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Abstract: An efficient way to describe multicurves (homotopy classes of finitely many essential simple 

closed curves) in an n-punctured non-orientable surface  𝑁𝑔 ,𝑛  (𝑔 > 1, 𝑛 ≥ 1) of genus 𝑔 with one 

boundary component is achieved by the generalized Dynnikov coordinate system. In the case where 𝑔 =
1 where the surface is, therefore, an 𝑛-punctured Möbius band, the generalized Dynnikov coordinate 

system gives a one-to-one map between the set of multicurves in 𝑁1,𝑛 and the set Z2n-1 \{0}. In this paper, 

we describe an algorithm for relaxing an arbitrary multicurve in 𝑁1,2  making use of generalized 

Dynnikov coordinates and the action of the mapping class group of  𝑁1,2  in terms of generalized 

Dynnikov coordinates. 
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1. Introduction 

Given a surface 𝑆, a simple closed curve in 𝑆 is called essential if it is not parallel to a puncture 

or a boundary component. When 𝑆 is non-orientable there are two types of essential simple closed curves 

in 𝑆. If a regular neighborhood of the curve is an annulus it is called 2-sided, and if it is a Möbius band 

it is called 1-sided. A multicurve in 𝑆 is a disjoint union of finitely many essential simple closed curves 

in S up to homotopy.  

A beautiful way to describe multicurves in 𝑁𝑔 ,𝑛  (𝑔 > 1, 𝑛 ≥ 1)  is achieved by the generalized 

Dynnikov coordinate system [9, 10]. In the case where 𝑔 = 1 where the surface is an 𝑛-punctured 

Möbius band, the generalized Dynnikov coordinate system gives a one-to-one map between the set of 

multicurves in 𝑁1,𝑛, and Z2n-1 \{0}. Let  ℒ1,𝑛 be the set of multicurves in 𝑁1,𝑛. In this paper we focus on 

a combinatorial problem regarding multicurves in N1,2. The problem is to improve a relaxation algorithm 

for a multicurve ℒ ∈ ℒ1,2. More precisely, we compute a mapping class 𝑓 (isotopy class of a 

homeomorphism) of 𝑁1,2  such that 𝑓(ℒ) is relaxed, a particular multicurve where each component is 

either the core curve of the Möbius band or a curve intersecting the horizontal diameter of  𝑁1,2    exactly 

twice. 

     Section 2 serves as a background to the paper which contains a short introduction to the 

generalized Dynnikov coordinates and a description of the mapping class group MCG(𝑁1,2). Section 3 

provides the necessary tools for Section 4 where an algorithm to relax a multicurve  

 ℒ ∈ ℒ1,2 is given.  
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2. Preliminaries 

2.1.    Generalized Dynnikov Coordinates 

      Consider the standard model of the 𝑛–punctured Möbius band 𝑁1,𝑛 as illustrated in Figure 1 

where the punctures and the crosscap are aligned in the horizontal diameter of 𝑁1,𝑛. Here the disk 

with a cross drawn within it represents the crosscap which is obtained by removing the interior of the 

disk and then identifying the antipodal points in the resulting boundary component. 

 

Consider the core curve 𝑐  of the crosscap together with the arcs 𝛼𝑖 (1 ≤ 𝑖 ≤ 2𝑛 − 2 ) and 

𝛽𝑖  (1 ≤ 𝑖 ≤ 𝑛) depicted in Figure 1. Take a representative 𝐿 of ℒ intersecting the core curve and each 

of these arcs minimally. We call 𝐿 a minimal representative of ℒ. For convenience, the number of 

intersections of  𝐿 with the core curve 𝑐 and each of the arcs 𝛼𝑖  and 𝛽𝑖 will also be denoted by the same 

symbols. We define the generalized Dynnikov coordinate function [9,10]  𝜌:  ℒ1,𝑛 → Z2n-1 \{0} by 

 

                        𝜌(ℒ) ≔ (𝑎; 𝑏; 𝑐) = (𝑎1, 𝑎2, … 𝑎𝑛−1; 𝑏1, 𝑏2, … , 𝑏𝑛−1; 𝑐) 

 where 

 

𝑎𝑖 =
𝛼2𝑖 − 𝛼2𝑖−1

2
,       1 ≤ i ≤ n-1, 

 (1) 

𝑏𝑖 =
𝛽𝑖 − 𝛽𝑖+1

2
,             1 ≤ i ≤ n-1 

The vector (𝛼; 𝛽; 𝑐) ∈ Z3n-1\{0} therefore the multicurve ℒ) can be obtained from the generalized 

