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ABSTRACT The effectiveness of the local fractional reduced differential transformation method (LFRDTM)
for the approximation of the solution related to the extended n-term local fractional Klein-Gordon equation
is the main aim of this paper in which fractional complex transform and local fractional derivative have been
employed to analyze the n-term Klein-Gordon equations, and Cantor sets. The proposed method, along with
the existence of the solutions demonstrated through some examples, provides a powerful mathematical means
in solving fractional linear differential equations. Considering these points, the paper also provides an accurate
and effective method to solve complex physical systems that display fractal or self-similar behavior across
various scales. In conclusion, the fractional complex transform with the local fractional differential transform
method has been proven to be a robust and flexible approach towards obtaining effective approximate solutions
of local fractional partial differential equations.
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INTRODUCTION

Various fields of study have used the Klein–Gordon equation in
the last few decades, including quantum field theory, nonlinear
optics, thermodynamics, and solid-state physics Kanth and Aruna
(2009). The Klein-Gordon equation is a fundamental quantum
field theory that describes particle behavior with spin 0. It was first
introduced as a relativistic wave equation for a free scalar particle.
There are a variety of approaches to solving problems of this nature.
Recent years have seen significant use of a fractional modification
involving the Caputo fractional derivative. However, fractional
techniques for the Riemann-Liouville and Caputo derivatives are
inadequate when smooth functions cannot represent the study
area. In this situation, the local fractional calculus is a useful tool
to simulate these physical problems.

Since its inception, the Klein-Gordon equation has been exten-
sively studied and applied in various fields of physics, including
particle physics, condensed matter physics, and cosmology. How-
ever, the standard form of the Klein-Gordon equation only con-
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siders integer-order derivatives, which restricts its applicability to
specific physical systems that exhibit non-local behavior or fractal
geometry. To overcome this limitation, local fractional calculus
has been introduced to generalize the Klein-Gordon equation to
accommodate fractional-order derivatives. Local fractional calcu-
lus is a mathematical framework that extends classical calculus to
nondifferentiable and fractal functions by introducing the concept
of fractional derivatives, which capture the behavior of these func-
tions at small scales It is discovered that local fractional calculus,
which Kolwankar and Gangal (1996) first proposed in the 1990s,
is a practical tool in fields ranging from fundamental research to
engineering. There, they describe the behavior of a continuous but
non-differentiable function.

Over the past 20 years, the significance and attractiveness of
local fractional calculus have increased due to its application
to functions in the real world that involve fractals and are not
continuously differentiable. The application of local fractional
calculus to the Klein-Gordon equation has led to the development
of a new class of equations known as local fractional Klein-Gordon
equations. These equations have been used to model various
physical phenomena, such as quantum wave propagation in
fractal media, fractional quantum mechanics, and non-local
interactions in quantum field theory Dubey et al. (2022).
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In recent years, the study of local fractional Klein-Gordon equa-
tions has gained significant attention, with researchers exploring
their theoretical properties and applications in various areas of
physics. This includes the development of numerical methods for
solving these equations and their application to complex physi-
cal systems, such as the behavior of particles in non-local media
and the study of fractal structures in condensed matter physics.
For example, In Sun (2018), the author explored a mathematical
model involving fractional derivatives to describe a porous struc-
ture. This model is called the Harry Dym fractal equations and
incorporates the Burgers fractal nonlinear equation. Furthermore,
reference Wang et al. (2019) introduced the concept of a local frac-
tional KdV-Burgers-Kuramoto (KBK) equation within the context
of fractal space. Here, the concept of a local fractional derivative
and a differential transform method has been used. Keskin and
Oturanc (2009) were the first to propose the Reduced Differential
Transform Method (RDTM). Many scholars use this method to
explore fractional, non-fractional, linear, and nonlinear PDEs. The
method provides a reliable and efficient technique for a wide range
of scientific, industrial, and many other applications in physics,
encompassing linear, nonlinear, homogeneous, and nonhomoge-
neous, fractional, and non-fractional PDEs, and so on. Solutions to
significant mathematical problems are explored using this deriva-
tive. In 2016, Yang and Tenreiro Machado (2019) introduced the
new local fractional differential transform technique (LFDTM) by
combining the local fractional derivative (LFD) and the differential
transform method (DTM). He offered several fundamental theo-
rems and some examples of the use of this strategy. According to
Jafari et al. (2016) theory of local fractional calculus, He combined
LFD and RDTM in 2016 to produce the local fractional reduced
differential transform method (LFRDTM). Moreover, he presented
several fundamental theorems and applications of this method.

