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ABSTRACT 
 

The Human Development Index (HDI) measures the development of a country which was designed by the United Nations 

Development Programme (UNDP). Since the values of HDI for different countries show differences according to the 

development of a country, the distribution of HDI may have one more mode, thick tail or skewness. Therefore, we can use 

mixtures of distributions to model the HDI data set to handle modality, heavy-tailedness and/or skewness. In this study, we 

propose to model the data set from the HDI report 2015 for 188 countries with finite mixtures of distributions. We give the 

basic scheme of the maximum likelihood (ML) estimation using Expectation-Maximization (EM) algorithm for the finite 

mixture model. To obtain the best model for HDI data set, we first find the appropriate cluster number using model-based 

clustering. Then, we use the finite mixture models obtained from some symmetric and/or heavy-tailed and skew and/or heavy-

tailed distributions to find the best model for HDI data set. 
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1. INTRODUCTION 

 

The Human Development Index (HDI) is calculated for each country which was offered by United 

Nations Development Programme (UNDP) in UNDP reports 1990 [1]. This index is based on three 

essential dimensions of human development. The first one is to live a long and healthy life which was 

measured by average life at birth. The second one is the ability of being knowledgeable which was 

measured by mean years of schooling and expected years of schooling. The last one is the ability to have 

a properly standard of living which was measured by gross national income per capita. One can see the 

papers; [2-12] for more detailed explanations about the HDI. This index can be computed by taking the 

geometric mean of normalized indices for each of the three dimensions 

 

𝐻𝐷𝐼 = (𝐼𝐻𝑒𝑎𝑙𝑡ℎ. 𝐼𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛. 𝐼𝐼𝑛𝑐𝑜𝑚𝑒)
1 3⁄ , (1) 

 

where 𝐼𝐻𝑒𝑎𝑙𝑡ℎ, 𝐼𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 and 𝐼𝐼𝑛𝑐𝑜𝑚𝑒 show the health, education and income indices. For the details 

about computation of the HDI, see the Technical notes of HDI report 2015 [13]. Also, the range of HDI 

according to the development of countries is given in Table 1. The value of HDI is decreasing when the 

human development level is decreasing.  

 

Table 1. The range of HDI according to the development of countries 

 

The Development Level Range 

Very high human development 0.800 and above 

High human development 0.700-0.799 

Medium human development 0.550-0.699 

Low human development Below 0.550 
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Finite mixture models are dependent on a convex linear composition of a finite number of densities. 

These models are very popular for modeling and analyzing heterogeneous data sets in the presence of 

multimodality, skewness and heavy tails, concurrently. It is known that these models are a very powerful 

tool for supervised classification, unsupervised clustering, density estimation, pattern recognition, data 

mining, image analysis, machine learning etc. (see, [14-18]). 

 

Since the normal distribution has wide applicability and computational tractability, in general, the 

components in a mixture model have normal distribution. However, in many real-world applications, 

the component densities may have asymmetric behavior and heavy tails. To overcome these problems, 

there are some studies which include mixture modeling based on heavy-tailed and/or skew distributions. 

To deal with heavy-tailedness, mixture model based on t distribution was proposed by [19]. Then, [20] 

studied the mixture model using the skew normal (SN) distribution [21,22] to model the data sets 

including asymmetric observations. Furthermore, [23] introduced a robust mixture modeling based on 

the skew t (ST) distribution [24] to handle both skewness and heavy-tailedness in the data, [25] proposed 

finite mixture modeling using the scale mixtures of SN distributions, [26] introduced mixtures of the 

skew Student-t normal distributions and [27] proposed finite mixture modeling based on the skew 

Laplace normal distribution and applied in mixture regression modeling.  

 

In this paper, since the distribution of HDI may be multimode, heavy-tailed and/or skew, we consider 

to model the HDI data set using the finite mixtures of distributions which are some symmetric and/or 

heavy-tailed and skew and/or heavy-tailed distributions. We compare finite mixture model using the 

normal distribution, finite mixture model using the t distribution [16], finite mixture model using the 

skew normal distribution [20] and finite mixture model using the skew t distribution [23] for modeling 

the HDI data set. 

 

The paper is designed as follows. In Section 2, we define the finite mixture model and give the maximum 

likelihood (ML) estimation using the Expectation-Maximization (EM) algorithm of this model. In 

Section 3, we select the number of clusters using model-based clustering for HDI data set. In Section 4, 

we obtain the best model for HDI data set by comparing the mixture models based on normal, t, skew 

normal and skew t distributions in terms of the values of information criteria. We give some conclusions 

in Section 5. Finally, we also give some details about estimation procedures that used in this paper in 

Appendix Section.  

 

2. FINITE MIXTURES OF DISTRUBUTIONS 

 

Let 𝑦1, 𝑦2, … , 𝑦𝑛 be a random sample come from a 𝑔-component finite mixtures of distributions. Then, 

the probability density function (pdf) of this mixture model is  

𝑓(𝑦𝑗|𝚯) =∑𝑤𝑖

𝑔

𝑖=1

𝑓𝑖(𝑦𝑗; 𝜃𝑖) , 𝑥 ∈ ℝ, 
(2) 

where 𝑤𝑖 shows the mixing probability with ∑ 𝑤𝑖
𝑔
𝑖=1 = 1 , 0 ≤ 𝑤𝑖 ≤ 1, 𝑓𝑖(𝑦𝑗; 𝜃𝑖) is the pdf of the 𝑖𝑡ℎ 

component parameterized with 𝜃𝑖 and 𝚯 = (𝑤1, … , 𝑤𝑔−1, 𝜃1, … , 𝜃𝑔)′ is the unknown parameter vector. 

