

d q

r a
s s

d a ab d b
b ba b

- - - -

-

- - - -

-

= -

= -

= - +

- +
= - + + -

!

!

!

!

     (S) 

 Proof. See the Appendix. 
 Lemma 1 System S can be easily reduced to 
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{ }

1 (1 )

1 (1 )

(1 )

x Aq z x x

q Aq z x z q

z x z z

a a

a a

r a s
s s

d q

d a q
a

- -

- -

ì - üæ ö= - + +í ýç ÷
è øî þ

= - + - +

-ì ü= - +í ý
î þ

!

!

!

     (R) 

by means of the convenient variable substitutions: 

c
kx = , k

Eq = , and ( )gEz
b

= . 

Proof. See the Appendix. 

 Remark 1 The steady state is a triplet ( , ,x q z* * *) 
which solves the reduced system (R)  

( )x d s a ar
as

* - +
=      (6.1) 

( 1) (1 )Aq za a d
a

* - * - =      (6.2) 

(1 )z r d s
qs

* - -
=      (6.3) 

Since the Jacobian matrix associated with (R) is 

( ) ( )( 1) (1 )

(1 )( 1)

0

x x
q z

q
z

x

q q

z z

d a d aa s a s
a s a s

d ad
a aa q

q

* *

* *

*

*

- -* - -

-* *

* *

é ù
ê ú
ê ú= - +
ê ú
ê ú-
ë û

J  

Let 
3 2det( ) ( ) ( ) ( )tr B Detl l l l- = - + -I J J J J  be 

the characteristic polynomial of J, where I is the 
identity matrix and tr(J), B(J), and Det(J), are Trace, 
Sum of Principal Minors of order two, and 
Determinant associated with J, respectively. Algebraic 
computation gives 

( ) 2tr zq *=J      (7.1) 

( )(1 ) 2 3
( )Det x z

dq a a s
as

* *- -
=J      (7.2) 

( ) (1 )B z x x zdq a q
a

* * * *é ù= - - +ë ûJ      (7.3) 

Conditions (7.i) may serve us to characterize the 
behavior of the equilibrium trajectories wondering 
around the steady state. Unfortunately, this is not an 
easy task, when dealing with complicate nonlinear 
functions. To this end, we provide a set of conditions 

necessary to facilitate the study of both local and global 
dynamics. 

2.2 Periodic solutions 
Let us first study the possibility that periodic 

solutions do emerge, which is a first way to signal that 
the interior steady state can be indeterminate. 

In detail, we apply the neat Andronov-Hopf 
bifurcation theorem to verify that there exists a 
parameter value at which a structure of closed orbits 
exists around the steady state solution. We choose s  
as the appropriate bifurcation parameter. To prove this, 
we need to check the following expression 

[ ] ( )2 2 2

(1 ) ( )( ) (1 ) (1 ) 2
2

G r d s d s a ar
s d s r a d a s

s a s
- - - +

= - - + - -      

(8) 

where ( ) ( ) ( ) ( )G B tr Dets = - × +J J J , which 
vanishes at different solutions of s  (see, Fig. 1). 

 Example 1 Let ( , , ) (0.05,0.33,0.25)r a d =  
which are standard values in the literature. Therefore, 
( ) 0G s =  when 1 0.4538s =  and 2 0.6368s = . 

 

Fig. 1: The Hopf bifurcation curve 

Multiple values of s  are thus able to annihilate 
( )G s . If this happens, we will show that any variation 

of s  around is , [1, 2]iÎ  can force the variables 
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associated to the complex conjugate eigenvalues to 
oscillate around a common constant value. This means 
also that, an invariant cycle (a closed orbit) may 
emerge around the steady state, or collapses onto it. We 
want to show that parameter s  plays a crucial role in 
the characterization of an optimal solution to our 
maximization problem, and thus matters in the process 
of a long run sustainable growth, giving rise to a boom 
and bust sustained cycle, where tourism services lead 
growth but start exploiting natural resources until 
economic indicators start a sharp and rapid contraction 
when resources are depleted and mass tourism moves 
to different places, thus lowering human impact on the 
environment, which starts restoring natural capital and 
thus enters a new phase of tourism attracting place, 
which pushes up again the economic activities in a 
periodic evolution consistent with the life-cycle 
hypothesis. 