The classical KGE can be converted in its local fractional
form in cantor sets using the fractional complex transform and
the local fractional derivative. Yang et al. (2014) developed a
continuous but nondifferentiable solution in cantor sets for the
local fractional linear KGE was developed by Yang et al. (2014)
using the technique of local fractional series technique under the
local fractional differential operator to produce a nondifferentiable
solution. Using the local fractional Sumudu transform approach
and the standard homotopy perturbation technique, Kumar et al.
(2017) researched linear KGE in Cantor sets.
The motivation for using local fractional calculus to examine the
solution of the n-term fractional Klein-Gordon equation came
from the need to develop a more effective approach to modeling
complex physical phenomena. Traditional calculus methods fail to
accurately describe many real-world systems that exhibit fractal
or self-similar behavior at various length scales. Local fractional
calculus provides a framework for analyzing such systems
considering the non-local and non-differentiable properties of
fractals Chu et al. (2023).

The n-term fractional Klein-Gordon equation is a specific
example of a physical system that can benefit from applying
local fractional calculus. This equation describes the behavior
of a scalar field in space-time and has important applications in
quantum mechanics, field theory, and condensed matter physics.
By using local fractional calculus to solve the n-term fractional
Klein-Gordon equation, we can gain a deeper understand-
ing of the behavior of scalar fields in complex systems, leading
to improved models and better predictions of physical phenomena.

The following paper aims to demonstrate the effectiveness of
the local fractional reduced differential transformation method
(LFRDTM) in approximating the solution of the extended n-term
local fractional Klein-Gordon equation. Here, we also discussed
the existence of the solution, followed by a few examples. The
ultimate goal of this study is to provide an effective and accurate
method for modeling complex physical systems that exhibit fractal
or self-similar behavior at various length scales. By demonstrating
the effectiveness of the LFRDTM in approximating the solution of
the local fractional Klein-Gordon equation of term n, we hope to
encourage its use in a wide range of applications in physics and
engineering. The article is organized as follows: (1) Introduction
(2) Definitions and preliminary (3) Existence and uniqueness of
the solution of the local fractional Klein-Gordon equations (4) Ap-
proximate analytical solutions of the local fractal Klein-Gordon
equations of term n (5) Results and Discussion.

DEFINITION AND PRELIMINARIES

The definitions of fractional operators, the transformation method,
and their properties are as follows.

Definition 1. Jafari et al. (2016) Let ψ : [a, b] × R → R be a local
fractional continuous function, then the local fractional partial derivative
operator of ψ(y, t) of order ν where 0 < ν ≤ 1 concerning t at the point
(y, t0) expressed as

Dνψ(y, t0) =
∂

∂t
ψ(y, t0)

= lim
t→t0

∆ν[ψ(y, t)− ψ(y, t0)]

(t − t0)ν
(1)

where ∆ν[ψ(y, t)− ψ(y, t0)] ∼= Γ(1 + ν) [ψ(y, t)− ψ(y, t0)]

with that in view the local fractional partial derivative operator
of ψ(y, t) of order kν, 0 < ν ≤ 1 is given as

Dt
kνψ(y, t) =

∂kν

∂t
ψ(y, t)

=

k times︷ ︸︸ ︷
∂ν

∂tν
...

∂ν

∂tν
ψ(y, t). (2)

Definition 2. A continuous function ψ : [a, b]× Rν → Rν which is
local fractional is Lipschitz continuous if ∃ 0 < η < 1 s.t. ∀ y ∈ [a, b]

|ψ(y, t1)− ψ(y, t2)| ≤ ην|t1 − t2|, 0 < ν < 1.

.

Definition 3. On a Generalised Banach space (X, ||.||ν), a mapping V
from X to X is said to be a contraction mapping if ∃ ην ∈ (0ν, 1ν) s.t.
for y1

ν, y2
ν ∈ X

||V(yν
1)− V(yν

2)||ν ≤ ην||yν
1 − yν

2 ||ν.

.

Also ||ψyν − yν||ν = 0 implies yν is said to be a fixed point of ψ.

Theorem 1. A map ψ : X → X on a complete general Banach space
(X, ||.||ν) has a unique fix point if ∃ k ≥ 1 s.t. ψk is contracting.

Theorem 2. Let ψ : [a, b]× Rν → Rν be LFC map. Then ψ is Lipschitz
continuous.
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Definition 4. Jafari et al. (2016) Let Ψ(k+1)ν(y) ∈ Cν(a, b), for
k = 0, 1, 2, ..., n and 1 < ν ≤ 1, then, we have

ψ(y) =
∞

∑
k=0

ψkν(0)
(y − yo)kν

Γ(1 + kν)
(3)

and ψ(k+1)ν(y) =

(k+1)︷ ︸︸ ︷
Dν

y Dν
y ...Dν

y ψ(y). (4)

Definition 5. The local fractional differential transform of a two-
dimensional transform Ψk(y) or Ψ(y, k) of function ψ(y, t) is

Ψk(y) =
1

Γ(1 + kν)

[
∂kν

∂tkν
ψ(y, t)

]
t=0

(5)

k = 0, 1, 2, ....n and ν ∈ (0, 1]. (6)

Definition 6. Jafari et al. (2016) The inverse transform formula for a
two-dimensional local fractional reduced differential of ψk(y)

ψ(y, t) =
∞

∑
k=0

Ψk(y)t
kν

Some other properties of RTDM are as follows:

1. If g(y, t) = aψ(y, t) then Gk(y) = aΨk(y),
where a is a constant

2. If π(y, t) = ψ(y, t) + ψ(y, t), then, Πk(y) = ψk(y) + Ψk(y).

3. If π(y, t) = ψ(y, t)ψ(y, t), then, Πk(y) =
k

∑
r=0

Ψr(y)Ψk−r(y).