 

2.1. The ML Estimation of Finite Mixture Model 

 

In general, the ML estimation method is used to find the parameter estimators of the finite mixture 

model. The ML estimator of 𝚯 can be found by maximization of the following log-likelihood function 

with regard to the unknown parameter  
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ℓ(𝚯) =∑log(∑𝑤𝑖

𝑔

𝑖=1

𝑓𝑖(𝑦𝑗; 𝜃𝑖))

𝑛

𝑗=1

. (3) 

However, since there is not an explicit maximizer of the log-likelihood function, a numerical algorithm, 

for instance, the EM ([28]) algorithm should be used to obtain the estimators for the parameters of 

interest. Now, we will use the following EM algorithm to get the ML estimators. 

 

Let 𝒁𝑗 = (𝑍1𝑗, … , 𝑍𝑔𝑗)′ be the latent variables with 

𝑍𝑖𝑗 = {
1, 𝑖𝑓 𝑗𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑐𝑜𝑚𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4) 

where 𝑗 = 1,… , 𝑛 and 𝑖 = 1,… , 𝑔.  

 

Here, 𝒛 is regarded as missing data and 𝒚 is considered as observed data, where 𝒚 = (𝑦1, … , 𝑦𝑛) and 

𝒛 = (𝑧1, … , 𝑧𝑛). Let (𝒚, 𝒛) be the complete data. Then, the complete data log-likelihood function of 𝚯 

can be obtained as 

ℓ𝑐(𝚯; 𝒚, 𝒛) =∑∑𝑧𝑖𝑗

𝑔

𝑖=1

𝑛

𝑗=1

log (𝑤𝑖𝑓𝑖(𝑦𝑗; 𝜃𝑖)). 
(5) 

However, since 𝒛𝑗 is regarded as missing data, this function cannot be directly maximized to get the ML 

estimator of 𝚯. Thus, to handle the latency problem, we have to take the conditional expectation of the 

complete data log-likelihood function given the observed data 𝑦𝑗. This function will be as follows 

𝐸(ℓ𝑐(𝚯;𝒚, 𝒛)|𝑦𝑗) =∑∑𝐸(𝑍𝑖𝑗|𝑦𝑗)

𝑔

𝑖=1

𝑛

𝑗=1

log (𝑤𝑖𝑓𝑖(𝑦𝑗; 𝜃𝑖)). 
(6) 

Here, the conditional expectation 𝐸(𝑍𝑖𝑗|𝑦𝑗) can be calculated using the classical theory of mixture 

modeling.  

 

EM algorithm: 

 

1. Set starting point as 𝚯(0) and fix a stopping rule Δ. 

2. E-step: Calculate the conditional expectation �̂�𝑖𝑗
(𝑘)

 using the following equation for 𝑘 = 0,1,2,… 

iteration 

�̂�𝑖𝑗
(𝑘) = 𝐸(𝑍𝑖𝑗|𝑦𝑗, �̂�

(𝑘)) =
�̂�𝑖
(𝑘)𝑓𝑖 (𝑦𝑗; 𝜃𝑖

(𝑘))

𝑓(𝑦𝑗|�̂�
(𝑘))

  . 
(7) 

Then, we can form the objective function 𝑄(𝚯; �̂�(𝑘)) as 

𝑄(𝚯; �̂�(𝑘)) =∑∑�̂�𝑖𝑗
(𝑘)

𝑔

𝑖=1

𝑛

𝑗=1

log (𝑤𝑖𝑓𝑖(𝑦𝑗; 𝜃𝑖)) 
(8) 

3. M-step: To obtain the (𝑘 + 1)𝑡ℎ parameter estimate, maximize the 𝑄(𝚯; �̂�(𝑘)) with respect to 𝚯: 

 

𝜃(𝑘+1) = argmax
θ
𝑄(𝚯; �̂�(𝑘)). (9) 
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4. Repeat these E and M steps until the convergence criterion ‖�̂�(𝑘+1) − �̂�(𝑘)‖ < Δ is obtained. 

Alternatively, ‖ℓ(�̂�(𝑘+1)) − ℓ(�̂�(𝑘))‖ < Δ or ‖ℓ(�̂�(𝑘+1)) ℓ(�̂�(𝑘))⁄ − 1‖ < Δ can also be used as a 

stopping rule (see [29] for more detailed explanations). 

 

3. DETERMINING NUMBER OF COMPONENTS 

 

To find the number of components 𝑔 in a mixture model is a major problem. There are two commonly 

used techniques for choosing number of components which are information criteria and parametric 

bootstrapping of the likelihood ratio test statistic values for testing the following hypothesis 

 

𝐻0: 𝑔 = 𝑔0 
𝐻1: 𝑔 = 𝑔0 + 1 

where 𝑔0 ∈ 𝑍
+ [30].  

 

In this paper, we use package mclust [31-33] in R to select the number of components for the HDI data 

set. The best model can be obtained by using a statistical criteria for model selection after fitting models 

to the data set by the ML estimation method. The Bayesian Information Criterion (BIC) ([34]) is a model 

selection tool based on the maximized log-likelihood and a penalty term on the number of parameters 

in the model (see, [16,35] for more detailed explanations about model-based clustering). 

