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Adaptive Control of an Inverted Pendulum by a Reinforcement Learning-

based LQR Method 

 

 

Uğur YILDIRAN *1  

 

 

Abstract 

 

Inverted pendulums constitute one of the popular systems for benchmarking control algorithms. 

Several methods have been proposed for the control of this system, the majority of which rely 

on the availability of a mathematical model. However, deriving a mathematical model using 

physical parameters or system identification techniques requires manual effort. Moreover, the 

designed controllers may perform poorly if system parameters change. To mitigate these 

problems, recently, some studies used Reinforcement Learning (RL) based approaches for the 

control of inverted pendulum systems. Unfortunately, these methods suffer from slow 

convergence and local minimum problems. Moreover, they may require hyperparameter tuning 

which complicates the design process significantly. To alleviate these problems, the present 

study proposes an LQR-based RL method for adaptive balancing control of an inverted 

pendulum. As shown by numerical experiments, the algorithm stabilizes the system very fast 

without requiring a mathematical model or extensive hyperparameter tuning. In addition, it can 

adapt to parametric changes online. 

 

Keywords: Reinforcement learning, LQR, inverted pendulum, Q-learning, adaptive control 

 

1. INTRODUCTION 

 

An inverted pendulum is an underactuated 

system for which the goal is to stabilize a rod 

around the unstable equilibrium at the upright 

position. There are different variants of it such 

as single pendulum, double pendulum, the 

pendulum on a chart, and rotary pendulum 

[1]. This system constitutes one of the 

important benchmarks for control algorithms 

due to its instability and nonlinearity. 

Moreover, it is representative of some 

important real-life problems including human 

walking, rocket guidance, and balancing 

scooters.   
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Inverted pendulum systems have been 

extensively studied in the literature, and 

various control methods have been 

implemented to stabilize them. Linear output 

or state feedback methods, such as PID or 

LQR control, were applied in [2-4] while 

sliding mode control was used in [5] for 

robust stabilization. A fuzzy control 

algorithm was employed in [6], and a 

nonlinear Model Predictive Control approach 

was developed in [7]. Recently, an Active 

Disturbance Rejection strategy was proposed 

in [8]. Hybrid algorithms combining different 

methods were also explored in [1, 4, 9, 10]. 

Although these studies achieved stabilization 
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and satisfactory performance, they rely on a 

mathematical model of the system. Such 

models can be obtained by applying first 

principles or using system identification 

techniques. However, modeling is a time-

consuming task requiring human effort. 

Furthermore, derived models may not be 

valid if there are changes in the system over 

time, leading to performance degradations or 

instabilities.   

 

Motivated by these complications, some 

researchers employed Reinforcement 

Learning (RL) techniques for the control of 

inverted pendulum systems.  In [11], a batch 

reinforcement learning method was proposed 

for a wheeled pendulum robot. The 

underlying Q-learning algorithm is based on a 

finite Markov Decision Process (MDP) 

framework, which requires discretization of 

state and action spaces and represents the Q-

function in a tabular form. The paper [12] 

compared different RL algorithms applied to 

an inverted pendulum. Similarly, they 

approximate the continuous system as a finite 

MDP. Due to discretizations, the methods 

investigated in [11, 12] suffer from the well-

known curse of dimensionality problem.  

 

In the last years, another line of research tried 

to benefit from function approximations to 

alleviate the curse of dimensionality problem 

[13–16].  These papers utilized Deep Neural 

Networks (DNN) for representing actors and 

critics. Parameters of DNNs were updated 

through policy gradient algorithms to find the 

best Q-function approximation and policy 

corresponding to system dynamics and 

reward function. Although pendulums could 

be stabilized, training was too slow and took 

many episodes to converge. Moreover, it may 

be necessary to make many trials to set 

hyperparameters properly and get rid of local 

minima. Online adaptation also seems to be 

problematic due to these reasons.  

 

LQR is a well-known method for the optimal 

control of dynamic systems. The 

corresponding policy has a simple linear 

form, and the associated value function (also 

the Q-function) can be shown to be quadratic. 