Unfortunately, this analysis may not be sufficient to 
provide a complete picture of the stability properties of 
the economy, for more complicated outcomes can 
emerge if we move slightly off the vicinity of the 
steady state, and may thus complicate the adequate 
policy actions to be implemented. A deep investigation 
of this issue is provided in the next section. 

3. Periodic orbits and global indeterminacy 

Studying the properties of an equilibrium outside 
the small neighborhood of the steady state is not an 
easy task, especially when dealing with non-linear 
functions that complicate the algebraic calculations 
behind it. 

Firstly, we need to put the system (R) in an 
appropriate canonical form to work with. To do this, 
we translate the equilibrium fixed point to the origin, 
by assuming 

,x x x
q q q
z z z

*

*

*

= -

= -

= -

!

!

!

 

which implies 

{ }

1 (1 )

1 (1 )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ( )

x A q q z z x x x x

q A q q z z x x z z q q

z x x z z z z

a a

a a

r a s
s s

d d

ad d
a

×
* - * - * *

×
* - * - * * *

×
* * *

ì - üæ ö= - + + + + + +í ýç ÷
è øî þ

= - + + + - + + + +

-ì ü= - + + + +í ý
î þ

! ! ! !!

! ! ! !! !

!! ! !

     

(Q) 

A second order Taylor expansion of this vector field 
allows us to put (Q) in the form 

1

2

3

( , , )

( , , )

( , , )

x f x q zx
q q f x q z

z f x q zz

×

×

×

æ ö
æ öç ÷ æ ö ç ÷ç ÷ ç ÷= + ç ÷ç ÷ ç ÷
ç ÷ç ÷ç ÷ ç ÷è ø è øç ÷

è ø

J

! ! ! ! !!

!! ! ! ! !

!! ! ! !
!

 

where the if!  terms represent the non linear parts (of 

order 2). 

 Proposition 2 Let T be a matrix of the eigenvectors 
associated with the structure of eigenvalues of J at the 
bifurcation point. Then, it is possible to put the system 
(Q) in the following Jordan normal form: 

1 (0) F-= +w T J Tw!  

where ( )1
iF f-= T Tw! , given the associated 

change in coordinates 

1

2

3

x w
q w
z w

æ ö æ ö
ç ÷ ç ÷=ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

T
!

!

!

 

which transforms system (Q) into 

( )
( )
( )

1 1 2 3,1 1

2 2 2 1 2 3,

3 1 2 3 3 3 1 2 3,

, ,0 1 0
0 0 1 , ,

, ,

F w w ww w
w w F w w w
w w F w w we e e

æ öæ ö é ù æ ö ç ÷ç ÷ ç ÷ê ú= + ç ÷ç ÷ ç ÷ê ú ç ÷ç ÷ ç ÷ê ú ç ÷è ø ë û è ø è ø

!

!

!

 (10) 

where 1 ( )Dete = J , 2 ( )Be = - J , 3 ( )tre = J , and 

iF  are the transformed second order non linear terms. 

 Proof. See the procedure detailed in Algaba et al. 
(1999) and Gamero et al. (1991). 
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We are thus able at this step to restrict the vector 
field in (10) to the plane ( 1 2,w w ) whose eigenspace, at 

the bifurcation value s s= , corresponds to the 
complex pair of eigenvalues, 1,2 il w= ± , which is 

topologically invariant with respect to the original 
system (S). That is, if we substitute BJ trJ DetJ× =  in 
the characteristic equation at the bifurcation point (i.e., 
( ) 0G s = ), one eigenvalue is real and positive, and 

equal to the trace, 1 trJl = , whilst the other two 

eigenvalues are complex conjugate, 2,3 il w= ± , 

assuming BJw = . 

A center manifold reduction of the linearized vector 
field allows us to investigate this case. 

 Proposition 3 A second order approximation of 
the center manifold which reduces the vector field in 
(10) is given by the following equation 

2 2
3 1 2 1 1 2 1 2 3 2

1( , ) [ ]
2

w h w w w ww wt t t= = + + , where 

it  are coefficients that satisfy the stability condition 

3 0w =! . 

 Proof. See Appendix. 

The vector field at the center manifold therefore 
reduces to 

( )
( )

1
1 1 1 2 1 2

2
2 2 1 2 1 2

0 , , ( , )
0 , , ( , )

w w F w w h w w
w w F w w h w w

w
w

æ ö-æ ö æ öé ù
= + ç ÷ç ÷ ç ÷ê ú ç ÷ë ûè ø è ø è ø

!