 

In Figure 1, we give the BIC values provided in the mclust for the equal and unequal variance model 

parameterization and up to 9 clusters for the HDI data set. Also, we display the classification plot from 

mclust in this figure. We can observe from Figure 1 that the best model is equal variance with two 

components in terms of BIC. Also, the other two model unequal variance with 2 and 3 components 

follows this model.  

 

 
Figure 1. Left: BIC for the equal (E) and unequal (V) variance model parameterization and up to 9 

clusters for the HDI data set. Right: The classification plot, all of the data is demonstrated at 

the bottom of the plot and the disjointed clusters displayed with different levels. 

 

The silhouette statistic proposed by [36] is another way to find the number of groups in the data. The 

average silhouette width is used to estimate the number of clusters by using the separation with two or 

more clusters that produce the maximum value of average silhouette width. In Figure 2, we display the 

mean silhouette value with 9 clusters for the HDI data set which is obtained from silhouette function in 
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MATLAB R2013a. We have also similar observation from this figure that optimal silhouette value is 

achieved when the component number is equal 2.  
 

 
 

Figure 2. Mean silhouette value for the HDI data set 
 

In summary, we draw a conclusion that there are two groups in the HDI data set according to the BIC 

plot and mean silhouette value. Now, in the Application Section, we take the component number as 2 

and perform all computations using this assumption.  

 

4. APPLICATION 

 

In this section, we will use the HDI data set which includes the HDI values of 188 countries from the 

HDI report 2015 [13]. The data set is given in Table 2 which consists of HDI values of very high, high, 

medium and low human development countries. We note that according to the Technical Notes of [13] 

there are four groups of development countries, see Table 1. However, we use model-based clustering 

and obtain two groups. The first group includes low and more than half of medium development 

countries. The second group contains the rest of the countries which are high and very high development 

countries and a part of medium development countries.   
 

Table 2. The HDI values of 188 countries 

 
0.944 0.935 0.930 0.923 0.922 0.916 0.916 0.915 0.913 0.913 0.912 0.910 

0.908 0.907 0.907 0.899 0.898 0.894 0.892 0.891 0.890 0.888 0.885 0.883 

0.880 0.876 0.873 0.870 0.865 0.861 0.856 0.850 0.850 0.845 0.844 0.843 

0.839 0.839 0.837 0.836 0.835 0.832 0.830 0.828 0.824 0.819 0.818 0.816 

0.802 0.798 0.798 0.793 0.793 0.793 0.790 0.788 0.785 0.783 0.782 0.780 

0.780 0.779 0.777 0.772 0.772 0.771 0.769 0.769 0.766 0.766 0.762 0.761 

0.757 0.756 0.755 0.754 0.752 0.751 0.750 0.748 0.747 0.747 0.736 0.734 

0.733 0.733 0.733 0.732 0.729 0.727 0.727 0.727 0.726 0.724 0.724 0.721 

0.720 0.720 0.719 0.717 0.715 0.715 0.714 0.706 0.702 0.698 0.693 0.690 

0.688 0.684 0.684 0.679 0.677 0.675 0.668 0.666 0.666 0.666 0.662 0.655 

0.654 0.646 0.640 0.636 0.631 0.628 0.628 0.627 0.624 0.609 0.606 0.605 

0.595 0.594 0.594 0.591 0.590 0.587 0.586 0.579 0.575 0.570 0.555 0.555 

0.548 0.548 0.538 0.536 0.532 0.531 0.521 0.514 0.512 0.510 0.509 0.506 

0.506 0.505 0.503 0.498 0.497 0.484 0.483 0.483 0.483 0.480 0.479 0.470 

0.467 0.466 0.465 0.462 0.445 0.442 0.441 0.433 0.430 0.420 0.419 0.416 

0.413 0.411 0.402 0.400 0.392 0.391 0.350 0.348     

 

We will attempt to determine the best model for the HDI data set by fitting mixtures of distributions. 

We will use finite mixture modeling using the normal distribution (MixN), finite mixture modeling 

using the t distribution (Mixt), finite mixture modeling using the skew normal distribution (MixSN) and 
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finite mixture modeling using the skew t distribution (MixST) for modeling the HDI data set. The 

comparison will be done using the values of the Akaike Information Criterion (AIC) [37], the Bayesian 

Information Criterion (BIC) [34], the Efficient Determination Criterion (EDC) [38] and the Integrated 

Completed Likelihood Criterion (ICL) [39]. AIC, BIC and EDC can be computed by using the following 

form 

−2ℓ(�̂�) + 𝑚𝑐𝑛 , 
 

where ℓ(∙) represents the maximized log-likelihood, 𝑚 is the number of free parameters to be estimated 

under the interested model and 𝑐𝑛 is the penalty term. Here, we use 𝑐𝑛 = 2 for AIC, 𝑐𝑛 = log(𝑛) for 

BIC and 𝑐𝑛 = 0.2√𝑛 for EDC. The ICL has the form 

 

−2ℓ∗(�̂�) + 𝑚 log𝑛 , 
 

where ℓ∗(∙) shows the integrated log-likelihood (see for more detail [25,40]).  

