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Abstract
In this article, we deal with the initial boundary value problem for a viscoelastic system
related to the quasilinear parabolic equation with nonlinear boundary source term on a
manifold M with corner singularities. We prove that, under certain conditions on relax-
ation function g, any solution u in the corner-Sobolev space H

1,( N−1
2 , N

2 )
∂0M (M) blows up in

finite time. The estimates of the life-span of solutions are also given.
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1. Introduction
Many of the problems in fracture and contact mechanics may be formulated as mixed

boundary value problems which, in turn, may be reduced to integral equations of the gen-
eral form [29,30]. The main important aim of the present manuscript is the investigation
blow up and its life-span of the viscosity solutions of a nonlinear system in space with
corner singularity points. Let us recall some background and applications from the such
situations in the real world. The singularities of the viscosity equations occur when some
derivatives of the velocity field is infinite at any point of a field of flow or, in an evolving
flow, becomes infinite at any point within a finite time. In view of mathematics, these
singularities can be formulated, for example, in two-dimensional flow near a sharp corner
onto a wire boundary in which case they can be resolved by refining the geometrical de-
scription. On the other hand, one can consider them in physical form, for instance, in the
case of cusp singularities of a fluid in which case the resolution of the singularity involves
incorporation of additional physical effects. Two-dimensional flow near a sharp corner
exhibits a curious singularity that has been the subject of many investigations [13,28,32].
From a mechanical point of view, there are many investigations about the finite-time blow
up of the singularity problem that we can provide only some significant here. It is well-
known that the configuration most likely to lead to a singularity consists of two interacting
non-parallel vortex tubes [5]. In 1996 [12], Constantin, Fefferman and Majda proved the
direction of vorticity of the Euler equations should be indeterminate in the limit as the
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singularity is approached. For more details in the mechanical point of view we refer to [28]
and the references therein. Now, We present a viscosity system with difficult conditions
on the boundary of the configuration space which has the corner singularities and provide
a background of these problems from mathematical point of view. More precisely, in this
paper, we study the blow up and life-span results of the following viscoelastic problem
with nonlinear damping and boundary source terms

|∂tu|k−1∂ttu − ∆Mu +
∫ t

0 g(t − s)∆Mu(s)ds = |u|p−1u in M × (0, ∞)
u(x, t) = 0 on x ∈ ∂0M × (0, ∞),
∂νu −

∫ t
0 g(t − s)∂νu(s)ds + ∂tu = |u|m−1u, on ∂1M × (0, ∞),

u(x, 0) = u0, ∂tu(x, 0) = u1, x ∈ M.

(1.1)

where k ≥ 1 and M is a corner manifold with finite corner measure, which is a local model
of stretched corner-manifolds, i.e. the manifolds with corner singularities of dimension
N = n + 2 ≥ 3 with boundary ∂M = ∂0M ∪ ∂1M. Here, let {∂0M, ∂1M} be a partition
of its boundary ∂M such that ∂0M ∩ ∂1M = ∅ and meas(∂0M) > 0. Moreover, ν is the
unit outward normal to ∂M, 1 ≤ m < N−1

N−2 and 1 < p ≤ N
N−2 . The relaxation function g

is satisfying certain conditions to be specified later. The author in [23] studied existence
and invariance results of weak solutions of problem 1.1.

It is well-known that,elasticity is the tendency of solid materials to return to their orig-
inal shape after forces are applied to them. When the forces are removed, the object will
return to its initial shape and size if the material is elastic. Viscosity is a measure of
a fluid resistance to flow. A fluid with large viscosity resists motion. A fluid with low
viscosity flows. For example, water flows more easily than syrup because it has a lower
viscosity. Viscoelasticity is the property of materials that exhibit both viscous and elastic
characteristics when undergoing deformation. Synthetic polymers, wood, and human tis-
sue, as well as metals at high temperature, display significant viscoelastic effects. In some
applications, even a small viscoelastic response can be significant. For the fundamental
modeling, development of linear viscoelasticity see [11] and we refer the interested reader
to the monograph [15] for surveys regarding the mathematical aspect of the theory of
viscoelasticity.

In the setting of Ω ⊂ Rn, when k = 1 and g = 0, the problem 1.1 reduces to a hyper-
bolic system which can be considered under Dirichlet or Neumann boundary conditions.
There have been extensive studied on some special cases of these systems and the physical
background [4,9,17,18,22,37]. In the presence of the viscoelastic term, Kim and Han [24]
proved that any weak solution with negative initial energy blows up in finite time under
suitable conditions on the relaxation function g for the equation

utt − ∆u +
∫ t

0
g(t − s)∆u(s)ds = |u|p−2u in (x, t) ∈ Ω × (0, ∞). (1.2)

Concerning Cauchy problems, Kafini and Messaoudi [22] established a blow up result for
the problem

utt − ∆u +
∫ t

0
g(t − s)∆u(s)ds + ut = |u|p−2u in (x, t) ∈ Rn × (0, ∞). (1.3)

where g satisfied
∫∞

0 g(s)ds < 2p−4
2p−3 and the initial data were compactly supported with

negative energy such that
∫

u0u1dx ≥ 0. Maxim Korpusov [25] studied the initial-boundary
value problem for the generalized dissipative high-order equation of Klein-Gordon type
with arbitrary positive initial energy. He established a blow-up result using the modified
concavity method of Levine developed in [3]. More and new results about the blow up
properties with arbitrary positive initial energy can be found, for instance [20,21,27,31,35].
However, there are a few investigations about this type of equations on the manifolds
with singularities. For instance, Cavalcanti et al. [2] considered a nonlinear viscoelastic
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evolution equation as

utt + Au + F (x, t, u, ut) −
∫ t

0
g(t − τ)Au(τ)dτ = 0 on Γ × (0, ∞)

where Γ is a compact manifold. In [7] the initial boundary value problem of the viscoelastic
equation with a nonlinear boundary damping term

utt − ∆u = 0 in x ∈ Ω × (0, ∞)
u(x) = 0 on x ∈ Γ0 × (0, ∞),
uν −

∫ t
0 g(t − s)uν(s)ds + h(ut) = 0, on Γ1 × (0, ∞),

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω.