Dynnikov coordinates (𝑎; 𝑏; 𝑐) ∈ Z2n-1
 \ {0}. Let 

𝛽𝑖
∗ = 2 max

1≤𝑟≤𝑛−1
{|𝑎𝑟| + max(𝑏𝑟,0) + ∑ 𝑏𝑗

𝑟−1

𝑗=1

} − 2 ∑ 𝑏𝑗

𝑖−1

𝑗=1

 

𝑅 = max(0, 𝑐 − 𝛽𝑛  
∗ /2)                                                          

       Then, 

 

(2)   𝛽𝑖  = 𝛽𝑖
∗  + 2𝑅                                                                                 

 
 

Figure 1. The core curve 𝑐 and the arcs 𝛼𝑖 , 𝛽𝑖  on 𝑁1,𝑛 
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(3) 

 

 

 

           

              

αi  =   

 

(−1)𝑖𝑎[ 𝑖 2⁄ ] +
𝛽[ 𝑖 2⁄ ]

2
         if 𝑏[ 𝑖 2⁄ ] ≥ 0,          

 

   (−1)𝑖𝑎[ 𝑖 2⁄ ] +
𝛽1+[ 𝑖 2⁄ ]

2
      if 𝑏[ 𝑖 2⁄ ] ≤ 0,             

 

where ⌈𝑥⌉ denotes the smallest integer which is not smaller than the value 𝑥. 

 

      This paper focuses on the case where n = 2. Therefore, the generalized Dynnikov coordinates 

of a multicurve ℒ are given by the vector (𝑎; 𝑏; 𝑐) ∈ Z3\{0}  where (𝛼; 𝛽; 𝑐) ∈ Z5\{0} can be obtained by 

the above formula. Remark 2.1 points out the geometric interpretation of the parameter R. 

    Remark 2.1. Observe that for any essential simple closed curve except for such as those depicted in 

Figure 2, we have either 𝛼1 − 𝑏 ≠ 0  or  𝛼2 − 𝑏 ≠ 0  otherwise, there would be curves parallel to the 

boundary component. The parameter 𝑅 counts the number of arcs of such curves which intersect 𝛼1, 𝛼2, 

and 𝑐 exactly once.  

 

Figure 2. Geometric interpretation of the parameter 𝑅 

2.2. Generators of MCG(N1,n) 

       The mapping class group MCG(𝑆) of a given surface 𝑆 is the group of isotopy classes of 

homeomorphisms of 𝑆 (homeomorphisms are orientation preserving when 𝑆 is orientable). The elements 

of MCG(𝑆) are called mapping classes of 𝑆.  In the case when 𝑆 = 𝑁1,𝑛 the mapping class group 

MCG(𝑁1,𝑛)  is generated by the braid generators 𝜎𝑖  (1 ≤ 𝑖 ≤ 𝑛 − 1) and the puncture slides 𝑣𝑖 (1 ≤

𝑖 ≤ 𝑛) [7]. The braid generator 𝜎𝑖 is a mapping class supported in a disk with two punctures exchanging 

puncture 𝑖 and 𝑖 + 1 in an anticlockwise manner and leaves the exterior of the disk invariant. Now 

cons ide r  a  Möbius  band  𝑀 wi th  a  punc tu re  𝑝.  The  punc tu re  s l i de  𝑣 pushes 𝑝 once 

along the core curve of 𝑀 fixing a neighborhood of the boundary of 𝑀. The effect of 𝜎𝑖  and the 𝑛-th 

puncture slide 𝑣𝑛 on the arcs 𝛽𝑖 and 𝛽𝑛 are shown in Figure 3. Due to the well-known relation [7]  𝑣𝑖 =

𝜎𝑖𝑣𝑖+1
𝜎𝑖

−1 each mapping class of MCG(𝑁1,𝑛) can be written as a sequence of braid generators 𝜎𝑖, 

the 𝑛-th puncture slide 𝑣𝑛, and their inverses. Therefore, each mapping class considered in this paper 

corresponds to a word where each letter belongs to the set {𝜎1, 𝜎1
−1, 𝑣2, 𝑣2

−1}. 
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               Figure 3.  The action of  𝜎𝑖 on 𝛽𝑖 and 𝑣𝑛  on 𝛽𝑛 

 

Definition 2.2. An essential simple closed curve 𝐶 ∈ ℒ1,2  is called relaxed if it satisfies one of the following: 

𝜌(𝐶) = (0; 1; 0)  or  𝜌(𝐶) = (0; −1; 0) or 𝐶 is the core curve of the crosscap as shown in Figure 4. 

 

It is always possible to transform an arbitrary curve in ℒ1,2   into one of the relaxed curves depicted 

in Figure 4. This process is known as the relaxation algorithm for multicurves. Before we give a 

relaxation algorithm for multicurves in 𝑁1,2 we present some necessary tools. 