Thus, for the LQR problem, the optimal actor 

and critic have simple forms [17]. This 

alleviates the need for using complex function 

approximations. Consequently, one can 

expect significant speed-ups in the training 

process. Moreover, hyperparameters of 

DNNs and their tuning can be eliminated. 

With this observation in mind, in [18], a 

simple and efficient LQR-based Q-learning 

algorithm was proposed. This approach 

gained significant interest very recently [19–

21].  

 

The LQR method was demonstrated to be 

successful in stabilization of inverted 

pendulum systems in past studies as 

mentioned above. Moreover, it is possible to 

devise an RL counterpart of this method for 

fast leaning-based control as discussed. 

Motivated by these facts, in the present study, 

an LQR-based RL algorithm is developed and 

implemented for optimal adaptive control of 

an inverted pendulum system. The algorithm 

is elaborated and its success is demonstrated 

by simulations.  

 

The paper is organized as follows. The 

inverted pendulum model is introduced in 

Section 2. The proposed LQR-based RL 

algorithm is described in Section 3. 

Simulation results verifying its stability, 

convergence, and adaptation capabilities are 

presented in Section 4. The main findings are 

discussed in Section 5.  

 

2. MATHEMATICAL MODEL 

 

The inverted pendulum system considered in 

this study is depicted in Figure 1. As can be 

seen from the figure, the system is composed 

of a chart and a pendulum attached to it. The 

mass of the pendulum, 𝑚, is represented as a 

point mass located at the end of the rod. Chart 

mass, chart position, and pendulum angle are 

denoted as 𝑀, 𝑦, and 𝜃, respectively. The 

force input is shown as 𝑢. Friction forces are 

neglected.  
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Figure 1 Inverted pendulum system 

 

The mathematical model of the system can be 

obtained by deriving associated Lagrangian 

equations. Since this procedure is well 

known, the details are skipped, and the final 

model is given below. The reader is referred 

to [3] for derivations.  

 

�̈� =
𝑢 cos 𝜃 − (𝑀 + 𝑚)𝑔 sin 𝜃 + 𝑚𝑙�̇�2 cos 𝜃 sin 𝜃

𝑚𝑙 cos2 𝜃 − (𝑀 + 𝑚)𝑙
 

 

�̈� =
𝑢 + 𝑚𝑙�̇�2 sin 𝜃 − 𝑚𝑔 sin 𝜃 cos 𝜃

𝑀 + 𝑚 − 𝑚 cos2 𝜃 
 

 

In the above, 𝑔 represents the gravitational 

constant. By defining the state vector as 𝑥 =

[𝜃, �̇�, 𝑦, �̇�], the state space model can be 

expressed as  

 

 

�̇�1 = 𝑥2

�̇�2 =
𝑢 cos 𝑥1 − (𝑀 + 𝑚)𝑔 sin 𝑥1

𝑚𝑙 cos2 𝑥1 − (𝑀 + 𝑚)𝑙

+
𝑚𝑙 𝑥2

2 cos 𝑥1 sin 𝑥1

𝑚𝑙 cos2 𝑥1 − (𝑀 + 𝑚)𝑙
�̇�3 = 𝑥4

�̇�4 =
𝑢 + 𝑚𝑙𝑥2

2 sin 𝑥1 − 𝑚𝑔 sin 𝑥1 cos 𝑥1

𝑀 + 𝑚 − 𝑚 cos2 𝑥1 

 

 

In this work, a discrete-time approach will be 

employed for the control of the inverted 

pendulum based on Q-learning. Thus, the 

state space model introduced above will be 

discretized for controller implementation. 

The Euler approximation method will be used 

for this purpose. The resulting system will 

have the following form  

 

𝑚 = 𝑥𝑡+1 = 𝑓𝑁(𝑥𝑡, 𝑢𝑡), 1 (1) 

 

where 𝑥𝑡 ∈ ℝ𝑛 and 𝑢𝑡 ∈ ℝ𝑚. For the inverted 

pendulum system considered, one has 𝑛 = 4 

and.  