(1.4)

studied and the authors obtained a global existence result for strong and weak solutions
under the classical assumptions on g. In the setting of the manifolds with singularities
such as conical singularities, the authors in [1] studied the initial-boundary value problem
for semilinear hyperbolic equations

utt − ∆Bu + V (x)u + γut = f(x, u), x ∈ intB, t > 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ intB
u(t, x) = 0, x ∈ ∂B, t ≥ 0,

(1.5)

where, γ is a non-negative parameter and V is a potential function. Here the domain
B is [0, 1) × X, X is an (n − 1)-dimensional closed compact manifold, which is regarded
as the local model near the conical points on manifolds with conical singularities, and
∂B = {0} × X. Moreover, in [36], the authors obtained the upper bounds of blow up time
and the blow up rate for a semilinear edge-degenerate parabolic equation. To our best
knowledge, there are no or few investigations of the viscoelastic problem on the manifolds
with singularities. But in the Euclidean domain Ω ⊂ Rn, Cavalcanti et al. [6] considered
the nonlinear viscoelastic equation without source term and weak damping term

|ut|ρutt − ∆u +
∫ t

0
g(t − s)∆u(s)ds − γ∆ut − ∆utt = 0, in Ω × (0, ∞).

They obtained the global existence of weak solutions and uniform decay rates of the energy
by assuming that the relaxation g has an exponential decay. In [19], the authors considered
an initial-boundary value problem for a nonlinear viscoelastic wave equation with strong
damping, nonlinear damping and source terms. They proved a blow up result for the
solution with negative initial energy. Our study is in fact provoked by the study of [14]
and by modifying the method, which is put forward by Li, Tasi [26] and Vitillaro [34], we
proved that, under certain conditions, any solution blows up in finite time. The estimates
of the life-span of solutions are also given. In this manuscript, we consider the nonlinear
viscoelastic wave equation with an internal nonlinear term |∂tu|k−1∂ttu, and a nonlinear
boundary source term |u|m−1u, on the corner manifold M, and we obtain some blow up
results about the problem 1.1.

2. Preliminaries
In this section, we consider the stretched corner manifold M = [0, 1) × X × [0, 1) with

smooth boundary ∂M [10, 23,33].
We take X ⊂ Sn be a bounded open set in the unit sphere of Rn+1. As mentioned in

[10], one can consider the straight cone as X∆ :=
{

x ∈ Rn+1 | x = 0 or x
|x| ∈ X

}
. Then,

an infinite cone in Rn+1 can be defined as the following quotient space

X∆ = (R̄+ × X)
{0} × X

,

with base X. The coordinates (r, ϕ) ∈ X∆ − {0} are the standard coordinates in this
quotient space by using the cylindrical coordinates in Rn+1. So we can describe X∆ − {0}
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in the form R+ × X. Therefore, the stretched cone is defined by X∧ := R̄+ × X. Set the
coordinates in X∧ as (r1, x) such that in the case 0 ≤ r1 < 1 one can consider a finite cone

E = ([0, 1) × X)
{0} × X

.

Then, the finite stretched cone corresponding to E is defined as E := [0, 1) × X, with a
smooth boundary ∂E = {0} × X. By the similar way, one can define an infinite corner as

E∧ := (E × R̄+)
E × {0}

,

where the base E is a finite cone with base X as above. Hence, the stretched corner is
E∧ = E× R̄+. Take (r1, x, r2) ∈ E∧, we concentrate on the case 0 ≤ r2 < 1, then the finite
corner is M = (E×[0,1))

E×{0} . Therefore, M = E× [0, 1) = [0, 1) × X × [0, 1) is a finite stretched
corner with the smooth boundary ∂M = ∂E × {0}. The typical degenerate differential
operator A on the stretched corner M is of the following form

A = r−ν
2
∑
l≤ν

a2,l(r2)(r2∂r2)l,

where a2,l(r2) ∈ C∞(R̄+, Diffν−l
deg (E)) that is

a2,l(r2) = r
−(ν−l)
1

∑
j≤(ν−l)

a1,jl(r1, r2)(r1∂1)j ,

such that a1,jl(r1, r2) ∈ C∞(R̄+, Diffν−l−j(X)). Then, it follows that

A = (r1r2)−ν
∑

j+l≤ν

ajl(r1, r2)(r1∂r1)j(r1r2∂r2)l = (r1r2)−νAM,

where ajl(r1, r2) ∈ C∞(R̄+, Diffν−l−j(X)) and AM is called as a degenerate corner oper-
ator [8, 10, 23]. We can consider the following Riemannian metric on the corner manifold
M

gM = dr2
2 + r2

2(dr2
1 + r2

1gX),
where gX is a Riemannian metric on X. Therefore, the corresponding gradient operator
with corner degeneracy is ∇M = (r1∂r1 , ∂x1 , ..., ∂xn , r1r2∂r2).

Now, we recall some definitions of the weighted p−Sobolev spaces Lγ1,γ2
p on R+×Rn×R+.

Definition 2.1. Let (r1, x, r2) ∈ R+ ×Rn ×R+, weights γ1, γ2 ∈ R and 1 ≤ p < ∞. Then,

Lγ1,γ2
p

(
R+ × Rn × R+; dr1

r1
dx

dr2
r1r2

)
:=
{

u(r1, x, r2) ∈ D
′(R+ × Rn × R+)

∣∣ ∥u∥L
γ1,γ2
p

< +∞,

}
where

∥u∥L
γ1,γ2
p

=
( ∫
R+×Rn×R+

|r
N
p

−γ1
1 r

N
p

−γ2
2 u(r1, x, r2)|p dr1

r1
dx

dr2
r1r2

) 1
p

.

Definition 2.2. Let m ∈ N, γ1, γ2 ∈ R and N = n + 2. Then H
m,(γ1,γ2)
p (R+ × Rn × R+)

contains those of the functions u ∈ D
′(R+ × Rn × R+) such that

(r1∂r1)l∂α
x (r1r2∂r2)ku(r1, x, r2) ∈ Lγ1,γ2

p

(
R+ × Rn × R+; dr1

r1
dx

dr2
r1r2

)
for all k, l ∈ N and any multi-index α ∈ Nn with k + l + |α| ≤ m.
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We denote the closure of C∞
0 functions in H

m,(γ1,γ2)
p (R+ × Rn × R+) by

H
m,(γ1,γ2)
p,0 (R+ ×Rn ×R+). Now, we can define the weighted p−Sobolev spaces on an open

stretched corner R+ × X × R+ as following :

Hm,(γ1,γ2)
p (R+ × X × R+) :=

{
u(r1, x, r2) ∈ D

′(R+ × X × R+) |

(r1∂r1)l∂α
x (r1r2∂r2)ku(r1, x, r2) ∈ Lγ1,γ2

p

(
R+ × X × R+; dr1

r1
dx

dr2
r1r2

)}
for all k, l ∈ N and any multi-index α ∈ Nn with k + l + |α| ≤ m, which is a Banach space
with norm∥∥∥u∥∥∥

H
m,(γ1,γ2)
p

=
{ ∑

k+l+|α|≤m

∫
R+×X×R+

∣∣∣r N
p

−γ1
1 r

N
p

−γ2
2 (r1∂r1)l∂α

x (r1r2∂r2)ku(r1, x, r2)
∣∣∣p dr1

r1
dx

dr2
r1r2

} 1
p

.