!
     

(11) 

where iF  represent the second order non linear 
terms of the vector field at the center manifold. 

The restricted vector field (11) allows us to properly 
investigate the presence of periodic solutions in the 
two-dimensional phase space ( 1 2,w w ), by computing 

the standard first Lyapunov coefficient 

1 1 1 2 2 2 1 2 1 2

1 2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 2 2 2 2

1 ( ) ( )
16 w w w w w w w w w w w w w w w w w w w wq F F F F F F F F F F
w
é ù= + - + - +ë û

 

 Remark 2 If q<0 the emerging cycle around the 
steady state is attracting, i.e. a supercritical Hopf 
bifurcation occurs. (The statement is reversed for 
q>0.) 

The value of q, at the two bifurcation points, can be 
either positive or negative. Both bifurcations can 
therefore be supercritical or subcritical. The fixed 
points are thus unstable and the orbits are attracting on 
the center manifold. This is shown by means of the 
following numerical example. 

 

 Example 2 Assume 0.05r = , 0.33a = , 

0.25d =  as in Example 1. If 1s s= , then 
108.8 10 0q -= - × < , that is to say the bifurcation is 

supercritical, the steady state is unstable and the 
periodic orbits are attracting on the center manifold. 
On the contrary, in correspondence of 2s s= , we 

have 142.54 10 0q = × > , that is to say the bifurcation 
is subcritical, and the periodic orbits start repelling 
(see, Fig. 2). 

 
Fig. 2: Periodic orbits near the equilibrium 

We are thus able to conclude that different periodic 
solutions may emerge in presence of resource 
depletion for tourism services, which leads 
consequently to the rise of some indeterminacy 
problems, which might be able to explain the rise and 
fall of different nowadays tourism-based economies 
that, even though endowed with the same initial 
conditions, may at some point start to perform 
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differently in growth rate terms, and thus follow 
different long run equilibrium paths. 

4. Concluding remarks 
The raise of multiple equilibria and indeterminacy 

of the steady state solution has been commonly 
investigated in the literature to explain the diversity of 
growth rates across countries. However, when the 
system is characterized by highly nonlinear 
relationships the resulting dynamics around the steady 
state can be even more complex. 

To shed some light in this field, we presented a 
model, arguing that a crucial aspect for the occurrence 
of both indeterminacy and cyclical adjustment towards 
the steady state might be the presence of particular 
bifurcation values of the inverse of the intertemporal 
elasticity of substitution. Conclusions to our analysis 
confirm that such parameter matters in the transition 
towards a long-run sustainable equilibrium, thus 
leaving space to other more complicated dynamic 
phenomena characterized by periodic solutions that 
stuck the economy in a low level equilibrium trap. 
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Appendix 

The Current value Hamiltonian associated with 
system P is given by: 

1
(1 ) (1 )(1 ) 11 ( )

1C
cH Ak g E c E g E

s
a b a b a b bl µ d

s

-
- - - -- é ù é ù= + - + -ë û ë û-

 
where l  and µ  represent the shadow prices of 

physical and natural capital, respectively. The first 
order condition for a maximum requires that the 
discounted Hamiltonian be maximized with respect to 
its control variables, which implies 

c s l- =      (A.1) 
(1 )(1 )Ak g Ea ba b al a µd -- =      (A.2) 

accompanied by the law of motion of each costate 
variable 

1 (1 ) (1 )(1 )Ak g Ea b a b al r a
l

- - - -= -
!

     (A.3) 

(1 ) (1 )(1 ) 1(1 ) (1 ) 1 (1 )Ak g E g Ea b a b a b bµ lr b a d b
µ µ

- - - - -é ù= - - - - - -ë û
!

     

(A.4) 
Taking log-derivatives of (A.1) and (A.2), we 

derive: 

c
c

ls
l

- =
!!

     (A.5) 

(1 )k g E
k g E

l µa ba b a
l µ
+ - - - =
!! !! !

     (A.6) 

Therefore, problem (P) can be defined by the 
following system of four first order differential 
equations: 

( )

1 (1 ) (1 )(1 )

1 (1 ) (1 )(1 )

(1 )

11 (1 )

k cAk g E
k k
c Ak g E
c
E g E
E
g c g E
g k

a b a b a

a b a b a

b b

b b

r a
s s

d

d a ab d b
b ba b

- - - -

- - - -

-

-

= -

= - +

= -

- +
= - + + -

!