 

3. PROBLEM FORMULATION 

 

The goal is to stabilize the system around the 

unstable equilibrium point at the upright 

position without performing a swing up. This 

stabilization region can be expressed as  

 

𝒮 = {𝑥𝑡 ∈ 𝑅𝑛|𝑋 ≤ 𝑥 ≤ 𝑋}, 
 

where 𝑋 and 𝑋 are vectors of lower and upper 

bounds in the state space such that the origin 

is contained in 𝒮. 

 

Since the RL algorithm will work in the 

vicinity of the equilibrium point 𝑥𝑡 = 0, the 

system can be represented well by the 

following discrete-time linear dynamics, 

which corresponds to the linearization of the 

nonlinear dynamics given in (1). 

 

𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡) = 𝐴𝑥𝑡 + 𝐵𝑢𝑡  

 

The stabilization problem can be formulated 

as a deterministic Markov Decision Process 

(MDP) with continuous state and action 

spaces. To be more specific, it can be 

represented by the tuple (𝒮, 𝒜, 𝑓, 𝑟, 𝛾). Here, 

𝒮 is the state set defined above, 𝒜 = ℝ is the 

action set, 𝑓 is the linear state equation 

introduced above, 𝑟(𝑥𝑡, 𝑢𝑡) = 𝑥𝑡
′𝑄𝑥𝑡 +

𝑢𝑡
′ 𝑅𝑢𝑡 is the quadratic reward function,  and 

γ is the discount factor.  

 

The associated reinforcement learning task is 

to find deterministic policy π: 𝒮 → 𝒜  

optimizing the following problem. 

  

min
π

∑ γ𝑡𝑟(𝑥𝑡, 𝑢𝑡)

∞

𝑡=0

 

s.t. 𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡) 

𝑢𝑡 = π(𝑥𝑡) 

(2) 

 

 

𝑚 

𝑙 

𝜃 

𝑢 𝑀 

𝑦 
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For the linear state equations and quadratic 

cost given above, and γ = 1, this becomes 

equivalent to the following Linear Quadratic 

Regulator (LQG) problem from control 

theory [22].  

 

  min
𝐾

∑ 𝑥𝑡
′𝑄𝑥𝑡 + 𝑢𝑡

′ 𝑅𝑢𝑡

∞

𝑡=0

 

 

s. t.   𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

 

𝑢𝑡 = 𝐾𝑥𝑡 

(3) 

 

Note that in the RL literature, the discount 

factor γ is usually chosen smaller than one in 

order to ensure having a finite objective value 

for an optimal solution. However, it is a very 

well-known fact that the optimal solution of 

(3) is finite for a system having controllable 

dynamics [17]. Thus, we chose safely γ = 1, 

which corresponds to the formulation 

commonly accepted in the control literature.   

 

The proposed algorithm will automatically 

learn the optimal state feedback gain 

corresponding to this problem by interacting 

with the system without making use of a 

mathematical model (i.e. system matrices 𝐴 

and 𝐵 will not be available). Learning will 

comprise episodes that will be repeated till 

achieving stabilization. Each episode 

terminates when the pendulum states get out 

of 𝒮. 

 

4. LQR-BASED Q-LEARNING 

ALGORITHM 
 

The proposed RL strategy is based on a Q-

learning method. In the sequel, firstly Q-

learning will be described. Then, its 

adaptation to LQR control will be introduced.  
 

4.1. Q-Learning Method 

 

Define the optimal infinite horizon value 

function associated with (2). 

 

V(𝑥𝑡) ≔ min
𝜋

∑ 𝛾𝜏𝑟(𝑥𝜏, 𝑢𝜏)

∞

𝜏=𝑡

 

 s. t.   𝑥𝜏+1 = 𝑓(𝑥𝜏, 𝑢𝜏) 

 

 𝑢𝜏 = π(𝑥𝜏) 

(4) 

The associated optimal Q-function (action-

value function) that gives the minimum total 

reward after taking action 𝑢𝑡 can be defined 

as  

 

𝒬(𝑥𝑡, 𝑢𝑡) ≔ 𝑟(𝑥𝑡, 𝑢𝑡) + 𝛾𝑉(𝑥𝑡+1) , (5) 

  

where 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡.  