The subspace Hm,(γ1,γ2)
p,0 (R+×X×R+) indicates the closure of C∞

0 functions in H
m,(γ1,γ2)
p (R+

× X ×R+). Now, we express the weighted p−Sobolev space on the finite stretched corner
manifold M, see [8, 10,23].

Definition 2.3. Let m ∈ N, γ1, γ2 ∈ R, 1 ≤ p < ∞ and W m,p
loc (int M) is the classical local

Sobolev space. Then

Hm,(γ1,γ2)
p (M) =

{
u(r1, x, r2) ∈ W m,p

loc (int M) | ω1ω2u(r1, x, r2) ∈ Hm,(γ1,γ2)
p (R+×X×R+)

}
for every cut-off functions ω1 = ω(r1, x) and ω2 = ω(r2, x) supported by a collar neigh-
borhoods of (0, 1) × ∂M and ∂M × (0, 1) respectively.

We know that, in differential geometry, one can attach to any point x̃ = (r1, x, r2) ∈ M
a tangent space Tx̃M which is a real vector space that intuitively contains the possible
directions in which one can tangentially pass through x̃. Then up to isomorphism, for
arbitrary and fixed point x̃0 ∈ M we define η(x̃) = x̃ − x̃0 and give a partition of the
boundary ∂M such that

∂0M =
{

x̃ ∈ ∂M | η(x̃).ν(x̃) ≤ 0
}

and ∂1M =
{

x̃ ∈ ∂M | η(x̃).ν(x̃) > 0
}

.

For the weights γ1 = N−1
2 , γ2 = N

2 and 1 ≤ p < ∞, we take the following inner products
and norms [23] (

u, v
)

L
N−1

2 , N
2

2 (M)
=
(
u, v

)
M

:=
∫
M

r1u(x̃)v(x̃)dr1
r1

dx
dr2
r1r2

,(
u, v

)
L

N−1
2 , N

2
2 (∂1M)

=
(
u, v

)
∂1M

:=
∫

∂1M
u(x̃)v(x̃)d(∂M),

∥∥∥u∥∥∥p

L
N−1

p , N
p

p (M)
=
∥∥∥u∥∥∥p

N−1
p

, N
p

:=
∫
M

r1
∣∣∣u(x̃)

∣∣∣p dr1
r1

dx
dr2
r1r2

,∥∥∥u∥∥∥p

L
N−1

p , N
p

p (∂1M)
=
∥∥∥u∥∥∥p

N−1
p

, N
p

,∂1M
:=
∫

∂1M

∣∣∣u(x̃)
∣∣∣pd(∂M),∥∥∥u∥∥∥

∞
:= ess sup

x̃∈M

∣∣∣u(x̃)
∣∣∣.
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Now, we consider the set

H
1,( N−1

2 , N
2 )

∂0M (M) :=
{

u ∈ H
1,( N−1

2 , N
2 )

2 (M) | u = 0 on ∂0M
}

and endow H
1,( N−1

2 , N
2 )

∂0M with the Hilbert structure induced by H
1,( N−1

2 , N
2 )

2 (M), we have that

H
1,( N−1

2 , N
2 )

∂0M is a Hilbert space. Since N = 1+n+1 > 2, 1 ≤ p < N
N−2 and 1 ≤ m < N−1

N−2 , we

have the embedding H
1,( N−1

2 , N
2 )

∂0M (M) ↪→ L
N−1
p+1 , N

p+1
p+1 (M). Suppose that C∗ > 0 is the optimal

constant of weighted corner Sobolev embedding which satisfies the inequality∥∥∥u∥∥∥
N−1
p+1 , N

p+1

≤ C∗
∥∥∥∇Mu

∥∥∥
N−1

2 , N
2

∀ u ∈ H
1,( N−1

2 , N
2 )

∂0M . (2.1)

Moreover, we use the corner trace-Sobolev type embedding H
1,( N−1

2 , N
2 )

∂0M ↪→ L
N−1
m+1 , N

m+1
m+1 (∂1M),

1 ≤ m < N
N−2 . In this case, the embedding constant is denoted by B∗ > 0, i.e.∥∥∥u∥∥∥

N−1
m+1 , N

m+1 ,∂1M
≤ B∗

∥∥∥∇Mu
∥∥∥

N−1
2 , N

2

. (2.2)

Since ∂0M has positive (N −1)−dimensional Lebesgue measure, using of Poincaré inequal-
ity, we can endow H

1,( N−1
2 , N

2 )
∂0M (M) with the following equivalent norm

∥∥∥u∥∥∥
H

1,( N−1
2 , N

2 )
∂0M

(M)
=
∥∥∥∇Mu

∥∥∥
N−1

2 , N
2

=
(∫

M
r1
∣∣∣∇Mu

∣∣∣2 dr1
r1

dx
dr2
r1r2

) 1
2
. (2.3)

Next, we express the assumptions for problem 1.1:
(A) : Assume that the relaxation function g : [0, ∞) → [0, ∞) is a C1 function satisfying

g′(t) ≤ 0, 1 −
∫ t

0
g(s)ds = l > 0,

and m + 2 < p.
To obtain our main results we need to define the following energy functionals corre-

sponding to our problem 1.1 for every u ∈ H
1,( N−1

2 , N
2 )

∂0M (M):

J(u) =1
2
(
1 −

∫ t

0
g(s)ds

)∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

+ 1
2

(g ◦ ∇Mu)(t)

− 1
p + 1

∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

− 1
m + 1

∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1M
, (2.4)

K(u) =
(
1 −

∫ t

0
g(s)ds

)∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

+ (g ◦ ∇Mu)(t)

−
∥∥∥u∥∥∥p+1

N−1
p+1 , N

p+1

−
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1M
, (2.5)

and the energy function

E(t) = 1
k + 1

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+ 1
2
(
1 −

∫ t

0
g(s)ds

)∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

+ 1
2

(g ◦ ∇Mu)(t)

− 1
p + 1

∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

− 1
m + 1

∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1M

= 1
k + 1

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+ J(u(t)), (2.6)
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where, (g ◦ ∇Mu)(t) =
∫ t

0 g(t − s)
∥∥∇Mu(t) − ∇Mu(s)

∥∥2
N−1

2 , N
2

ds. Now, we introduce

N =
{

u ∈ H
1,( N−1

2 , N
2 )

∂0M (M) | K(u) = 0,
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

̸= 0
}

,

d = inf
{

sup
λ≥0

J(λu), u ∈ H
1,( N−1

2 , N
2 )

∂0M (M),
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

̸= 0
}

.