 

In Table 3, we give the estimation results for MixN, Mixt, MixSN and MixST. This table contains the 

estimates, standard errors (SE) of estimates, log-likelihood and values of AIC, BIC, EDC and ICL. We 

use package mixsmsn [41,42] in R to obtain these estimation results for MixN, Mixt, MixSN and 

MixST. We also display the histogram of the HDI data set with the fitted densities obtained from MixN, 

Mixt, MixSN and MixST in Figure 3. We can observe from these results that the weight of the first 

group is 0.2946 and location of the first group is 0.4958. Also, the weight of the second group is 0.7054 

and location of the second group is 0.7744. We can consider the dispersion of low-medium and medium-

high-very high development countries. We can see from the values of AIC, BIC, EDC and ICL that 

MixN has the smallest AIC, BIC, EDC and ICL values. Therefore, MixN gives the best fit for modeling 

the HDI data set. Since the data may not be skewed and heavy-tailed, the best-fitted model is MixN. 

This result may be changed after years when the HDI values of countries and development dispersion 

of countries are changed. 

 

Table 3. ML estimation results of the HDI data set for MixN, Mixt, MixSN and MixST 

 
 MixN Mixt MixSN MixST 

 Estimate SE Estimate SE Estimate SE Estimate SE 

𝑤1 0.7054 0.0578 0.6879 0.0624 0.7098 0.1272 0.7109 0.1339 

𝜇1 0.7744 0.0126 0.7783 0.0129 0.7491 1.1689 0.7524 1.1486 

𝜇2 0.4958 0.0185 0.5027 0.0198 0.5130 0.9188 0.5095 0.9749 

𝜎1 0.0932 0.0129 0.0902 0.0485 0.0970 0.2370 0.0958 0.2132 

𝜎2 0.0722 0.0143 0.0763 0.0490 0.0735 0.1821 0.0722 0.1671 

𝜆1 - - - - 0.3298 17.1100 0.2784 16.5003 

𝜆2 - - - - -0.3382 18.1117 -0.2780 18.8293 

𝜈 - - 100.0000 114.8168 - - 100.0000 111.2107 

ℓ(�̂�) 100.9591 101.8567 100.9169 101.6632 

AIC -191.9182 -191.7134 -187.8338 -187.3264 

BIC -175.7360 -175.5313 -165.1787 -164.6713 

EDC -188.2069 -188.0022 -182.6379 -182.1306 

ICL -154.7095 -153.3507 -144.2606 -143.3912 
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Figure 3. Histogram of the HDI data set with the fitted two component mixture densities obtained from 

MixN, Mixt, MixSN and MixST. 

 

5. CONCLUSIONS 

 

In this study, we have explored to model the HDI data set with the finite mixture models. We have given 

the general ML estimation concept of mixture model based on the EM algorithm. Then, we have chosen 

the cluster numbers using the model-based clustering. We have compared the finite mixture modeling 

using normal, t, skew normal and skew t distributions to find the best-fitted model for the HDI data set. 

We have observed from the estimation results that the finite mixture modeling using the normal 

distribution has the best fit for modeling the HDI data set. We also reason that the HDI data may not be 

skewed and heavy-tailed.  

 

Further, in literature, there exist some studies which include multimodal distributions. For instance, 

some of them are [43-50] etc. These proposed distributions can be used to model data sets which have 

modality. In our study, we propose to model HDI data set using the mixtures of distributions. Therefore, 

as a future study, this study can be extended to compare modeling capability of mixture models over 

these multimodal distributions.  
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APPENDIX 

 

In this part of the study, we consider the MixN, Mixt, MixSN and MixST for modeling the HDI data 

set. Therefore, we will give some details about these distributions and also the parameter estimations 

for these mixtures of distributions. 

 

 Let 𝑌 be a random variable from normal distribution with the following pdf 
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𝑓(𝑦; 𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒
−
(𝑦−𝜇)2

2𝜎2 ,   𝑦 ∈ ℝ, (10) 

 

where 𝜇 ∈ ℝ and 𝜎2 > 0 show the mean and variance.  

 

 Let 𝑌 be a random variable from Student’s t distribution with the following pdf 

 

𝑓(𝑦; 𝜇, 𝜎2, 𝜈) =
Γ (
𝜈 + 1
2 )

√𝜈𝜋Γ(
𝜈
2)
(1 +

(𝑦 − 𝜇)2

𝜎2𝜈
)

−
𝜈+1
2

,   𝑦 ∈ ℝ, (11) 

 

where 𝜇 ∈ ℝ is the location parameter, 𝜎2 > 0 is the scale parameter and 𝜈 > 0 is the degrees of 

freedom parameter. 

 

 Let 𝑌 be a random variable from skew normal distribution [21,22] with the following pdf 

 

𝑓(𝑦; 𝜇, 𝜎2, 𝜆) =
2

𝜎
𝜙 (
𝑦 − 𝜇

𝜎
)Φ(𝜆 (

𝑦 − 𝜇

𝜎
)) , 𝑦 ∈ ℝ, (12) 

 

where 𝜇 ∈ ℝ is the location parameter, 𝜎2 > 0 is the scale parameter and 𝜆 ∈ ℝ is the skewness 

parameter. Here, 𝜙(⋅) and Φ(⋅) denote the pdf of the standard normal distribution and the cumulative 

distribution function (cdf) of the standard normal distribution.  