4. If g(y, t) =
∂nν

∂tnν
ψ(y, t), then,Gk(y) =

Γ(1 + (k + n)ν)
Γ(1 + kν)

Ψk+n(y)

where Ψk+n(y) =
1

Γ(1 + (k + n)ν)

[
∂(k+n)ν

∂t(k+n)ν
ψ(y, t)

]
t=0

k = 0, 1, 2, ....n ν ∈ (0, 1] and n ∈ N.

5.If g(y, t) =
∂nν

∂xnν
ψ(y, t), then we have Gk(y) =

∂nν

∂xnν
Ψk(y).

Lemma 1. ( [Yang (2012) Zhang et al. (2015) Zhang and Yang (2016)]
) Let φ1, φ2 be two non differential functions with Local fractional
derivative operator ν ∈ (0, 1], then

1. D(ν)(aφ1 + bφ2) = a(D(ν)φ1) + b(D(ν)φ2) for a, b ∈ R.

2. D(ν)(φ1 φ2) = φ1D(ν)(φ2) + φ2D(ν)(φ1).

3. D(ν)(
φ1
φ2
) =

φ2D(ν)φ1−φ1D(ν)φ2

φ2
2

provided φ2 = 0.

Lemma 2. Acan et al. (2017) Yang (2012) Zhang et al. (2015) Zhang
and Yang (2016) Suppose that φ is a non-differential function and

ν ∈ (0, 1] is the order of local fractional derivative, then,

1. Dν(φ(y)) = 0, for all constant functions φ(y) = k.

2. D(ν)(
ykν

Γ(kν + 1)
) =

y(k−1)ν

Γ((k − 1)ν + 1)

3. D(ν)(Eν(yν)) = Eν(yν)

4. D(ν)(Eν(−yν)) = −Eν(−yν)

5. D(ν)(sinν(yν)) = cosν(yν)

6. D(ν)(cosν(yν)) = −sinν(yν)

where Eν(yν) =
∞

∑
k=0

ykν

Γ(kν + 1)
,

sinν(yν) =
∞

∑
k=0

(−1)k y(2k+1)ν

Γ((2k + 1)ν + 1)

and cosν(yν) =
∞

∑
k=0

(−1)k y2kν

Γ(2kν + 1)
.

Local Fractional Klein- Gordon equation (on Cantor sets)
This section uses the fractional complex transform and the
local fractional derivative to derive the local fractional KGE
(Klein-Gordon equation) fractal model of the term n in cantor sets.
We know that the classical Klein-Gordon Equation is

∂ψ(Ω, T)
∂T

=
∂2ψ(Ω, T)

∂Ω2 + aψ(Ω, T) + bψ2(Ω, T) + cψ3(Ω, T)

then the classical n-term Klein-Gordon equation is considered as

∂ψ(Ω, T)
∂T

=
∂2ψ(Ω, T)

∂Ω2 + a1ψ(Ω, T)+ a2ψ2(Ω, T)+ a3ψ3(Ω, T)+

... + anψn(Ω, T) (7)

subject to initial condition ψ(Ω, 0) = ψo.

Now using the Local Fractional complex transform method
to switch the conventional differential equation into the local
fractional differential equation.
To derive the fractional transform, we put

Ω =
yν

Γ(1 + ν)
, T =

tν

Γ(1 + ν)

Then

∂ν

∂tν
ψ(y, t) =

∂ψ(Ω, T)
∂Ω

∂νΩ
∂tν

+
∂ψ(Ω, T)

∂T
∂νT
∂tν

= 0 +
1

Γ(1 + ν)

∂ψ(Ω, T)
∂T

.

This implies

∂ψ(Ω, T)
∂T

= Γ(1 + ν)
∂νψ(y, t)

∂tν

or DTψ(Ω, T) = Γ(1 + ν)Dν
t ψ(y, t)

Similarly,

D2ν
y ψ(y, t) = D2

Ωψ(Ω, T)
∂νΩ
∂xν

+ D2
Tψ(Ω, T)

∂νT
∂xν

=
1

Γ(1 + ν)
D2

Ωψ(Ω, T)

⇒ D2
Ωψ(Ω, T) = Γ(1 + ν)D2ν

y ψ(y, t)
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and using local fractional derivatives under the constraints and
characteristics of the fractional complex transform technique, we
see that

ψ(y, t) =
1

Γ(1 + ν)
ψ(Ω, T)

ψ2(y, t) =
1

Γ(1 + ν)
ψ2(Ω, T)

... =

ψn(y, t) =
1

Γ(1 + ν)
ψn(Ω, T).