The similar results in [16] one can get d = infu∈N J(u).
Before going on our task in this section, let us conclude some facts about the functional

J(u) for certain solutions of problem 1.1. We consider two cases about the solutions
u ∈ H

1,( N−1
2 , N

2 )
∂0M (M).

I) If
∥∥∥∇Mu

∥∥∥
N−1

2 , N
2

≥ 1, then by Sobolev inequality and trace inequality on the boundary

we obtain

J(u) = l

2

∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

+ 1
2

(g ◦ ∇Mu)(t) − 1
p + 1

∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

− 1
m + 1

∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)

≥ l

2

∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

− Cp+1
∗

m + 1

∥∥∥∇Mu
∥∥∥p+1

N−1
2 , N

2

− Bm+1
∗

m + 1

∥∥∥∇Mu
∥∥∥m+1

N−1
2 , N

2

≥ l

2

∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

−
[ Cp+1

∗
m + 1

+ Bm+1
∗

m + 1
]∥∥∥∇Mu

∥∥∥p+1
N−1

2 , N
2

= l

2

∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

− α

m + 1

∥∥∥∇Mu
∥∥∥p+1

N−1
2 , N

2

(2.7)

where α = Cp+1
∗ + Bm+1

∗ . Now, we define P (λ) := l
2λ2 − α

m+1λp+1 for all λ ≥ 1. Then

there exists a λ̄ =
(

l(m+1)
α(p+1)

) 1
p−1

which admits P (λ) its maximum at this point and

d̄ = P (λ̄) = l

2

(
l(m + 1)
α(p + 1)

) 2
p−1

− α

m + 1

(
l(m + 1)
α(p + 1)

) p+1
p−1

= (p + 1)
2(m + 1)

l
p+1
p−1

(
m + 1
p + 1

) p+1
p−1

α
−2

p−1 − 1
m + 1

l
p+1
p−1

(
m + 1
p + 1

) p+1
p−1

α
−2

p−1

=
(

l(m + 1)
α

2
p+1 (p + 1)

)
p + 1
p − 1

[
p + 1

2(m + 1)
− 2

m + 1

]

= (p − 1)
2(m + 1)

α
−2

p−1

(
l(m + 1)

p + 1

) p+1
p−1

. (2.8)

II) If
∥∥∥∇Mu

∥∥∥
N−1

2 , N
2

≤ 1, then

J(u) = l

2

∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

+ 1
2

(g ◦ ∇Mu)(t) − 1
p + 1

∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

− 1
m + 1

∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)

≥ l

2

∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

− α

m + 1

∥∥∥∇Mu
∥∥∥m+1

N−1
2 , N

2

. (2.9)

Again we define P (λ) := l
2λ2 − α

m+1λm+1 for all 0 < λ < 1. Then the function P (λ) in

this case admits its maximum at λ̃ =
(

l
α

) 1
m−1

. Therefore,

d̃ = P (λ̃) = l

2

( l

α

) 2
m−1 − α

m + 1

( l

α

)m+1
m−1 = 1

2
α

−2
m−1 l

m+1
m−1 − 1

m + 1
α

−2
m−1 l

m+1
m−1
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= (m − 1)
2(m + 1)

( l

α
2

m−1

)m+1
m−1

. (2.10)

Proposition 2.4. Suppose that the assumptions (A) are satisfied and for every 0 < β <

m+1
p−1

(
m+1
p+1

)− p+1
p−1

< 1 assume that K(u0) < 0 and E(0) < d̄β. Then for any solution

u ∈ H
1,( N−1

2 , N
2 )

∂0M such that
∥∥∥∇Mu

∥∥∥
N−1

2 , N
2

≥ 1 and for every t ∈ [0, ∞), K(u(t)) < 0 and

also

d̄ <
(m + 1

p + 1

) 2
p−1
[ p − 1
2(p + 1)

](
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t)
)

< α
(m + 1

p + 1

) 2
p−1
[ p − 1
(p + 1)

]∥∥∥∇Mu
∥∥∥p+1

N−1
2 , N

2

. (2.11)

Proof. Arguing by contradiction, one can get K(u(t)) < 0 for all t ∈ [0, ∞). In other
words, if one supposes that this is not true, then there exists t0 > 0 such that K(u(t0)) = 0
and K(u(t)) < 0 for every 0 ≤ t < t0. Thus by (2.8) one obtains

d̄ = (p − 1)
2(m + 1)

α
−2

p−1

(
l(m + 1)

p + 1

) p+1
p−1

≤ (p − 1)
2(m + 1)

(m + 1
p + 1

) p+1
p−1 ×

[ l
∥∥∥∇Mu(t0)

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t0)

(∥∥∥u(t0)
∥∥∥p+1

N−1
p+1 , N

p+1

+
∥∥∥u(t0)

∥∥∥m+1
N−1
m+1 , N

m+1 ,∂0(M)

) 2
m+1

] p+1
p−1

≤ (p − 1)
2(m + 1)

(m + 1
p + 1

) p+1
p−1 ×

[ l
∥∥∥∇Mu(t0)

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t0)

(
l
∥∥∥∇Mu(t0)

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t0)
) 2

m+1

] p+1
p−1

= (p − 1)
2(m + 1)

α
−2

p−1

(
l(m + 1)

p + 1

) p+1
p−1(

l
∥∥∥∇Mu(t0)

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t0)
)

=
[

(p + 1)
2(m + 1)

(m + 1
p + 1

) p+1
p−1 − 1

m + 1

(m + 1
p + 1

) p+1
p−1

](
l
∥∥∥∇Mu(t0)

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t0)
)

=
(m + 1

p + 1

) 2
p−1
[1
2

− 1
p + 1

](
l
∥∥∥∇Mu(t0)

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t0)
)