 

The well-known Q-learning algorithm allows 

learning an optimal Q-function by interacting 

with the environment using the following 

update rule [17, 23]. 

  

𝒬(𝑥𝑡, 𝑢𝑡) ← (1 − 𝛼)𝒬(𝑥𝑡, 𝑢𝑡) +

𝛼 (𝑟(𝑥𝑡, 𝑢𝑡) + 𝛾 min
𝑢𝑡+1

[𝒬(𝑥𝑡+1, 𝑢𝑡+1)]), 

  

(6) 

where α is the learning rate, which should 

satisfy 0 ≤ α ≤ 1. This rule updates the Q-

function 𝒬 by taking a weighted average of its 

old value with the new target value appearing 

in the second term on the right-hand side (the 

term within the parentheses which is 

multiplied by α). In this way, it can calculate 

expectations for stochastic problems 

statistically by performing filtering (temporal 

difference method). But for deterministic 

problems, like the LQR problem considered 

in this study, the learning rate can be taken as 

α = 1 since there is no expectation.  

 

If the optimal Q-function is known, the 

desired optimal policy can be obtained by 

solving the following optimization problem 

 

π(𝑥𝑡) = argmin
𝑢𝑡

𝒬 (𝑥𝑡, 𝑢𝑡) 

 
(7) 

4.2. Q-learning for the LQR Problem  
 

As described in Section 3, for the LQR 

problem given in (3), the discount factor and 

learning rate can be taken as γ = 1 and α =
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1. Thus, the following simplified learning rule 

can be obtained from (6).  
 

𝒬(𝑥𝑡, 𝑢𝑡) ← 𝑟(𝑥𝑡, 𝑢𝑡) + 

min
𝑢𝑡+1

[𝒬(𝑥𝑡+1, 𝑢𝑡+1)]  (8) 

 

To be able to apply this update rule, one needs 

to choose a proper representation for the Q-

function. The simplest choice can be a tabular 

representation. It can be employed to 

approximate the Q-function by discretizing 

state and action spaces. But tabular 

representation makes the Q-learning 

algorithm impractical for high dimensional 

systems due to the curse of dimensionality 

problem. The space and time requirements 

grow exponentially with the number of 

dimensions.  

 

Fortunately, for the LQR problem formulated 

in (3), it is a well-known fact that the Q-

function can be expressed exactly as a 

quadratic function of state and action vectors 

without making any approximation [18]. In 

other words, it can be written in the following 

parametric form. 

 

𝒬(𝑥𝑡, 𝑢𝑡) = [
𝑥𝑡

𝑢𝑡
]

′

𝑀 [
𝑥𝑡

𝑢𝑡
] 

 

where, 𝑀 ∈ 𝑅(𝑛+𝑚)×(𝑛+𝑚) is the symmetric 

parameter matrix. Since 𝑀 is symmetric, it 

has (𝑛 + 𝑚 + 1) × (𝑛 + 𝑚)/2 free 

parameters. This is very small when 

compared with the memory requirements of a 

tabular representation, which can represent 

the Q-function only approximately.  

 

For the LQR problem, given the Q-function, 

one needs to obtain the corresponding policy 

by solving (7). This can be done conveniently 

using linear algebra techniques because the 

function 𝒬 is a quadratic function of the action 

𝑢𝑡. To this end, partition the parameter matrix 

𝑀 as follows. 

 

𝑀 = [
𝑀11 𝑀12

𝑀21 𝑀22
], 

 

where 𝑀11 ∈ ℝ𝑛×𝑛, (𝑀12)′ = 𝑀21 ∈ ℝ𝑚×𝑛, 

and 𝑀22 ∈ ℝ𝑚×𝑚. Then, it can be easily 

inferred that the 𝑢𝑡 minimizing (7) is attained 

at 𝑢𝑡 = 𝐾𝑥𝑡, where 𝐾 = 𝑀22
−1𝑀21.  