!

!

!

     

(A.7) 
 
To ease the analysis, system (A.7) can be further 

reduced, by the following convenient variable 

substitution, c
kx = , k

Eq = , and ( )gEz
b

= . That is to 

say, 

1 (1 )

1 (1 )

1

x Aq z x
x

q k E Aq z x z
q k E

z g E x z
z g E

a a

a a

r a s
s s

d d

ab d d
a

- -

- -

-æ ö= - + +ç ÷
è ø

æ ö
= - = - + - +ç ÷
è ø
æ ö -

= - = - +ç ÷
è ø

!

! !!

!!!

     

(A.8) 
with the associated steady state values 

1

( )

(1 )

(1 )

x

Aq

z

a

d s a ar
as

r d s a
ds d

r d s
ds

*

-
*

*

- +
=

- -é ù æ ö= ç ÷ê úë û è ø
- -

=

     (A.9) 

The Jacobian matrix of the reduced system (A.9) is 
then 

( ) ( )( 1) (1 )

(1 )( 1)

0

x x
q z

q
z

x

q q

z z

d a d aa s a s
a s a s

d ad
a aa d

d

* *

* *

*

*

- -* - -

-* *

* *

é ù
ê ú
ê ú= - +
ê ú
ê ú-
ë û

J  

with the associated Trace, Determinant and Sum of 
Principal Minors, respectively given by: 

2trJ zd *=      (A.10) 

( )2 (1 ) 2 3
DetJ x z

d a a s
as

* *- -
=      (A.11) 

(1 )BJ z x x zdd a d
a

* * * *é ù= - - +ë û      (A.12) 

Translation to the origin. 
Substitute x x x*º -! , q q q*º -! , z z z*= -!  in 

the reduced system (A.8). 

{ }

1 (1 )

1 (1 )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ( )

x A q q z z x x x x

q A q q z z x x z z q q

z x x z z z z

a a

a a

r a s
s s

d d

ad d
a

* - * - * *

* - * - * * *

* * *

ì - üæ ö= - + + + + + +í ýç ÷
è øî þ

= - + + + - + + + +

-ì ü= - + + + +í ý
î þ

! " " ""

! " " "" "

"! " "

     

(A.13) 
A second order Taylor expansion of (A.13) can be 

computed: 
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1

2

3

( , , )

( , , )

( , , )

x f x q zx
q q f x q z

z f x q zz

×

×

×

æ ö
æ öç ÷ æ ö ç ÷ç ÷ ç ÷= + ç ÷ç ÷ ç ÷
ç ÷ç ÷ç ÷ ç ÷è ø è øç ÷

è ø

J

! ! ! ! !!

!! ! ! ! !

!! ! ! !
!

     (A.14) 

being if!  the nonlinear terms of the expanded vector 

field: 
 

3 (1 ) 1 1 2 2( 1)( 2)( ) (1 )( ) (1 ) ( )2 2 2
1( , , ) ( )Aq z x Aq z x Aq z xf x q z x q z q x

a a a a a aa a a s a a a s a a s
s s s s s

* - * - * * - * - - * * - * - *- - - - - - -= + - - - -! ! ! ! ! ! !! !   

 
2 2 (1 ) 2 1 1 2 2 1

2( , , ) ( 1) (1 ) (1 )f x q z Aq z q Aq z q z xq Aq z qza a a a a aa a a a* - * - * - * - - * * - * -= - - - - - -! ! ! ! ! ! !! ! !   

 2
3( , , )f x q z z xzd= -! ! ! !! ! !   

Following the detailed procedure in Algaba et al. 
(2003), system (A.14) can be put in a more convenient 
Jordan normal form,  

( )
( )
( )

1 1 2 3,1 1

2 2 2 1 2 3,

3 1 2 3 3 3 1 2 3,

, ,0 1 0
0 0 1 , ,

, ,

F w w ww w
w w F w w w
w w F w w we e e

æ öæ ö é ù æ ö ç ÷ç ÷ ç ÷ê ú= + ç ÷ç ÷ ç ÷ê ú ç ÷ç ÷ ç ÷ê ú ç ÷è ø ë û è ø è ø

!

!

!

     

(A.15) 
via the change of coordinates 

1

2

3

x w
q w
z w

æ ö æ ö
ç ÷ ç ÷=ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

T
!

!

!