 

 Let 𝑌 be a random variable from skew t distribution [24] with the following pdf 

 

𝑓(𝑦; 𝜇, 𝜎2, 𝜆, 𝜈) =
2

𝜎
𝑡𝜈(𝜂)𝑇𝜈+1(𝜆𝜂√

𝜈 + 1

𝜂2 + 𝜈
)   ,   𝜂 = (

𝑦 − 𝜇

𝜎
) ,   𝑦 ∈ ℝ, (13) 

 

where 𝜇 ∈ ℝ is the location parameter, 𝜎2 > 0 is the scale parameter, 𝜆 ∈ ℝ is the skewness parameter 

and 𝜈 > 0 is the degrees of freedom parameter. Here, 𝑡𝜈(⋅) and Tν(⋅) represent the pdf and the cdf of 

the Student’s t distribution with degrees of freedom 𝜈. 

 

Now, we will give the estimates for the mixtures of distributions that used in this study. 

 

Mixtures of normal distributions:  
 

When the distribution of components is normal distribution in the mixture model given in (2) with the 

parameter vector 𝚯 = (𝑤1, … , 𝑤𝑔−1, 𝜇1, … , 𝜇𝑔, 𝜎1
2, … , 𝜎𝑔

2)′, the parameter estimation for the mixtures of 

normal distributions is given with the following EM algorithm. 

 

EM algorithm: 

 

1. Take initial parameter estimate 𝚯(0) and a stopping rule Δ. 

2. E-step: Compute the following conditional expectation 
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�̂�𝑖𝑗
(𝑘)

= 𝐸(𝑍𝑖𝑗|𝑦𝑗 , �̂�
(𝑘)) =

�̂�𝑖
(𝑘)𝑓𝑖 (𝑦𝑗; �̂�𝑖

(𝑘), �̂�𝑖
2(𝑘))

∑ �̂�𝑖
(𝑘)
𝑓𝑖 (𝑦𝑗; �̂�𝑖

(𝑘)
, �̂�𝑖

2(𝑘)
)

𝑔
𝑖=1

 ∙ (14) 

 

where 𝑓𝑖(𝑦𝑗; 𝜇𝑖, 𝜎𝑖
2) is the pdf of the normal distribution given in (10). 

 

3. M-step: Update the following parameter estimates 

�̂�𝑖
(𝑘+1) =

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

𝑛
 , (15) 

�̂�𝑖
(𝑘+1) =

∑ �̂�𝑖𝑗
(𝑘)
𝑦𝑗

𝑛
𝑗=1

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

 , (16) 

�̂�𝑖
2(𝑘+1)

=
∑ �̂�𝑖𝑗

(𝑘)
(𝑦𝑗 − �̂�𝑖

(𝑘)
)
2

𝑛
𝑗=1

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

. (17) 

4. Repeat E and M steps until the convergence criteria ‖�̂�(𝑘+1) − �̂�(𝑘)‖ < Δ is obtained. 

 

Mixtures of t distributions:  

 

When the distribution of components is t distribution in the mixture model given in (2) with the 

parameter vector 𝚯 = (𝑤1, … , 𝑤𝑔−1, 𝜇1, … , 𝜇𝑔, 𝜎1
2, … , 𝜎𝑔

2, 𝜈1, … , 𝜈𝑔)′, the parameter estimation for the 

mixtures of t distributions can be obtained as follows. 

 

EM algorithm: 

 

1. Set initial parameter estimate 𝚯(0) and a stopping rule Δ. 

2. E-step: Calculate the following conditional expectations 

 

�̂�𝑖𝑗
(𝑘) = 𝐸(𝑍𝑖𝑗|𝑦𝑗 , �̂�

(𝑘)) =
�̂�𝑖
(𝑘)𝑓𝑖 (𝑦𝑗; �̂�𝑖

(𝑘), �̂�𝑖
2(𝑘), �̂�𝑖

(𝑘))

∑ �̂�𝑖
(𝑘)𝑓𝑖 (𝑦𝑗; �̂�𝑖

(𝑘), �̂�𝑖
2(𝑘), �̂�𝑖

(𝑘))
𝑔
𝑖=1

 , (18) 

�̂�1𝑖𝑗
(𝑘) = 𝐸(𝑈𝑗|𝑦𝑗 , �̂�

(𝑘)) =
𝑣𝑖
(𝑘) + 1

𝑣𝑖
(𝑘) + ((𝑦𝑗 − �̂�𝑖

(𝑘)) �̂�𝑖
(𝑘)⁄ )

2  , (19) 

�̂�2𝑖𝑗
(𝑘) = 𝐸(log(𝑈𝑗)|𝑦𝑗 , �̂�

(𝑘)) = 𝜓(
𝑣𝑖
(𝑘) + 1

2
) − log

(

 
1

2
(𝑣𝑖

(𝑘) +
(𝑦𝑗 − �̂�𝑖

(𝑘))
2

�̂�𝑖
2 )

)

 , (20) 

 

where 𝑓𝑖(𝑦𝑗; 𝜇𝑖, 𝜎𝑖
2, 𝜈𝑖) is the pdf of the t distribution given in (11) and 𝜓(⋅) shows the digamma function. 
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3. M-step: The maximization yields the following parameter estimates 

 

�̂�𝑖
(𝑘+1) =

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

𝑛
 , (21) 

�̂�𝑖
(𝑘+1)

=
∑ �̂�𝑖𝑗

(𝑘)
�̂�1𝑖𝑗
(𝑘)
𝑦𝑗

𝑛
𝑗=1

∑ �̂�𝑖𝑗
(𝑘)�̂�1𝑖𝑗

(𝑘)𝑛
𝑗=1

 , (22) 

�̂�𝑖
2(𝑘+1)