Thus, substituting the terms into 7 we obtain the local fractional
KGE of n terms (Klein - Gordon equation) as

∂ψ(y, t)
∂tν

=
∂2νψ(y, t)

∂x2ν
+ a1ψ(y, t) + a2ψ2(y, t) + a3ψ3(y, t) + ...

+ anψn(y, t), t > 0 (8)

with initial conditions

ψ(y, 0) = ψ0

or we can write it as

Dν
t ψ = D2ν

y ψ + a1ψ + a2ψ2 + a3ψ3 + · · · · · ·+ anψn

with initial conditions

ψ(y, 0) = ψo.

EXISTENCE AND UNIQUENESS OF SOLUTION OF N TERM
LOCAL FRACTAL KLEIN- GORDON EQUATION

In this section, we apply the Banach fixed point theorem and
contraction mapping theorem to ensure that the local fractional
Klien Gordon equation with the initial condition has a unique
solution.
Let us introduce a Banach space of real-valued functions by
C(Ω × [0, T]) with the norm is given by

||ψ|| = sup
(y,t)∈Ω×[0,T]

||ψ(y, t)||

Lemma 3. Let ψ(y, t) and its fractional partial derivatives are continu-
ous on Ω × [0, T] then Dν

t ψ and D2ν
y ψ are bounded.

Proof. Let A1 = sup
0≤τ≤t≤T

|t − τ|−ν . We will show that Dν
t is

bounded. Consider

|Dν
t ψ(y, t)| = | 1

Γ(1 − ν)

∫ t

0
(t − τ)−νψ(y, t)dτ|

= | A1
Γ(1 − ν)

∫ t

0
(t − τ)−νψ(y, t)dτ|

≤ A1
Γ(1 − ν)

||ψ||+ maxy∈Ω|ψ(y, 0)|.

Let (L1) be a positive constant such that maxy∈Ω|ψ(y, 0)| ≤
L1||ψ||,
this gives

|Dν
t ψ(y, t)| ≤ A1

Γ(1 − ν)
||ψ||+ L1||ψ|| = L2||ψ||

where L2 = A1
Γ(1−ν)

+ L1. Similarly, we can have ||D2ν
y ψ|| ≤ K||ψ||

where K is some constant. Hence, the fractional derivatives are
bounded.

Now considering the subsequent fractional differential equation
in the local fractional operator form as

Lν(ψ)− Rν(ψ) = 0 (9)

where ψ = ψ(y, t), Lν(ψ) =
∂νψ
∂tν and Rν(ψ) =

∂2νψ(y,t)
∂x2ν + a1ψ +

a2ψ2 + a3ψ3 + · · · · · ·+ anψn.
We can rewrite this equation subject to initial conditions as

Lνψ(y, t) = Φ(ψ(y, t))

with initial condition

ψ(y, 0) = ψ0(y).

Here

Φ(ψ(y, t)) =
∂2νψ(y, t)

∂y2ν
+ a1ψ+ a2ψ2 + .....+ anψn =

∂2νψ(y, t)
∂y2ν

+ f (ψ)

Theorem 3. Assuming the function Φ(ψ(y, t)) specified as

Φ(ψ(y, t)) =
∂2νψ(y, t)

∂x2ν
+ f (ψ)

is a Locally fractional continuous function which satisfies Lipschitz con-
tinuity condition, that is,

|Φ(ψ1(y, t))− Φ(ψ2(y, t))| ≤ ην|ψ1(y, t)− ψ2(y, t)|, ν ∈ (0, 1]

where 0 < η < 1.
then, the system

Lνψ(y, t) = Φ(ψ(y, t))

with initial condition
ψ(y, 0) = ψ0(y)

comprises a solution in Cν[a, b] which is a unique solution.

Proof. Consider the function V : Cν[a, b] → Cν[a, b] be defined as

V(ψ(y, t)) = ψ0(y) +
1

Γ(1 + ν)

t∫
ν

[Φ(ψ1(y, s))− Φ(ψ2(y, s))](ds)ν

we will use induction to show that

||Vn(ψ1(y, t))−Vn(ψ2(y, t))||ν ≤ ηnν|bν − aν|n
Γn(1 + ν)

||ψ1(y, t)−ψ2(y, t)||ν.