 

made by the transformation matrix [ ], , TT u v z=  

with 
23

31

11 23 13 31

12 31

1

j
j

j j j j
j j

*

*

* * * *

* *

-

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

u

-

,

1

(1 )

0

z

x q Aq z
qz

a ad a -+ + -

-é ù
ê ú

= ê ú
ê ú
ë û

v

33

31

0
1

j
j

*

*
é ù-
ê ú
ê ú=
ê ú
ê ú
ë û

z  

and where 1 DetJe = , 2 BJe = - , 3 TrJe = , 

being ( )1
i iF f-= T Tw!  the transformed second order 

non linear terms. To study the stability of periodic 
orbits around the steady state, we consider the 
Andronov-Hopf bifurcation coefficient: 

1 1 1 2 2 2 1 2 1 2

1 2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 2 2 2 2

1 ( ) ( )
16 w w w w w w w w w w w w w w w w w w w wq F F F F F F F F F F
w
é ù= + - + - +ë û

 
where 

1

1 2

1

2 2

1

1 1

3 (1 )
1 1 2 2

2
2

2

2 2 (1 ) 2
2 1 2

2 3 (1 ) 2
1 2

1 1

2 2( 1)( 2)

(1 ) ( )

( 1)

2 2( 1)( 2)

2 (1 )

w w

w w

w w

F u v Aq z x u v

Aq z x v

F Aq z v v v

F u Aq z x u

Aq z x

a a

a a

a a

a a

a a

a s
a a

s

a a s
s

a

a s
a a

s
a s

a a
s

* - * - *

* - * - *

* - * -

* - * - *

* - * - - *

-æ ö= + - - -ç ÷
è ø

- -
-

= - -

-æ ö= + - - -ç ÷
è ø

-æ ö- - -ç ÷
è ø

2 2
22(1 ) Aq z x ua aa s

a
s

* - * - *-æ ö- ç ÷
è ø

 
and 

2

1 2

2

2 2

2

1 1

2 2 (1 ) 2 1
2 2 1 2 1 2 2

2 2 (1 )
2 1 2

2 2 (1 ) 1 1
2

2 1
1 2 2

( 1) ( ) (1 )

2( 1) 2

2( 1) 2 (1 )

2 2(1 )

w w

w w

w w

F Aq z u v u v v u Aq z v

F Aq z v v v

F Aq z u Aq z q

u u Aq z u

a a a a

a a

a a a a

a a

a a

a

a a a

a

* - * - * - * -

* - * -

* - * - * - * - - *

* - * -

= - - + - -

= - -

= - - - -

- - -
 

 
Computation of the center manifold. 
Assume 3 1 2( , )w h w w=  with h smooth function. 

The properties of the center manifold imply 

1 23 1 2 0h h
w ww w w¶ ¶
¶ ¶- - =! ! !      (A.16) 

Suppose now 

2 2
3 1 2 1 1 2 1 2 3 2

1( , ) [ ]
2

w h w w w ww wt t t= = + +      

(A.17) 
where 1t , 2t  and 3t  are unknown coefficients. 

Time-differentiating (A.17), and substituting into 
(A.16), we obtain the following relation 

2 2 3 1 3 3 1 3 2 2 1 2 2 2

1 2 1 1 1 1 1 2 1 1 1 1

2 2 2 2 2 2 22 2
1 1 2 22 2 2 2 2 2

0TrJ v A v B C TrJ v A v B C
TrJ v A v B C TrJ v A v B C

w w w wt c t t c t

t c t c

¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢

F + - + - F F + - + -F

F + - + F + - +
+ + =

 
Finally, equating coefficients to zero, we find 

( )2 3 1 3 3 2 1 1 1 12 1 1 1 1
2

2 4 [ ]2[ ]
1 2;

TrJ v A v B C v A v B Cv A v B C
TrJ TrJ

c cct t
¢ ¢ ¢ ¢ ¢ ¢¢ ¢ ¢ é ù- + - + - + -- + - ë û

F F
= =

 
2

2 2 1 2 2 2 1 1 1 1

3

2 2 4[ ]
3

v A v B C TrJ TrJ v A v B C

TrJ

c u c
t

¢ ¢ ¢ ¢ ¢ ¢é ù- + - + + - + -ë û
F

=  

where all other coefficients are intricated 
combinations of the nonlinear terms iF , which are not 

reported for the sake of simplicity, but remain available 
upon request. 

 