     

                  

             Figure 4.   Relaxed curves in 𝑁1,2 

3. Tools for the Algorithm 

In this section, we provide some necessary tools to improve the relaxation algorithm in Section 4. 

3.1. Dynnikov Coordinates and the action of  MCG(𝑫𝟑) 

Removing the crosscap and the arcs 𝛼2𝑛−2, 𝛼2𝑛−3, and 𝛽𝑛 from the standard model for the 

generalized Dynnikov coordinate system depicted in Figure 1, we can construct the Dynnikov coordinate 

system for the 𝑛-punctured disk 𝐷𝑛 [3, 5].  For 𝑛 ≥ 3, Dynnikov coordinate system [3] provides a 

bijection 𝜌: ℒ𝑛 → Z2n-4\{0} from the set of multicurves  ℒ𝑛   in 𝐷𝑛  to Z2n-4\{0} given by   

 

                                            𝜌(ℒ) ≔ (𝑎; 𝑏) = (𝑎1, 𝑎2, … 𝑎𝑛−2; 𝑏1, 𝑏2, … , 𝑏𝑛−2) 

where 𝑎𝑖 and 𝑏𝑖 are as described in equations (1). Since MCG(𝐷𝑛)  is isomorphic to Artin’s braid 

group 𝐵𝑛  modulo its center [1] each mapping class of  𝐷3 can be written as a sequence of Artin’s braid 

generators 𝜎1, 𝜎2,  and their inverses. 𝐵𝑛 acts on ℒ𝑛 piecewise linearly and is described by the update 

rules in terms of the Dynnikov coordinates  [3, 4, 5, 6, 8]. Theorem 3.1 gives updated rules for 𝐵3. 

 Theorem 3.1 ( Update rules [6]). Let ℒ be a multicurve with 𝜌(ℒ) = (𝑎; 𝑏) ∈ Z2\{0}. Let 

  𝜌(𝜎𝑖(ℒ)) = (𝑎′; 𝑏′) and 𝜌(𝜎𝑖
−1(ℒ)) = (𝑎′; 𝑏′) .  Let  𝑥+ = max (0, 𝑥). Then 

• If 𝑖 = 1 then 
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𝑎′ = 𝑎 + 𝑏 − 𝑚𝑎𝑥 (0, 𝑎, 𝑏)𝑏′

= 𝑏+ − 𝑎 

 

• If 𝑖 = 2 then 

•                                 𝑎′ = max (𝑎 + 𝑏+, 𝑏) 

•                            𝑏′ = 𝑏 − 𝑎 − 𝑏+  

• If 𝑖 = 1 then 

                              𝑎′′ = max (0, 𝑎 + 𝑏+)-b                                         

                                  𝑏′′ = 𝑎 + 𝑏+ 

• If 𝑖 = 2 then 

•                                𝑎′′ = min (𝑎 − 𝑏+, −𝑏)  

𝑏′′ = 𝑎 + 𝑏 − 𝑏+ 

Next, we define a move of the algorithm that is only used when 𝑐 = 0. 

3 . 2 .  Blowdown Move  

This move blows down the crosscap to a point labeled 𝑝 and transforms a multicurve ℒ in 𝑁1,2 with 

generalized Dynnikov coordinates (𝑎; 𝑏; 0) ∈ Z3\{0} into the same multicurve in 𝐷3 which has hence Dynnikov 

coordinates (𝑎; 𝑏) ∈ Z2{0}. Suppose that the punctures are labeled 1, 2, and 3 from left to right. Then we say 

that 𝑝 is in position 3 or in crosscap position. 

 

                                                

Figure 5.   Blowdown move in 𝑁1,2 

4. Relaxation Algorithm 

  Let (𝑎; 𝑏) ∈ Z2\{0} (respectively (𝑎; 𝑏; 𝑐) ∈Z3\{0}) be the Dynnikov coordinates (respectively 

generalized Dynnikov coordinates) of a multicurve ℒ in 𝐷3 (respectively 𝑁1,2). We write (𝑎′; 𝑏′) ∈

 Z2\{0}  (respectively (𝑎′; 𝑏′; 𝑐′) ∈ Z3\{0} to denote the Dynnikov (respectively generalized Dynnikov 

coordinates) of 𝜙(ℒ) where 𝜙 is a generator of the mapping class group MCG(𝐷3) (respectively 

MCG(𝑁1,2)). Given a multicurve ℒ ∈ ℒ1,2  with generalized Dynnikov coordinates 𝜌(ℒ) = (𝑎; 𝑏; 𝑐) ∈ 

Z3\{0} the following algorithm finds a mapping class 𝑓 such that 𝑓(ℒ) is relaxed. 