For n=1, we have

|V(ψ1(y, t))− V(ψ2(y, t))| =

∣∣∣∣∣∣ 1
Γ(1 + ν)

t∫
ν

[
ϕ(ψ1(y, s))−
ϕ(ψ2(y, s))

]
(ds)ν

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣ 1
Γ(1 + ν)

t∫
ν

ην

∣∣∣∣∣ψ1(y, s)−
ψ2(y, s)

∣∣∣∣∣(ds)ν

∣∣∣∣∣∣
⩽

ην

Γ(1 + ν)

∣∣∣∣∣∣∣
∂2ν

∂y2ν
(ψ1 − ψ2) + a1(ψ1 − ψ2) + a2(ψ1

2 − ψ2
2)+

.... + an(ψ1
n − ψ2

n)

∣∣∣∣∣∣∣
Now by the lemma 3 note that D2ν

y ψ is bounded and since ψ is
a bounded function therefore ψn is also bounded.
Also as the sum and difference of bounded functions are bounded,
we can have∣∣∣∣∣V(ψ1(y, t))−
V(ψ2(y, t))

∣∣∣∣∣ ⩽ ην

Γ(1 + ν)
|ψ1 − ψ2| [K + a1m1 + a2m2 + ... + anmn]
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where |D2ν
y ψ| ≤ K and m1, m2, ..., mn are the bounds for the other

terms.

≤ ην

Γ(1 + ν)
|bν − aν|||ψ1(y, t)− ψ2(y, t)||ν,

where |K + m1 + m2 + ... + mn| ≤ |bν − aν|.
Hence for n = 1, the inequality holds.
Now let’s assume it for n = k

||Vk(ψ1(y, t))−Vk(ψ2(y, t))||ν ≤ ηkν|bν − aν|k

Γk(1 + ν)
||ψ1(y, t)−ψ2(y, t)||ν

(10)
Now for n = k + 1, we see that

∥∥∥∥∥Vk+1(ψ1(y, t))−

Vk+1(ψ2(y, t))

∥∥∥∥∥
ν

=

∣∣∣∣∣∣ 1
Γ(1 + ν)

t∫
ν

[
ϕ(Vk(ψ1(y, s)))−

ϕ(Vk(ψ2(y, s)))

]
(ds)ν

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣ 1
Γ(1 + ν)

t∫
ν

ην

[
Vk(ψ1(y, s))

−Vk(ψ2(y, s))

]
(ds)ν

∣∣∣∣∣∣
⩽

η(k+1)ν|bν − aν|(k+1)

Γ(k+1)(1 + ν)

∥∥∥∥∥ψ1(y, t)−
ψ2(y, t)

∥∥∥∥∥
ν

(using inequality 10)

Thus for n = k + 1, our assumption is proved, and we can say that

||Vn(ψ1(y, t))−Vn(ψ2(y, t))||ν ≤ ηnν|bν − aν|n
Γn(1 + ν)

||ψ1(y, t)−ψ2(y, t)||ν.

Now note that

ηnν|bν − aν|n
Γn(1 + ν)

||ψ1(y, t)− ψ2(y, t)||ν → 0

as n → ∞.
Therefore we can say that the map Vn is a contraction over Cν[a, b]
which conclusively says that the given system has a unique solu-
tion.

APPROXIMATE ANALYTICAL SOLUTIONS OF N TERM LO-
CAL FRACTAL KLEIN- GORDON EQUATIONS

Theorem 4. If we consider

Dν
t ψ = D2ν

y ψ + a1ψ + a2ψ2 + a3ψ3 + · · · · · ·+ anψn (11)

with initial condition
ψ(y, 0) = ψo (12)

where Dν
t is Local fractional derivative operator with ν ∈ (0, 1]and

a1, a2, · · · , an are real constants. Then the solution of (11) is given as

ψ(y, t) = Ψ0 +
∞

∑
k=1

Ψk(y)t
kν. (13)

Proof. We are going to apply the method of Local Fractional Re-
duced Differential Transform LFRDTMon (11)
For that, we recall that the reduced differential transform(Locally
fractional) of ψ(y, t) is Ψk(y) or Ψ(y, k) and is established as

Ψ(y, k) or Ψk(y) =
1

Γ(1 + kν)

[
∂kνψ(y, t)

∂tkν

]

=
1

Γ(1 + kν)
[Dkν

t ψ(y, t)]

This implies

Ψk+1(y) =
1

Γ(1 + (k + 1)ν)
[D(k+1)ν

t ψ(y, t)] (14)

and since we are using local fractional derivative, therefore

D(k+1)ν
t ψ(y, t) =

∂(k+1)ν

∂t(k+1)ν
ψ(y, t)

=
∂ν

∂tν

∂ν

∂tν
· · · · · · ∂ν

∂tν︸ ︷︷ ︸
(k+1)times

ψ(y, t)

=
∂ν

∂tν

[
∂kν

∂tkν
ψ(y, t)

]
=

∂ν

∂tν
[Dkν

t ψ(y, t)]

=
∂ν

∂tν

[
Γ(1 + kν)Ψk(y)

]
(15)

Substituting (14) into (15), we get

Γ(1 + (k + 1)ν)Ψk+1(y) =
∂ν

∂tν
(Γ(1 + kν)Ψk(y))