=
∑ �̂�𝑖𝑗

(𝑘)
�̂�1𝑖𝑗
(𝑘)
(𝑦𝑗 − �̂�𝑖

(𝑘)
)
2

𝑛
𝑗=1

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

. (23) 

Also, the parameter estimate for 𝜈 can be obtained by solving the following equation 

∑�̂�𝑖𝑗
(𝑘)
(−𝜓 (

𝜈𝑖
2
) + log (

𝜈𝑖
2
) + 1 + �̂�2𝑖

(𝑘)
− �̂�1𝑖

(𝑘)
)

𝑛

𝑖=1

= 0. (24) 

4. Repeat E and M steps until the convergence rule ‖�̂�(𝑘+1) − �̂�(𝑘)‖ < Δ is satisfied. 

 

Mixtures of skew normal distributions:  

 

When the distribution of components is skew normal distribution in the mixture model given in (2) with 

the parameter vector 𝚯 = (𝑤1, … , 𝑤𝑔−1, 𝜇1, … , 𝜇𝑔, 𝜎1
2, … , 𝜎𝑔

2, 𝜆1, … , 𝜆𝑔)′, the results about parameter 

estimation for the mixtures of skew normal distributions is summarized as follows. 

 

EM algorithm: 

 

1. Choose initial parameter estimate 𝚯(0) and a stopping rule Δ. 

2. E-step: Compute the following conditional expectations 

�̂�𝑖𝑗
(𝑘) = 𝐸(𝑍𝑖𝑗|𝑦𝑗, �̂�

(𝑘)) =
�̂�𝑖
(𝑘)𝑓𝑖 (𝑦𝑗; �̂�𝑖

(𝑘), �̂�𝑖
2(𝑘), �̂�𝑖

(𝑘))

∑ �̂�𝑖
(𝑘)𝑓𝑖 (𝑦𝑗; �̂�𝑖

(𝑘), �̂�𝑖
2(𝑘), �̂�𝑖

(𝑘))
𝑔
𝑖=1

 , (25) 

�̂�1𝑖𝑗
(𝑘)
= 𝐸(𝛾𝑗|𝑦𝑗 , �̂�

(𝑘) ) = 𝛿𝜆𝑖
(𝑘)
�̂�𝑖𝑗
(𝑘)
+√1 − 𝛿𝜆𝑖

2(𝑘)
𝜙 (�̂�𝑖

(𝑘)�̂�𝑖𝑗
(𝑘))

Φ(�̂�𝑖
(𝑘)�̂�𝑖𝑗

(𝑘))
  , (26) 

�̂�2𝑖𝑗
(𝑘) = 𝐸(𝛾𝑗

2|𝑦𝑗, �̂�
(𝑘) ) = 1 − 𝛿𝜆𝑖

2(𝑘) + 𝛿𝜆𝑖
(𝑘)�̂�𝑖𝑗

(𝑘)�̂�1𝑖𝑗
(𝑘)  , (27) 

where 𝑓𝑖(𝑦𝑗; 𝜇𝑖, 𝜎𝑖
2, 𝜆𝑖) is the pdf of the skew normal distribution given in (12), 𝛿𝜆𝑖

(𝑘) = �̂�𝑖
(𝑘) √1+ �̂�𝑖

2(𝑘)⁄  

and �̂�𝑖𝑗
(𝑘) =

(𝑦𝑗−�̂�𝑖
(𝑘)
)

�̂�𝑖
(𝑘) . 

 

3. M-step: Update the following parameter estimates 

 

�̂�𝑖
(𝑘+1) =

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

𝑛
 , (28) 
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�̂�𝑖
(𝑘+1)

=
∑ �̂�𝑖𝑗

(𝑘) (𝑦𝑗 − �̂�𝑖
(𝑘)�̂�1𝑖𝑗

(𝑘))𝑛
𝑗=1

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

 , (29) 

�̂�𝑖
(𝑘+1) =

∑ �̂�𝑖𝑗
(𝑘)
�̂�1𝑖𝑗
(𝑘)
(𝑦𝑗 − �̂�𝑖

(𝑘)
)𝑛

𝑗=1

∑ �̂�𝑖𝑗
(𝑘)
�̂�2𝑖𝑗
(𝑘)𝑛

𝑗=1

  , (30) 

�̂�𝑖
2(𝑘+1) =

1

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

∑�̂�𝑖𝑗
(𝑘)

𝑛

𝑗=1

((𝑦𝑗 − �̂�𝑖
(𝑘))

2
− 2�̂�𝑖

(𝑘)�̂�1𝑖𝑗
(𝑘) (𝑦𝑗 − �̂�𝑖

(𝑘)) + �̂�𝑖
2(𝑘)�̂�2𝑖𝑗

(𝑘)) (31) 

�̂�𝑖
2(𝑘+1)

= �̂�𝑖
2(𝑘+1)

+ �̂�𝑖
2(𝑘+1)

  , (32) 

�̂�𝑖
(𝑘+1)

 = 𝛿𝜆𝑖
(𝑘+1)

(1 − 𝛿𝜆𝑖
2(𝑘+1)

)
−1 2⁄

. (33) 

 

4. Repeat E and M steps until the convergence rule ‖�̂�(𝑘+1) − �̂�(𝑘)‖ < Δ is obtained. 

 

Mixtures of skew t distributions:  

 

If the distribution of components is skew t distribution in the mixture model given in (2) with the 

parameter vector 𝚯 = (𝑤1, … , 𝑤𝑔−1, 𝜇1, … , 𝜇𝑔, 𝜎1
2, … , 𝜎𝑔

2, 𝜆1, … , 𝜆𝑔, 𝜈1, … , 𝜈𝑔)′, the parameter 

estimation for the mixtures of skew t distributions will be given with the following EM algorithm. 