≤ 1
2

(
l
∥∥∥∇Mu(t0)

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t0)
)

− 1
p + 1

(m + 1
p + 1

) 2
p−1
[∥∥∥u(t0)

∥∥∥p+1
N−1
p+1 , N

p+1

+
∥∥∥u(t0)

∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)

]
≤ l

2

∥∥∥∇Mu(t0)
∥∥∥2

N−1
2 , N

2

+ 1
2

(g ◦ ∇Mu)(t0)

− 1
p + 1

∥∥∥u(t0)
∥∥∥p+1

N−1
p+1 , N

p+1

− 1
m + 1

∥∥∥u(t0)
∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)
= J(u(t0)). (2.12)

But, this is impossible since J(u(t0)) ≤ E(t0) ≤ E(0) < d̄. Therefore, for every t ∈ [0, ∞)
one has K(u(t)) < 0. Furthermore, by inequality (2.12) one can get

d̄ <
(m + 1

p + 1

) 2
p−1
[1
2

− 1
p + 1

](
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t)
)

<
(m + 1

p + 1

) 2
p−1
( p − 1

2(p + 1)

)[∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)

]
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< α
(m + 1

p + 1

) 2
p−1
( p − 1

(p + 1)

)∥∥∥∇Mu
∥∥∥p+1

N−1
2 , N

2

. (2.13)

Hence, the proof is completed. □

Proposition 2.5. Suppose that the assumptions (A) hold and for every 0 < β < m+1
p−1 < 1

we have K(u0) < 0 and E(0) < d̃β. Then for any solution of problem 1.1 such that∥∥∥∇Mu
∥∥∥

N−1
2 , N

2

≤ 1 and for every t ∈ [0, ∞), K(u(t)) < 0 and also

d̃ <
(m − 1)
2(m + 1)

[
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t)
]

<
α(m − 1)
(m + 1)

∥∥∥∇M

∥∥∥m+1
N−1

2 , N
2

. (2.14)

Proof. By the similar way in the proof of Proposition 2.4, we suppose that there exists
t0 > 0 such that K(u(t0)) = 0 and K(u(t)) < 0 for every 0 ≤ t < t0. Then

d̃ <
(m − 1)
2(m + 1)

( l

α
2

m+1

)m+1
m−1 ≤ (m − 1)

2(m + 1)

{ l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t)

(∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)

) 2
m+1

}m+1
m−1

≤ (m − 1)
2(m + 1)

{ l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t)

(
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t)
) 2

m+1

}m+1
m−1

= (m − 1)
2(m + 1)

[
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t)
]

<
(m − 1)
2(m + 1)

[∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)

]
.

Thus for this t0 we get

d̃ < (1
2

− 1
m + 1

)
[∥∥∥u(t0)

∥∥∥p+1
N−1
p+1 , N

p+1

+
∥∥∥u(t0)

∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)

]
≤ l

2

∥∥∥∇Mu(t0)
∥∥∥2

N−1
2 , N

2

+ 1
2

(g ◦ ∇Mu)(t0) − 1
p + 1

∥∥∥u(t0)
∥∥∥p+1

N−1
p+1 , N

p+1

− 1
m + 1

∥∥∥u(t0)
∥∥∥m+1

N
m+1 , N

m+1 ,∂1(M)
= J(u(t0)).

But, this is impossible since J(u(t0)) ≤ E(t0) ≤ E(0) < d̃. Therefore, for every t ∈ [0, ∞)
we have K(u(t)) < 0. Hence,

d̃ <
(m − 1)
2(m + 1)

[
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ (g ◦ ∇Mu)(t)
]

<
α(m − 1)
(m + 1)

∥∥∥∇M

∥∥∥m+1
N−1

2 , N
2

.

□

3. Blow up of solutions and the life-span
In this section we prove the finite time blow up phenomena of the solution for the

problem 1.1 for negative initial energy and obtain estimates for the blow up time T ∗ as a
life-span of our problem.

Theorem 3.1. Suppose that the assumption (A) hold and for every positive and fixed

constant β < m+1
p−1

(
m+1
p+1

)− p+1
p−1

< 1, let us consider u0 ∈ H
1,( N−1

2 , N
2 )

∂0(M) (M), u1 ∈ L
N−1
k+1 , N

k+1
k+1 (M)

such that K(u0) < 0 and E(0) < βd̄. Moreover, Let 1 < k ≤ N+2
N−2 and relaxation function
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g satisfies the following inequality :

∫ ∞

0
g(s)ds <

(
m + 1 − γ − β(p − 1)(m+1

p+1 )
p+1
p−1
)(

m−1−γ
2 − β(p−1)

2 (m+1
p+1 )

p+1
p−1
)

1
2

(
m + 1 − γ − β(p − 1)(m+1

p+1 )
p+1
p−1
)2

+ 1
, (3.1)

where 0 < m + 1 − β(p − 1)(m+1
p+1 )

p+1
p−1 < γ. Then, a solution u of problem 1.1 with∥∥∥∇Mu

∥∥∥
N−1

2 , N
2

≥ 1 blows up in finite time, that is, the maximum of the existence time

Tmax of u(t) is finite and

lim
t→Tmax

[∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥p+1
N−1

2 , N
2

]
= +∞. (3.2)

Proof. From Proposition 2.4 we have that if K(u0) < 0 then K(u) < 0 for any t ∈
[0, Tmax) in the case of E(0) < βd̄. By contradiction, we assume that the solution of
problem 1.1 is global, that is Tmax = +∞. Thus for any T > 0 we define the functional
F : [0, T ] → R+ as follows :

F (t) :=
∥∥∥∂tu

∥∥∥k+1
N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+
∥∥∥u∥∥∥p+1

N−1
p+1 , N

p+1

+
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)
. (3.3)

From the continuity of the function F on [0, T ], there exist two positive constants δ1, δ2
such that δ1 ≤ F (t) ≤ δ2. Now, we take

N(t) = βd̄ − E(t), ∀ t ∈ [0, T ]. (3.4)

Differentiating identity (3.4) with respect to t, we obtain

N
′(t) = −E

′(t) = −1
2

∫
M

∫ t

0
g(t − s)

[
∇Mu(s) − ∇Mu(t)

]2
ds

dr1
r1

dx
dr2
r1r2

+ 1
2

g(t)
∥∥∥∇Mu(t)

∥∥∥2
N−1

2 , N
2

≥ 0. (3.5)