Consequently, the learning rule (8) can be 

written as 

 

𝒬(𝑥𝑡, 𝑢𝑡) ← 𝑟(𝑥𝑡, 𝑢𝑡) + 

[
𝑥𝑡+1

𝐾𝑥𝑡+1
]

′

𝑀 [
𝑥𝑡+1

𝐾𝑥𝑡+1
]  

(9) 

 

This identity will be employed to update the 

parameter matrix 𝑀 in the RL algorithm. To 

be more specific, the right-hand side of the 

equation will generate target values for the 

function 𝒬 based on state observations and 

rewards received from experiments. One 

option is to employ each target value 

generated immediately to update the matrix 𝑀 

using a gradient descent algorithm. But this 

method will bring an additional meta 

parameter, step-size, for which a proper value 

should be determined. In addition, gradient 

descent algorithm can hurt the stability of the 

overall system.  

 

To overcome these complications, in the 

present study, a batch learning type approach 

is employed. As the system interacts with the 

environment, 𝑛𝑠 samples will be generated 

from observations for states and inputs in 

addition to target values generated by the 

right-hand side of (9), which will be denoted 

as follows. 

 

State samples: 𝑥𝑠:𝑠+𝑛𝑠−1 =: (𝑥𝑠, … , 𝑥𝑠+𝑛𝑠−1), 

 

Input samples: 𝑢𝑠:𝑠+𝑛𝑠−1 =: (𝑢𝑠, … , 𝑢𝑠+𝑛𝑠−1), 

 

Target samples: 

𝑞𝑠:𝑠+𝑛𝑠−1
𝑡𝑎𝑟 ≔ (𝑞𝑠

𝑡𝑎𝑟 , … , 𝑞𝑠+𝑛𝑠−1
𝑡𝑎𝑟 ), 

 

where 𝑠 is the start of the sampling window.  

 

Then, these samples are used to construct the 

following set of equations whose solution 

gives the parameter matrix 𝑀 of the updated 

Q-function appearing on the left-hand side of 

(9). 
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[
𝑥τ

𝑢τ
]

′

𝑀 [
𝑥τ

𝑢τ
] = 𝑞τ

𝑡𝑎𝑟 , τ = 𝑠: 𝑠 + 𝑛𝑠 − 1 

 

Using matrix algebra, these equations can be 

expressed as  

 

vec(𝑀) ([
𝑥τ

𝑢τ
] ⊗ [

𝑥τ

𝑢τ
]) = 𝑞τ

𝑡𝑎𝑟 ,  

τ = 𝑠: 𝑠 + 𝑛𝑠 − 1, 
(10) 

 

where ⊗ represents the Kronecker product 

operator and vec(𝑀) is the row vector 

obtained by stacking the rows of matrix 𝑀 

horizontally.  

 

Clearly, (10) is a set of linear equations in 

elements of 𝑀. It is known that under an 𝜖-

greedy exploration strategy with large enough 

𝜖, they will be linearly independent [24]. 

Thus, one can find a unique solution by 

choosing 𝑛𝑠 ≥ (𝑛 + 𝑚 + 1) × (𝑛 + 𝑚)/2 

because the number of equations will be at 

least as much as the number of unknowns. 

The matrix 𝑀 can be found by solving the 

following least squares optimization problem.  

 

min
1

2
𝑒′𝑒

s. t. 𝐴 vec(𝑀)′ − 𝑏 = 𝑒,
 

 

where 𝐴 is the matrix whose rows are 

obtained by stacking the row vectors 
[𝑥τ

′ , 𝑢τ
′ ] ⊗ [𝑥τ

′ , 𝑢τ
′ ], τ = 𝑠: 𝑠 + 𝑛𝑠 − 1, and 𝑏 

is the column vector whose elements are 

𝑞τ
𝑡𝑎𝑟 , τ = 𝑠: 𝑠 + 𝑛𝑠 − 1. The solution is given 

by the following equation 

 

vec(𝑀)′ = (𝐴′𝐴)−1𝐴′𝑏. (11) 

 

4.3.Proposed Algorithm 
 

Making use of material presented in Section 

4.2, one can obtain the algorithm given in 

Figure 2.  