Hence we get the recurrence relation as,

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)
∂νΨk(y)

∂tν

=
Γ(1 + kν)

Γ(1 + (k + 1)ν)
Dν

t Ψk(y) (16)

thus using the properties of RTDM, and after applying LFRDTM
to (11) we get

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y a1Ψk(y) + a2Ψ2
k + a3Ψ3

k + · · ·
· · ·+ anΨn

k (y)

]

with (I.C)
Ψ0(y) = Ψ0

where Ψk(y) is a Local fractional differential differential transform
of ψ(y, t)
and similarly for ψ2, ψ3, · · · , ψn the transformed terms are

Ψ2
k(y) =

k

∑
r=0

Ψk(y)Ψk−r(y)

Ψ3
k(y) =

k

∑
r=0

r

∑
s=0

Ψs(y)Ψr−s(y)Ψk−r(y)

Ψ4
k(y) =

k

∑
r=0

r

∑
s=0

s

∑
t=0

Ψt(y)Ψs−t(y)Ψr−s(y)Ψk−r(y)

...

Ψn
k (y) =

k

∑
r1=0

r1

∑
r2=0

r2

∑
r3=0

· · ·
rn−2

∑
rn−1=0︸ ︷︷ ︸

n−1 times

n times︷ ︸︸ ︷
Ψrn−1 (y)Ψrn−2 (y) · · ·Ψk−r1

(y)

Thus, the recurrence relation along with initial condition Ψ0 is
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Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y a1Ψk(y)+ a2

k

∑
r=0

Ψk(y)Ψk−r(y)+

a3

k

∑
r=0

r

∑
s=0

Ψs(y)Ψr−s(y)Ψk−r(y)+

· · · · · ·+ an

k

∑
r1=0

r1

∑
r2=0

r2

∑
r3=0

· · ·
rn−2

∑
rn−1=0

Ψrn−1 (y)Ψrn−2 (y) · · ·Ψk−r1
(y)

]
(17)

and using this recurrence relation, we have

Ψ1 =
Γ(1 + 0)
Γ(1 + ν)

[D2ν
y Ψ0 + a1Ψ0 + a2Ψ2

0 + · · ·+ anΨn
0 ]

=
1

Γ(1 + ν)
[D2ν

y Ψ0 + Ψ0[a1 + a2Ψ0 + · · ·+ anΨn−1
0 ]]

Ψ2 =
Γ(1 + ν)

Γ(1 + 2ν)
[D2ν

y Ψ1 + Ψ1[a1 + a2Ψ1 + · · ·+ anΨn−1
1 ]]

.

.

.

Ψk =
Γ(1 + kν)

Γ(1 + (k + 1)ν)
[D2ν

y Ψk−1 + Ψk−1[a1 + a2Ψk−1 + · · ·+ anΨn−1
k−1 ]]

(18)
Now using 6 we get the analytical solution to n term Klein

Gordon equation as

ψ(y, t) =
∞

∑
k=0

Ψk(y)t
kν

= Ψ0(y) + Ψ1(y)tν + Ψ2(y)t2ν + · · ·

where Ψ0, Ψ1, Ψ2, · · · are defined as above18.

Now consider the following cases for particular solutions

Example 1. consider the fractional differential equation

∂ν

∂tν
ψ(y, t) =

∂2ν

∂x2ν
ψ(y, t) (19)

with initial condition ψ(y, 0) = ψ0.
Note that this is a linear local fractional n term Klein-Gordon equation
with a1 = a2 = · · · = an = 0 which is a special case of (11) .
Let say ψ0 = Eν(yν)
Taking local fractional reduced differential transform of (19),
We get the subsequent recurrence relation

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y Ψk(y)
]

(20)

with (I.C) Ψ0(y) = Eν(yν). (21)

On applying the recurrence relation and initial condition20, we attain

Ψ1(y) =
1

Γ(1 + ν)

[
D2ν

y Ψo(y)

]

=
1

Γ(1 + ν)
Eν(yν)

Ψ2(y) =
1

Γ(1 + 2ν)

[
D2ν

y Ψ1(y)

]

=
1

Γ(1 + 2ν)
Eν(yν)

...

Ψn(y) =
1

Γ(1 + nν)
Eν(yν).

Applying the inverse local fractional reduced differential transform, we
attain the solution of 19.

ψ(y, t) =
∞

∑
k=0

Ψk(y)t
kν

= Eν(yν) + Eν(yν)
tν

Γ(1 + ν)
+ Eν(yν)

t2ν

Γ(1 + 2ν)
+ · · ·

=
∞

∑
k=0

Eν(yν)
tkν

Γ(1 + kν)

This implies
ψ(y, t) = Eν(yν)Eν(tν).

The graphical illustration of the solution ψ(y, t) is shown in [1] when
ν =

log(2)
log(3) .