Therefore, N(t) ≥ N(0) = βd̄ − E(0) > 0. From Proposition 2.4 we conclude

N(t) = βd̄ − E(t) ≤ βd̄ + 1
p + 1

∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+ 1
m + 1

∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)

≤ β
(m + 1

p + 1

) 2
p−1
(α(p − 1)

p + 1

)∥∥∥∇Mu
∥∥∥p+1

N−1
2 , N

2

+ α

m + 1

∥∥∥∇Mu
∥∥∥p+1

N−1
2 , N

2

= α

[
β(p − 1)

p + 1

(m + 1
p + 1

) 2
p−1 + 1

m + 1

]∥∥∥∇Mu
∥∥∥p+1

N−1
2 , N

2

, ∀ t ∈ [0, T ]. (3.6)

Now we define

G(t) := N1−σ(t) + ε

k

∫
M

r1u|∂tu|k−1 dr1
r1

dx
dr2
r1r2

, (3.7)

for every t ≥ 0, and 0 < ε ≪ 1 to be chosen later and 0 < σ < 1
k+1 . Differentiating the

equality 3.7 with respect to t and using equation (1.1), we get

G
′(t) = (1 − σ)N−σ(t)N ′(t) + ε

k

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+ ε
(
|∂tu|k−1∂ttu, u

)
M

= (1 − σ)N−σ(t)N ′(t) + ε

k

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

− ε
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ ε

∫
M

∇Mu(t)
∫ t

0
g(t − s)∇Mu(s)ds

dr1
r1

dx
dr2
r1r2
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+ ε
∥∥∥u∥∥∥p+1

N−1
p+1 , N

p+1

+ ε
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)
. (3.8)

On the other hand,

(m + 1 − γ)N(t) = (m + 1 − γ)βd̄ − (m + 1 − γ)
k + 1

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

− (m + 1 − γ)l
2

∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

+ (m + 1 − γ)
2

(
go∇Mu

)
(t)

+ (m + 1 − γ)
p + 1

∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+ (m + 1 − γ)
m + 1

∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)
. (3.9)

By making use the Young inequality we conclude∫
M

∇Mu(t)
∫ t

0
g(t − s)

[
∇Mu(s) − ∇Mu(t)

]
ds

dr1
r1

dx
dr2
r1r2

≤ 1
4ξ

∫ t

0
g(s)ds

∥∥∥∇Mu(t)
∥∥∥2

N−1
2 , N

2

+ ξ

∫ t

0
g(t − s)

∫
M

[
∇Mu(s) − ∇Mu(t)

]2
ds

dr1
r1

dx
dr2
r1r2

, (3.10)

where γ, ξ > 0 to be determined later, we get from (3.8) and (3.10)

G
′(t) = (1 − σ)N−σ(t)N ′(t) + ε(m + 1 − γ)N(t) − ε(m + 1 − γ)N(t) + ε

k

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

− ε
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ ε

∫
M

∇Mu(t)
∫ t

0
g(t − s)∇Mu(s)ds

dr1
r1

dx
dr2
r1r2

+ ε
∥∥∥u∥∥∥p+1

N−1
p+1 , N

p+1

+ ε
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)
= (1 − σ)N−σ(t)N ′(t) + ε(m + 1 − γ)N(t) − ε(m + 1 − γ)βd̄

+ ε(m + 1 − γ)
k + 1

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+ ε(m + 1 − γ)l
2

∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

+ ε(m + 1 − γ)
2

(
go∇Mu

)
(t)

− ε(m + 1 − γ)
p + 1

∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

− ε(m + 1 − γ)
m + 1

∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)
+ ε

k

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

− ε
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ ε

∫
M

r1∇Mu(t)
∫ t

0
g(t − s)∇Mu(s)ds

dr1
r1

dx
dr2
r1r2

+ ε
∥∥∥u∥∥∥p+1

N−1
p+1 , N

p+1

+ ε
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)
≥ (1 − σ)N−σ(t)N ′(t) + ε(m + 1 − γ)N(t) − ε(m + 1 − γ)βd̄

+ ε
[m + 1 − γ

k + 1
+ 1

k

]∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+ ε
[ l(m + 1 − γ)

2
− 1

]∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

+ ε(m + 1 − γ)
2

(
go∇M

)
(t) + ε

[m + 1 − γ

p + 1
+ 1

]∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+ ε
[m + 1 − γ

m + 1
+ 1

]∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)
− 1

4ξ

∫ t

0
g(s)ds

∥∥∥∇Mu(t)
∥∥∥2

N−1
2 , N

2

+ ξ

∫ t

0
g(t − s)

∫
M

[
∇Mu(s) − ∇Mu(t)

]2
ds

dr1
r1

dx
dr2
r1r2

≥ (1 − σ)N−σ(t)N ′(t)

+ ε(m + 1 − γ)N(t) + ε
[m + 1 − γ

k + 1
+ 1

k

]∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+ ε

[(m + 1 − γ

2
− 1

)
−
(m + 1 − γ

2
+ 1

4ξ

) ∫ t

0
g(s)ds

]∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2



1096 M.K. Kalleji

+ ε
[m + 1 − γ

2
− ξ

](
go∇Mu

)
(t) − ε(m + 1 − γ)βd̄ + ε

[m + 1 − γ

p + 1
+ 1

]∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+ ε
[m + 1 − γ

m + 1
+ 1

]∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)
. (3.11)

Taking into account Proposition 2.4 we obtain

−ε(m + 1 − γ)βd̄ ≥ −ε(m + 1)β
(m + 1

p + 1

) 2
p1−1 (1

2
− 1

p + 1
)
[
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+
(
go∇Mu

)
(t)
]

= −ε(m + 1)β
(m + 1

p + 1

) 2
p−1
( p − 1

2(p + 1)

)[
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+
(
go∇Mu

)
(t)
]

−εβ(p − 1)
2

(m + 1
p + 1

) p+1
p−1
[
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+
(
go∇Mu

)
(t)
]
. (3.12)

Now, by making use inequalities (3.11) and (3.12) we conclude

G
′(t) ≥ (1 − σ)N−σ(t)N ′(t) + ε(m + 1 − γ)N(t)

+ ε
[m + 1 − γ

k + 1
− 1

k

]∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+ ε

[
m − 1 − γ

2
− β(p − 1)

2
(m + 1

p + 1
)

p+1
p−1

−
(m + 1 − γ

2
− β(p − 1)

2
(m + 1

p + 1
)

p+1
p−1 + 1

4ξ

) ∫ t

0
g(s)ds

]∥∥∥∇Mu
∥∥∥2

N−1
2 , N

2

+ ε

[
m + 1 − γ

2
− β(p − 1)