 

The algorithm starts by initializing state 

vector 𝑥0, matrix 𝑀, time index 𝑡 and sample 

window start time index 𝑠. The initial control 

gain is also computed in line 4 from the initial 

𝑀 matrix.  

This is followed by the while loop which is 

executed throughout the experiment. The loop 

is composed of three blocks.  

 

In the first block, one time step of the 

experiment is executed as follows. In line 6, 

the gain 𝐾 is multiplied by the state vector 𝑥𝑡 

and a random exploration noise ε is added to 

compute the input 𝑢𝑡 from the 𝜖-greedy 

policy. Then, reward and next state are 

calculated in lines 7 and 8 from the applied 

input 𝑢𝑡 and state observation 𝑥𝑡.  These are 

used in line 9 to obtain a target value for the 

𝒬 function. 

 

The second block of the loop is for updating 

the Q-function. More specifically, after every 

𝑛𝑠 iteration, the algorithm executes the body 

of the if statement. In this part, the new 𝑀 

matrix is computed by solving (11) making 

use of input, state, and reward observation 

collected in the last 𝑛𝑠 time steps.  

 

 
Figure 2 Proposed LQR-based Q-learning 

algorithm 
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The third part comprises two termination 

criteria. In the first one, if the state vector gets 

out of the state set 𝒮 defined by the lower 

bound 𝑋 and the upper bound 𝑋, it is reset to 

an initial position. Similarly, the second 

criterion checks whether the matrix 𝑀 

diverges. If the norm of 𝑀 gets larger than a 

chosen threshold 𝐻,  it is reset to an initial 

matrix.   

 

There are two functions, namely init_x and 

init_M, used in the algorithm to reset states 

and the parameter matrix 𝑀. Their 

pseudocodes are given below.  

 

 
 

init_x function returns a state whose value is 

close to the upright position. Here, rand() is a 

function that generates a uniformly 

distributed random number in the interval [-

0.5,0.5] while 𝜈 is a small constant value. This 

procedure represents a manual initialization 

of the pendulum by the operator to the upright 

position, which cannot be performed 

perfectly, resulting in deviations from the 

ideal state.  

 

init_M function returns a block diagonal 

matrix whose diagonal elements are 𝑄 and 𝑅. 

This matrix is multiplied by a scaling constant 

μ. This choice is observed to work well in 

general for several experiments.  

 

5. SIMULATION RESULTS 
 

The algorithm introduced in the previous 

section was applied to the nonlinear inverted 

pendulum system described in Section Hata! 

Başvuru kaynağı bulunamadı.. The model 

parameters were chosen as 𝑚 = 0.2 kg, 𝑀 =
0.5 kg, 𝑙 = 0.3 m, and 𝑔 = 9.8 m/s2. 

Quadratic cost matrices were chosen as  

 

𝑄 = [

100 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1

] ,   𝑅 = 1. 

 

The scaling factor used for initializing the 

matrix 𝑀 was taken as μ = 10, which was 

observed to work well in general. The 

constant used in init_x function was chosen as 

ν = 5 × 10−3. 

 

Two experiments were performed. In both, 

the proposed algorithm was applied to the 

nonlinear pendulum model, not to its 

linearization, for learning optimal controller 

gains stabilizing the system. To show how 

close the computed controllers are to ideal 

ones, the corresponding LQR gains were also 

calculated making use of the system matrices 

𝐴 and 𝐵 which were obtained by linearizing 

the model.  The results are elaborated below.  

 

In the first experiment, the Q-learning 

algorithm was run to learn controller 

parameters from scratch. The norm of the 

difference between the controller gain 

computed by the algorithm and the optimal 

gain obtained by linearization is shown in 

Figure 3. In addition, time evaluations of 

states and the input are depicted in Figure 4.   