Example 2. When a1 = 1, a2 = a3 = a4 = · · · = an = 0, we get

Dν
t ψ(y, t) = D2ν

y ψ(y, t) + ψ(y, t), t > 0, ν ∈ (0, 1]

with initial condition
ψ(y, 0) = Eν(yν).

we know that Local fractional reduced differential transform of ψ(y, t)
is

Ψk(y) =
1

Γ(1 + kν)

[
∂kνψ(y, t)

∂tkν

]
=

1
Γ(1 + kν)

[Dkν
t ψ(y, t)]

This implies

Ψk+1(y) =
1

Γ(1 + (k + 1)ν)
[D(k+1)ν

t ψ(y, t)]

⇒ Γ(1 + (k + 1)ν)Ψk+1(y) =
∂ν

∂tν
(Γ(1 + kν)Ψk(y)).

After applying local fractional partial derivative property, we get,

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)
∂νΨk(y)

∂tν
=

Γ(1 + kν)

Γ(1 + (k + 1)ν)
Dν

t Ψk(y).

Thus, applying the properties of RTDM and apply LFRDTM, we get

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y Ψk(y) + Ψk(y)
]

(22)
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with (I.C)

Ψo(y) = Eν(yν).

now applying Recurrence relation [22], we attain

Ψ1(y) =
1

Γ(1 + ν)

[
D2ν

y Ψo(y) + Ψo(y)

]

=
2

Γ(1 + ν)
Eν(yν)

Ψ2(y) =
1

Γ(1 + 2ν)

[
D2ν

y Ψ1(y) + Ψ1(y)

]

=
22

Γ(1 + 2ν)
Eν(yν)

...

Ψk(y) =
2k

Γ(1 + kν)
Eν(yν)

Now using the inverse local fractional reduced differential transform

ψ(y, t) =
∞

∑
k=0

Ψk(y)t
kν

= Ψ0(y) + Ψ1(y)tν + Ψ2(y)t2ν + · · ·

= Eν(yν)
∞

∑
k=0

(2t)kν

Γ(1 + kν)

= Eν((2t − x)ν).

The graphical illustration of the solution ψ(y, t) is shown in [2] when
ν =

log(2)
log(3) .

Example 3. Now considering the case a2 = −1, a1 = a3 = · · · =
an = 0 along with initial condition ψ(y, 0) = 1 + sinν(yν).Then the
non-linear KGE we have,

Dν
t ψ(y, t) = D2ν

y ψ(y, t)− ψ2(y, t), t > 0, ν ∈ (0, 1]

,
with initial condition

ψ(y, 0) = 1 + sinν(yν).

To get the next recurrence relation, we will use the local fractional reduced
differential transform.

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y)Ψk(y)−
k

∑
r=0

ΨrΨk−r

]

with (I.C)

Ψo(y) = 1 + sinν(yν).

thus we get

Ψ1(y) =
Γ(1)

Γ(1 + ν)
[D2ν

y (Ψ0) + [Ψ0]
2]

=
1

Γ(1 + ν)
[D2ν

y (1 + sinν(yν))− (1 + sinν(yν))2]

=
−1

Γ(1 + ν)
[3sinν(yν) + sin2

ν(y
ν) + 1]

=
1

Γ(1 + 2ν)Γ(1 + ν)


Γ(1 + ν)(3sinν(yν)− 2 + 4sin2

ν(y
ν))− 1

−11sin2
ν(y

ν) + 6sin3
ν(y

ν)+

6sinν(yν) + sin4
ν(y

ν)


.

.

.

.

Now substituting using the inverse Local fractional reduced differen-
tial transform method (LFRDTM), we have

ψ(y, t) =
∞

∑
k=0

Ψktkν

= Ψ0 + Ψ1tν + Ψ2t2ν + · · ·

= 1 + sinν(yν)− tν

Γ(1 + ν)

[
3sinν(yν) + sin2

ν(y
ν) + 1

]

+
t2ν

Γ(1 + ν)Γ(1 + 2ν)

[
(3sinν(yν)− 2 + 4sin2

ν(y
ν))Γ(1 + ν)

− 1 − 11sin2
ν(y

ν) + 6sin3
ν(y

ν) + 6sinν(yν) + sin4
ν(y

ν)

]
+ · · · · · ·

which is the series solution of this particular local fractional KGE. The
graphical illustration of the solution ψ(y, t) is shown in [3] when ν =
log(2)
log(3) .