2

(m + 1
p + 1

) p+1
p−1 − ξ

](
go∇Mu

)
(t)

+ ε
[m + 1 − γ

p + 1
+ 1

]∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+ ε
[m + 1 − γ

m + 1
+ 1

]∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)
. (3.13)

According to assumption 3.1 we take 0 < ξ < m+1−γ
2 − β(p−1)

2 (m+1
p+1 )

p+1
p−1 , then we obtain

G
′(t) ≥ (1 − σ)N−σ(t)N ′(t) + ε(m + 1 − γ)N(t)

+ ε
[m + 1 − γ

k + 1
− 1

k

]∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+ εθ1
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ εθ2
(
go∇Mu

)
(t)

+ ε
[m + 1 − γ

2
+ 1

]∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+ ε
[m + 1 − γ

2
+ 1

]∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)
(3.14)

such that

θ1 = m − 1 − γ

2
−β(p − 1)

2
(m + 1

p + 1
)

p+1
p−1 −

(m + 1 − γ

2
−β(p − 1)

2
(m + 1

p + 1
)

p+1
p−1 + 1

4ξ

) ∫ t

0
g(s)ds

and
θ2 = m + 1 − γ

2
− β(p − 1)

2

(m + 1
p + 1

) p+1
p−1 − ξ

where the positive constant γ satisfies 0 < m + 1 − β(p − 1)(m+1
p+1 )

p+1
p−1 < γ. Therefore, we

can estimate the following inequality for small number µ :

G
′(t) ≥ εµ

[
N(t) +

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+
(
go∇Mu

)
(t)

+
∥∥∥u∥∥∥p+1

N−1
p+1 , N

p+1

+
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)

]
≥ 0. (3.15)

Here, we choose ε small enough such that

G(0) = N1−σ(0) + ε

k

∫
M

r1u0|u1|k−1u1
dr1
r1

dx
dr2
r1r2

.
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Hence, for t ∈ [0, T ] we have G(t) ≥ (0) > 0. Now, by making use of the Hölder and corner
Sobolev inequalities, we conclude∣∣∣∣∫

M
r1u|∂tu|k−1∂tu

dr1
r1

dx
dr2
r1r2

∣∣∣∣
1

1−σ

≤
∥∥∥∂tu

∥∥∥k+1
N−1
k+1 , N

k+1

∥∥∥u∥∥∥ 1
1−σ

N−1
p+1 , N

p+1

≤ C
∥∥∥∂tu

∥∥∥ k
1−σ

N−1
p+1 , N

p+1

∥∥∥∇Mu
∥∥∥ 1

1−σ

N−1
2 , N

2

≤ C
(∥∥∥∂tu

∥∥∥ kq
1−σ

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥ q′
1−σ

N−1
2 , N

2

)
, (3.16)

where 1
q + 1

q′ = 1. Furthermore, if we take q = (k+1)(1−σ)
k > 1, then q′

1−σ = k+1
(k+1)(1−σ)−k .

Thus, from inequality (3.16)∣∣∣∣∫
M

r1u|∂tu|k−1∂tu
dr1
r1

dx
dr2
r1r2

∣∣∣∣
1

1−σ

≤ C
(∥∥∥∂tu

∥∥∥k+1
N−1
k+1 , N

k+1

+
∥∥∇Mu

∥∥∥ k+1
(k+1)(1−σ)−k

N−1
2 , N

2

)
. (3.17)

Combine Definition 3.7 and inequality (3.17), then

G
1

1−σ (t) =
(

N1−σ(t) + ε

k

∫
M

r1u|∂tu|k−1∂tu
dr1
r1

dx
dr2
r1r2

) 1
1−σ

≤ C

(
N(t) +

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥ k+1
(k+1)(1−σ)−k

N−1
2 , N

2

)
. (3.18)

From the functional in (3.3) and N(t) ≥ N(0) = βd̄ − E(0) > 0 we have

∥∥∥∇Mu
∥∥∥ k+1

(k+1)(1−σ)−k

N−1
2 , N

2

≤ δ
k+1

2((k+1)(1−σ)−k)
2 ≤ δ

k+1
2((k+1)(1−σ)−k)
2

N(0)
N(t). (3.19)

Now, by making use of relations (3.6), (3.18), and (3.19) we can estimate the following
inequality

G
1

1−σ ≤ C

(
α

[
β(p − 1)

p + 1

(m + 1
p + 1

) 2
p−1 + 1

m + 1

]∥∥∥∇Mu
∥∥∥p+1

N−1
2 , N

2

+
∥∥∥∂tu

∥∥∥k+1
N−1
k+1 , N

k+1

+ δ
k+1

2((k+1)(1−σ)−k)
2

N(0)
α

[
β(p − 1)

p + 1

(m + 1
p + 1

) 2
p−1 + 1

m + 1

]∥∥∥∇Mu
∥∥∥p+1

N−1
2 , N

2

)

≤ D

(∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥p+1
N−1

2 , N
2

)
(3.20)

where D = D(m, p, k, C) is a positive constant such that

D = C max
{

α
[β(p − 1)

p + 1

(m + 1
p + 1

) 2
p−1 + 1

m + 1

]
, 1,

δ
k+1

2((k+1)(1−σ)−k)
2 α

N(0)

[β(p − 1)
p + 1

(m + 1
p + 1

) 2
p−1 + 1

m + 1

]}
.

By the combination of (3.15) and (3.20), we obtain

G
′(t) ≥ DG

1
1−σ (t) ∀t ∈ [0, T ]. (3.21)

By integrating (3.21) on (0, t), it follows that

G
σ

1−σ (t) ≥ 1
G

−σ
1−σ (0) − D σt

1−σ

, ∀ t ∈ [0, T ]. (3.22)
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Inequality (3.22) shows that G(t) blows up in finite time

T ∗ ≤ 1 − σ

G
σ

1−σ (0)Dσ
. (3.23)

Since the time T is arbitrary, one can choose T such that T ≥ 1−σ

G
σ

1−σ (0)Dσ
. Hence, we

observe from (3.20) that there exits a time T ∗ ∈ (0, T ] such that

lim
t→T ∗−

(∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥p+1
N−1

2 , N
2

)
= +∞, (3.24)

which contradicts Tmax = +∞. Therefore, the solution of problem 1.1 blows up in finite
time. □