 

 
Figure 3 The norm of the difference between 

feedback gains computed by the Q-learning (𝐾𝑄) 

and model based (𝐾𝐿𝑄𝑅) LQR methods 
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As can be seen from Figure 3, controller gains 

computed online by the Q-learning algorithm 

converged to optimal LQR gains, which were 

calculated by making use of the linearized 

model, after 50 seconds. This is achieved in 

two epochs, the second of which starts at 

t=4.73 seconds after peaks appearing in 

Figure 4.  These peaks occurred since the 

algorithm diverged in the first epoch after 

which the system is reset to start the second 

epoch. States converge to the desired value 

within 30 seconds starting from the beginning 

of the experiment and excluding the time for 

bringing the pendulum to the initial position 

after divergence, which should be performed 

manually in a real test bed. Note that the 

actual settling time of the optimal controller 

learned is much shorter than 30 seconds, and 

in fact, the same as that of the optimal model-

based LQR controller because their gains are 

practically the same. (the norm of their 

difference converged to zero as mentioned 

above). These gains are found to be  

 

𝐾 = [23.2855, 3.7400, 0.9185, 1.9712] 
 

To demonstrate the adaptation capabilities of 

the proposed algorithm, a second experiment 

was conducted. Starting with the optimal 

controller gains found by the algorithm at t=0 

seconds, a step change was applied to the 

model parameters. Specifically, at t=20 

seconds, the pendulum was assumed to have 

broken by being cut in half, which was 

reflected in the model by halving the length 

and mass of the pendulum. As before, time 

evaluations of state variables and the distance 

of learned gains from optimal ones computed 

by the model-based LQR method are given in 

Figure 5 and Figure 6, respectively.  

 

Figures show that controller gains and states 

converge rapidly (in around 10 seconds). This 

shows that the algorithm can adapt very 

quickly in response to even large parametric 

changes. Although controller gains initially 

exhibited large deviation as can be seen from 

Figure 6, states are affected to a small extent 

as can be observed from Figure 5. This can be 

attributed to well-known robustness 

properties of LQR-based controllers. 

Controller gains after convergence are found 

as  

 

𝐾 = [21.2353, 2.4408, 2.7611, 3.0821] 
 

 
Figure 4 Time evaluations of states and control 

inputs for the Q-learning-based LQR method 

 

As demonstrated by numerical experiments 

presented above, the devised LQR-based Q-

learning algorithm can learn optimal 

controller gains in a few numbers of epochs 

and in the time scale of seconds without 

requiring extensive hyperparameter tuning. In 

contrast, existing DNN-based RL methods for 

inverted pendulum control typically require 

hundreds of epochs to converge [14], [15]. 

Moreover, each epoch takes a much longer 

time to finish due to computationally 

intensive processes necessary for updating 

DNN parameters. This computational burden 

is compounded by the fact that multiple 

experiment repetitions are often necessary to 

tune hyperparameters. 
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Figure 5 Time evaluation of states under sudden 

changes in parameters 

 

 
Figure 6 The norm of the difference between 

feedback gains adapted by the Q-learning-based 

LQR method (𝐾𝑄) under parameter changes and 

the gains of the model-based LQR method 

(𝐾𝐿𝑄𝑅) obtained for new parameters 

 

 

6. CONCLUSIONS 

 

This study introduces a Q-learning-based 

LQR approach for balancing control of an 

inverted pendulum system. The proposed 

algorithm can learn the Q-function and 

optimal LQR controller gains without relying 

on a mathematical model. Instead, the 

algorithm can obtain optimal gains in real-

time by interacting with the system through 

applying control inputs. Moreover, it can 

quickly adapt to parametric changes, as 

evidenced by the experimental results. In 

comparison to existing alternatives in the 

literature, the devised method is much more 

computationally efficient and does not require 

a large number of experiments for 

hyperparameter tuning. 
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