 

EM algorithm: 

 

1. Choose initial parameter estimate 𝚯(0) and a stopping rule Δ. 

2. E-step: Calculate the following conditional expectations 

 

�̂�𝑖𝑗
(𝑘) = 𝐸(𝑍𝑖𝑗|𝑦𝑗 , �̂�

(𝑘)) =
�̂�𝑖
(𝑘)𝑓𝑖 (𝑦𝑗; �̂�𝑖

(𝑘), �̂�𝑖
2(𝑘), �̂�𝑖

(𝑘), �̂�𝑖
(𝑘))

∑ �̂�𝑖
(𝑘)𝑓𝑖 (𝑦𝑗; �̂�𝑖

(𝑘), �̂�𝑖
2(𝑘), �̂�𝑖

(𝑘), �̂�𝑖
(𝑘))

𝑔
𝑖=1

 , (34) 

�̂�1𝑖𝑗
(𝑘) = 𝐸(𝑍𝑖𝑗𝜏𝑗|𝑦𝑗 , �̂�

(𝑘)) = �̂�𝑖𝑗
(𝑘)(

�̂�𝑖
(𝑘) + 1

�̂�𝑖𝑗
2(𝑘) + �̂�𝑖

(𝑘)
)

𝑇
�̂�𝑖
(𝑘)
+3
(�̂�𝑖𝑗

(𝑘)√
�̂�𝑖
(𝑘)
+ 3

�̂�𝑖
(𝑘) + 1

)

𝑇
�̂�𝑖
(𝑘)
+1
(�̂�𝑖𝑗

(𝑘))
  , 

(35) 

�̂�2𝑖𝑗
(𝑘) = 𝐸(𝑍𝑖𝑗𝛾𝑗𝜏𝑗|𝑦𝑗 , �̂�

(𝑘)) =
1

�̂�𝑖
(𝑘)
𝛿𝜆𝑖
(𝑘) (𝑦𝑗 − �̂�𝑖

(𝑘)) �̂�1𝑖𝑗
(𝑘)   

+�̂�𝑖𝑗
(𝑘)

√1 − 𝛿𝜆𝑖
2(𝑘)

𝜋�̂�𝑖
(𝑘)𝑓(𝑦𝑗)

(𝑘)
(

�̂�𝑖𝑗
2(𝑘)

�̂�𝑖
(𝑘) (1 − 𝛿𝜆𝑖

2(𝑘))
+ 1)

−(
�̂�𝑖
(𝑘)

2
+1)

 , 
(36) 
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�̂�3𝑖𝑗
(𝑘) = 𝐸(𝑍𝑖𝑗𝛾𝑗

2𝜏𝑗|𝑦𝑗, �̂�
(𝑘)) = 𝛿𝜆𝑖

2(𝑘) (
𝑦𝑗 − �̂�𝑖

(𝑘)

�̂�𝑖
(𝑘)

)

2

�̂�1𝑖𝑗
(𝑘) + �̂�𝑖𝑗

(𝑘)
{(1 − 𝛿𝜆𝑖

2(𝑘))  

+
𝛿𝜆𝑖
(𝑘)
(𝑦𝑗 − �̂�𝑖

(𝑘)
)√1 − 𝛿𝜆𝑖

2(𝑘)

𝜋�̂�𝑖
2(𝑘)

𝑓(𝑦𝑗)
(𝑘)

(
�̂�𝑖𝑗
2(𝑘)

�̂�𝑖
(𝑘)
(1 − 𝛿𝜆𝑖

2(𝑘)
)
+ 1)

−(
�̂�𝑖
(𝑘)

2
+1)

}
 
 

 
 

, (37) 

�̂�4𝑖𝑗
(𝑘)

= 𝐸(𝑍𝑖𝑗log(𝜏𝑗)|𝑦𝑗, �̂�
(𝑘)) = �̂�𝑖𝑗

(𝑘)
{𝜓 (

�̂�𝑖
(𝑘)
+ 1

2
) − log(

�̂�𝑖𝑗
2(𝑘)

+ �̂�𝑖
(𝑘)

2
)  

+(
�̂�𝑖
(𝑘)
+ 1

�̂�𝑖𝑗
2(𝑘) + �̂�𝑖

(𝑘)
)

(

 
 
 
 𝑇�̂�𝑖

(𝑘)
+3
(�̂�𝑖

(𝑘)
�̂�𝑖𝑗
(𝑘)
√

�̂�𝑖
(𝑘) + 3

�̂�𝑖𝑗
2(𝑘)

+ �̂�𝑖
(𝑘))

𝑇
�̂�𝑖
(𝑘)
+1
(�̂�𝑖

(𝑘)
�̂�𝑖𝑗
(𝑘)
√

�̂�𝑖
(𝑘) + 1

�̂�𝑖𝑗
2(𝑘) + �̂�𝑖

(𝑘))

− 1

)

 
 
 
 

  

+
�̂�𝑖
(𝑘)
�̂�𝑖𝑗
(𝑘)
(�̂�𝑖𝑗

2(𝑘)
− 1)