Theorem 3.2. Suppose that the assumption (A) hold and for an arbitrary positive and

fixed constant β < m+1
p−1 < 1, let us consider u0 ∈ H

1,( N−1
2 , N

2 )
∂0(M) (M), u1 ∈ L

N−1
k+1 , N

k+1
k+1 (M) such

that K(u0) < 0 and E(0) < βd̃. Moreover, assume that 1 < k ≤ N+2
N−2 and the relaxation

function g satisfies the following relation:

∫ ∞

0
g(s)ds <

[
(m − 1)(1 − β) − γ

]2
+ 2

[
(m − 1)(1 − β) − γ

]
[
(m − 1)(1 − β) − γ+

]2
+ 1

(3.25)

where 0 < γ < (m−1)(1−β). Then, a solution u of the problem 1.1 with
∥∥∥∇Mu

∥∥∥
N−1

2 , N
2

≤ 1

blows up in finite time, that is, the maximum existence time Tmax of u(t) is finite and

lim
t→Tmax

[∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥m+1
N−1

2 , N
2

]
= +∞. (3.26)

Proof. From Proposition 2.5 we have that if K(u0)) < 0 and for every t ∈ [0, Tmax), then
K(u(t)) < 0. Similar to Theorem 3.1, we apply the contradiction method to prove of this
theorem. For an arbitrary positive T we consider the functional F : [0, T ] → R+ as follows

F (t) :=
∥∥∥∂tu

∥∥∥k+1
N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+
∥∥∥u∥∥∥p+1

N−1
p+1 , N

p+1

+
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)
(3.27)

Because of the continuity of the functional F on [0, T ], there exist two positive constants
δ1, δ2 for which δ1 ≤ F (t) ≤ δ2. Now, we set

N(t) = βd̃ − E(t), ∀ t ∈ [0, T ]. (3.28)

By making use of (3.28) and Proposition 2.5, we obtain

N(t) = βd̃ − E(t) ≤ βα(m − 1)
m + 1

∥∥∥∇Mu
∥∥∥m+1

N−1
2 , N

2

+ α

m + 1

∥∥∥∇Mu
∥∥∥m+1

N−1
2 , N

2

= α

m + 1

(
1 + β(m − 1)

)∥∥∥∇Mu
∥∥∥m+1

N−1
2 , N

2

∀ t ∈ [0, T ]. (3.29)

For every t ≥ 0 we define

G(t) := N1−σ(t) + ε

k

∫
M

r1u|∂tu|k−1 dr1
r1

dx
dr2
r1r2

, (3.30)

where 0 < ε∥|1 and 0 < σ < 1
k+1 . Applying Proposition 2.5, we estimate

−ε(m + 1 − γ)βd̃ ≥ −εβ(m − 1)
2

(
l
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+
(
g ◦ ∇Mu

)
(t)
)

. (3.31)
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Now, by the similar way in the proof of Theorem 3.1 and of the assumption (3.25), and
also relations (3.30), (3.31) and the Young’s inequality we can conclude for any 0 < ξ ≤
(m−1)(1−β)

2 + 2−γ
2 the following conclusion:

G
′(t) ≥ (1 − σ)N−σ(t)N ′(t) + ε(m + 1 − γ)N(t) + ε

[1
k

+ m + 1 − γ

k + 1

]∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+ εκ1
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+ εκ2
(
go∇Mu

)
(t)

+ ε
[
1 + m + 1 − γ

p + 1

]∥∥∥u∥∥∥p+1
N−1
p+1 , N

p+1

+ ε
[
1 + m + 1 − γ

m + 1

]∥∥∥u∥∥∥m+1
N−1
m+1 , N

m+1 ,∂1(M)
(3.32)

where

κ1 = (m − 1)(1 − β) − γ

2
−
((m − 1)(1 − β)

2
+ 2 − γ

2
+ 1

4ξ

) ∫ t

0
g(s)ds > 0,

κ2 = (p − 1)(1 − β)
2

+ 2 − γ

2
− ξ > 0.

Then, for any positive and fixed constant µ, we have

G
′(t) ≥ εµ

[
N(t) +

∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥2
N−1

2 , N
2

+
(
go∇Mu

)
(t)

+
∥∥∥u∥∥∥p+1

N−1
p+1 , N

p+1

+
∥∥∥u∥∥∥m+1

N−1
m+1 , N

m+1 ,∂1(M)

]
≥ 0. (3.33)

Hence, by choosing ε small enough and positive

G(0) = N1−σ(0) + ε

k

∫
M

r1u0|u1|k−1u1
dr1
r1

dx
dr2
r1r2

.

Thus G(t) ≥ (0) > 0 for every t ∈ [0, T ]. Now, by the functional in (3.27) and N(t) ≥
N(0) = βd̃ − E(0) > 0 we obtain

∥∥∥∇Mu
∥∥∥ k+1

(k+1)(1−σ)−k

N−1
2 , N

2

≤ δ
k+1

2((k+1)(1−σ)−k)
2 ≤ δ

k+1
2((k+1)(1−σ)−k)
2

N(0)
N(t). (3.34)

Therefore, similar Theorem 3.1,

G
1

1−σ (t) ≤ D

(∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥m+1
N−1

2 , N
2

)
(3.35)

where

D = max
{

α
[β(m − 1) + 1

m + 1

]
, 1,

δ
k+1

2((k+1)(1−σ)−k)
2 α

N(0)

[β(m − 1) + 1
m + 1

]}
.

Hence, by the above estimates we can get the following for any t ∈ [0, T ]

G
′(t) ≥ DG

1
1−σ (t). (3.36)

By integrating (3.36) on interval (0, t), we have

G
σ

1−σ (t) ≥ 1
G

−σ
1−σ (0) − D σt

1−σ

, ∀ t ∈ [0, T ]. (3.37)

Therefore, relation (3.37) shows that G(t) blows up in finite time

T ∗ ≤ 1 − σ

G
σ

1−σ (0)Dσ
. (3.38)
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Because of the arbitrariness of time T, one can choose T such that T ≥ 1−σ

G
σ

1−σ (0)Dσ
. Hence,

there exists a time T ∗ ∈ (0, T ] for which

lim
t→T ∗−

(∥∥∥∂tu
∥∥∥k+1

N−1
k+1 , N

k+1

+
∥∥∥∇Mu

∥∥∥m+1
N−1

2 , N
2

)
= +∞, (3.39)

which contradicts with Tmax = +∞. Therefore, the solution of the problem 1.1 blows up
in finite time. □
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