 

Main Algorithm. If 𝑐 = 0  apply Algorithm 1 otherwise apply Algorithm 2. 

 

The following algorithm works for the case 𝑐 = 0. The algorithm works with the pair ((𝑎; 𝑏), 𝑝) 

where 𝑝 is the position of the labeled puncture 𝑝. 

Algorithm 1. Given ℒ ∈ ℒ1,2  let 𝜌(ℒ) = (𝑎; 𝑏; 0) ∈ Z3\{0}. 

Step 1: Apply Blow down move and replace (𝑎; 𝑏; 0) ∈ Z3\{0} with (𝑎; 𝑏) ∈ Z2\{0}   and 

     input  ((𝑎; 𝑏), 𝑝) to Step 2. 
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Step 2: If 𝑏 ≥ 0 let (𝑎′; 𝑏′) = 𝜌(𝜎1(ℒ)) if a > 0 and (𝑎′; 𝑏′)=𝜌(𝜎1
−1(ℒ)) if 𝑎 < 0. If a′ = 0 

input the pair ((𝑎′; 𝑏′), 𝑝) to Step 4: If 𝑎′ ≠ 0 and 𝑏′ ≥ 0 then input ((𝑎′; 𝑏′), 𝑝) to Step 2. 

Otherwise, input ((𝑎′; 𝑏′), 𝑝) to Step 3.  

Step 3:  If 𝑏 ≤ 0 let (𝑎′; 𝑏′)=𝜌(𝜎2(ℒ)) if a <0 and (𝑎′; 𝑏′)=𝜌(𝜎2
−1(ℒ)) if 𝑎 > 0. If a′ =0 

input ((𝑎′; 𝑏′), 𝑝) to Step 4: If 𝑎′ ≠ 0 and 𝑏′ ≤ 0  then input ((𝑎′; 𝑏′), 𝑝)  to Step 3.   

Otherwise, input ((𝑎′; 𝑏′), 𝑝) to Step 2. 

Step 4: Since 𝑎 = 0 then ℒ is relaxed. If 𝑝 ≠ 3 let 𝜌(𝜎1𝜎2𝜎1)(ℒ) = (𝑎′; 𝑏′) if  𝑝 = 1, and let 

𝜌(𝜎2)(ℒ) = (𝑎′; 𝑏′) if 𝑝 = 2. Then input ((𝑎′; 𝑏′), 𝑝) to Step 5. 

 

Step 5: Since 𝑎 = 0 and 𝑝 = 3  then ℒ is a relaxed curve in 𝐷3 with 𝑝 being in the crosscap 

position. Blow up 𝑝 to the crosscap to obtain a relaxed curve in 𝑁1,2. 

 

 The following algorithm works for case 𝑐 ≠ 0. 

Algorithm 2.  Given ℒ ∈ ℒ1,2 let 𝜌(ℒ) = (𝑎; 𝑏; 𝑐) ∈ Z3\{0}  such that 𝑐 ≠ 0. 

Step 1: If 𝑏 ≥ 0 let (𝑎′; 𝑏′) = 𝜌(𝜎1(ℒ)) if a > 0 and (𝑎′; 𝑏′)= 𝜌(𝜎1
−1(ℒ)) if 𝑎 < 0.   

 If a′ = 0 input (𝑎′; 𝑏′) to Step 3: If 𝑎′ ≠ 0 and 𝑏′ ≥ 0 then input (𝑎′; 𝑏′) to Step 1. 

Otherwise, input (𝑎′; 𝑏′) to Step 2.  

 

Step 2: If 𝑏 ≤ 0 let (𝑎′; 𝑏′) = 𝜌(𝑣2(ℒ)) if 𝑎 ≤ 0 and (𝑎′; 𝑏′) = 𝜌(𝑣2
−1( ℒ)) if  𝑎 ≥ 0.  

    If 𝑎′ = 0 and 𝑏′ = 0 input (𝑎′; 𝑏′) to Step 3: If 𝑏′ ≤ 0  then input (𝑎′; 𝑏′)  to Step 2. 

Otherwise, input (𝑎′; 𝑏′) to Step 1. 

 

Step 3: Since 𝑎 = 0,  ℒ is relaxed. Write the generators used in Step 1 and Step 3 in order 

to express the mapping class 𝑓 relaxing ℒ. 

 

Remark 4.1. We note that while Algorithm 2 has the advantage of computing the mapping class 

𝑓 relaxing an arbitrary multicurve ℒ, we do not have a tool to describe the action of a puncture slide in 

terms of generalized Dynnikov coordinates yet. 
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