Example 4. when a1 = a2 = a3 = a4 = a5 = · · · = an = 1,
we get the non linear local fractional Klein Gordon equation

Dν
t ψ(y, t) = D2ν

y ψ(y, t) + ψ + ψ2 + ψ3(y, t), t > 0, ν ∈ (0, 1]

with initial condition

ψ(y, 0) = 1 + sinν(yν)

on applying LFRDTM here, we get

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + ν + kν)

[
D2ν

y Ψk + Ψk + Ψ2
k + Ψ3

k + · · ·
]

where

Ψ2
k =

k

∑
r=0

ΨrΨk−r

Ψ3
k =

k

∑
r=0

r

∑
s=0

ΨsΨr−sΨk−r

and initial condition transforms into Ψ0(y) = 1 + sinν(yν)
Now, using the recurrence relation along with the initial condition, we
obtain
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Ψ1(y) =
1

Γ(1 + ν)
[D2ν

y (Ψ0) + Ψ0 + (Ψ0)
2 + (Ψ0)

3 + · · · ]

Ψ1(y) =
1

Γ(1 + ν)

[
Dν

y(Dν
y(1 + sinν(yν))) + (1 + sinν(yν))+

(1 + sinν(yν))2 + (1 + sinν(yν))3 + · · ·

]

=
1

Γ(1 + ν)

[
−sinν(yν) + 1 + sinν(yν) + 1 + sin2

ν(y
ν) + 2sinν(yν)

+1 + sin3
ν(y

ν) + 3sinν(yν) + 3sin2
ν(y

ν) + · · ·

]

=
1

Γ(1 + ν)
[sin3

ν(y
ν) + 4sin2

ν(y
ν) + 5sinν(yν) + n + · · · ]

Ψ2(y) =
Γ(1 + ν)

Γ(1 + 2ν)
[D2ν

y (Ψ1) + Ψ1 + (Ψ1)
2 + (Ψ1)

3 + · · · ]

Ψ2(y) =
1

Γ(1 + ν)Γ(1 + 2ν)


sin9

ν(y
ν) + 4sin8

ν(y
ν) + 9sin7

ν(y
ν)

+105sin6
ν(y

ν) + 123sin5
ν(y

ν)+

126sin4
ν(y

ν) + 166sin3
ν(y

ν)+

29sin2
ν(y

ν)− 3/4sinν(yν) + · · ·


Ψ3(y) =

1
Γ(1 + ν)Γ(1 + 2ν)Γ(1 + 3ν)

[
sin27

ν (yν) + 10682sin26
ν (yν)

+269874sin25
ν (yν) + · · ·

]
.

.

.

neglecting higher terms since with 0 < ν ≤ 1 and as
|sinν(yν)| ≤ 1 the terms with higher power will eventually tend near
zero.
Now, substituting all using the inverse local fractional reduced differen-
tial transform method (LFRDTM), we have

ψ(y, t) =
∞

∑
k=0

Ψktkν

= Ψ0 + Ψ1tν + Ψ2t2ν + · · ·

= 1 + sinν(yν)− tν

Γ(1 + ν)

[
sin3

ν(y
ν) + 4sin2

ν(y
ν)

+5sinν(yν) + n + · · ·

]

+
t2ν

Γ(1 + ν)Γ(1 + 2ν)


sin9

ν(y
ν) + 4sin8

ν(y
ν) + 9sin7

ν(y
ν)+

105sin6
ν(y

ν) + 123sin5
ν(y

ν) + 126sin4
ν(y

ν)

+166sin3
ν(y

ν) + 29sin2
ν(y

ν)− 3/4sinν(yν) + · · ·


+

t3ν

Γ(1 + ν)Γ(1 + 2ν)Γ(1 + 3ν)

[
sin27

ν (yν) + 10682sin26
ν (yν)

+269874sin25
ν (yν) + · · ·

]
+ · · ·

which is the series solution of the given local fractional Klein-Gordon
equation. The figures 4,5, 6 and 7 shows the physical interpretation of
ψ(y, t) corresponding to ν = 0.25, 0.5, 0.6289 and 1.

Figures here show the physical interpretation of ψ(y, t) vs. t
corresponding to a particular value of ν.

Figure 1 The figure illustrates Solution of Example 1 when ν =
log(2)/log(3) = 0.6309

Figure 2 The figure illustrates Solution of Example 2 when ν =
log(2)/log(3) = 0.6309

Figure 3 The figure illustrates Solution of Example 3 of ψ(y, t) vs.
time t when ν = log(2)/log(3) = 0.6309
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Figure 4 Example 4 when ν = 0.25

Figure 5 Example 4 when ν = 0.5

Figure 6 Example 4 when ν = 1

Figure 7 Example 4 when ν = log(2)/log(3)
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CONCLUSION

In this study, we have combined the fractional complex transform
with the local fractional differential transform method to analyze
the Klein-Gordon equations of n terms in cantor sets within the
local fractional differential operator and have tried to approximate
the solution of the same. Our results show that this method is
an effective mathematical tool for solving local fractional linear
differential equations. Furthermore, the versatility of this method
makes it highly adaptable to solving a wide range of fractional
differential equations. The examples are particular cases of the
proposed n-term Klein-Gordon equation, and their corresponding
corrected approximated solutions are presented along with their
graphs. Hence, we can conclude that the fractional complex trans-
form with the local fractional differential transform method is a
powerful and flexible approach to obtain effective approximate
solutions of local fractional partial differential equations.
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