√(�̂�𝑖
(𝑘)
+ 1) (�̂�𝑖𝑗

2(𝑘)
+ �̂�𝑖

(𝑘)
)
3

𝑡
�̂�𝑖
(𝑘)
+1
(�̂�𝑖

(𝑘)�̂�𝑖𝑗
(𝑘)
√

�̂�𝑖
(𝑘) + 1

�̂�𝑖𝑗
2(𝑘) + �̂�𝑖

(𝑘))

𝑇
�̂�𝑖
(𝑘)
+1
(�̂�𝑖

(𝑘)�̂�𝑖𝑗
(𝑘)
√

�̂�𝑖
(𝑘) + 1

�̂�𝑖𝑗
2(𝑘)

+ �̂�𝑖
(𝑘))

  

+
1

𝑇
�̂�𝑖
(𝑘)+1

(�̂�𝑖
(𝑘)�̂�𝑖𝑗

(𝑘)
√

�̂�𝑖
(𝑘) + 1

�̂�𝑖𝑗
2(𝑘) + �̂�𝑖

(𝑘))

∫ 𝑔
�̂�𝑖
(𝑘)(𝑥)𝑡

�̂�𝑖
(𝑘)
+1
(𝑥)𝑑𝑥

�̂�𝑖𝑗
(𝑘)

−∞

}
  
 

  
 

, (38) 

 

where 𝑓𝑖(𝑦𝑗; 𝜇𝑖, 𝜎𝑖
2, 𝜆𝑖, 𝜈𝑖) is the pdf of the skew t distribution given in (13) and 

 

 𝛿𝜆𝑖
(𝑘) = �̂�𝑖

(𝑘) √1+ �̂�𝑖
2(𝑘)⁄ , �̂�𝑖𝑗

(𝑘) =
(𝑦𝑗−�̂�𝑖

(𝑘)
)

�̂�𝑖
(𝑘) , �̂�𝑖𝑗

(𝑘) = �̂�𝑖
(𝑘)
�̂�𝑖𝑗
(𝑘)
√

�̂�𝑖
(𝑘)

�̂�𝑖𝑗
2(𝑘)

+�̂�𝑖
(𝑘) ,  

𝑓(𝑦𝑗)
(𝑘)

= ∑ �̂�𝑖
(𝑘)𝑔

𝑖=1
2

�̂�𝑖
(𝑘) 𝑡�̂�𝑖

(𝑘) (�̂�𝑖𝑗
(𝑘))𝑇

�̂�𝑖
(𝑘)+1

(�̂�𝑖𝑗
(𝑘))  ,  

𝑔
�̂�𝑖
(𝑘)(𝑥) = 𝜓 (

�̂�𝑖
(𝑘)
+2

2
) − 𝜓 (

�̂�𝑖
(𝑘)
+1

2
) − log(1 +

𝑥2

�̂�𝑖
(𝑘)
+1
) +

𝑥2(�̂�𝑖
(𝑘)
+1)−�̂�𝑖

(𝑘)
−1

(�̂�𝑖
(𝑘)
+1)(�̂�𝑖

(𝑘)
+1+𝑥2)

 .  
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3. M-step: Update the following parameter estimates 

 

�̂�𝑖
(𝑘+1) =

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

𝑛
 , (39) 

�̂�𝑖
(𝑘+1)

=
∑ (�̂�1𝑖𝑗

(𝑘)
𝑦𝑗 − �̂�𝑖

(𝑘)
�̂�2𝑖𝑗
(𝑘)
)𝑛

𝑗=1

∑ �̂�1𝑖𝑗
(𝑘)𝑛

𝑗=1

 , (40) 

�̂�𝑖
(𝑘+1)

=
∑ �̂�2𝑖𝑗

(𝑘) (𝑦𝑗 − �̂�𝑖
(𝑘))𝑛

𝑗=1

∑ �̂�3𝑖𝑗
(𝑘)𝑛

𝑗=1

  , (41) 

�̂�𝑖
2(𝑘+1)

=
1

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

∑�̂�1𝑖𝑗
(𝑘)
(𝑦𝑗 − �̂�𝑖

(𝑘)
)
2
− 2�̂�𝑖

(𝑘)
�̂�2𝑖𝑗
(𝑘)
(𝑦𝑗 − �̂�𝑖

(𝑘)
)

𝑛

𝑗=1

+ �̂�𝑖
2(𝑘)

�̂�3𝑖𝑗
(𝑘)
 , (42) 

�̂�𝑖
2(𝑘+1)

= �̂�𝑖
2(𝑘+1)

+ �̂�𝑖
2(𝑘+1)

  , (43) 

�̂�𝑖
(𝑘+1)

 = 𝛿𝜆𝑖
(𝑘+1)

(1 − 𝛿𝜆𝑖
2(𝑘+1)

)
−1 2⁄

. (44) 

Also, the parameter estimate for 𝜈𝑖 can be found by solving the following equation 

−𝜓(
𝜈𝑖
2
) + log (

𝜈𝑖
2
) + 1 +

∑ (�̂�4𝑖𝑗
(𝑘)
− �̂�1𝑖𝑗

(𝑘)
)𝑛

𝑗=1

∑ �̂�𝑖𝑗
(𝑘)𝑛

𝑗=1

= 0. (45) 

 

4. Repeat E and M steps until the convergence criterion ‖�̂�(𝑘+1) − �̂�(𝑘)‖ < Δ is obtained. 
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