
Turkish Journal of Science & Technology                     Research Paper                                                                                                                            
18(2), 387-395, 2023                                  https://doi.org/10.55525/tjst.1287092 

 
An Analysis Tool for Cryptographic Designs Based on Chaotic Systems  

 
Yılmaz AYDIN1*, Fatih ÖZKAYNAK2 

1*1Department of Software Engineering, Faculty of Engineering, Firat University, Elazig, Turkey 
2  Department of Software Engineering, Faculty of Technology, Firat University, Elazig, Turkey 

1* y.aydin@firat.edu.tr , 2 ozkaynak@firat.edu.tr 
 

 (Geliş/Received: 24/04/2023;                                                                               Kabul/Accepted: 18/08/2023) 

 
Abstract: Chaos-based cryptography research is one of the application areas for chaotic systems. Numerous design studies 
have been put up that take use of the connection between chaos and cryptography. This study has demonstrated how to exploit 
this relationship to decrypt cryptography designs. It has been looked at if chaos analysis techniques may be used to analyze 
cryptography protocols. The effectiveness of random number generators has been evaluated using Lyapunov exponents, a chaos 
analysis technique. The findings of the investigation demonstrated that Lyapunov exponents can be utilized as a standard in 
assessing random number generators. The paper highlights the issues with the NIST test suite, a popular method of analysis for 
assessing the statistical characteristics of random number generators. These issues have been seen to not exist with the new test 
tool that has been suggested. These findings demonstrate that the suggested strategy can be successfully applied in a variety of 
future applications. 
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Kaotik Sistemler Tabanlı Kriptografik Tasarımlar için Bir Analiz Aracı  
 
Öz: Kaos tabanlı kriptografi araştırmaları, kaotik sistemlerin uygulama alanlarından biridir. Kaos ve kriptografi arasındaki 
bağlantıdan yararlanan çok sayıda tasarım çalışması yapılmıştır. Bu çalışma, kriptografi tasarımlarının şifresini çözmek için bu 
ilişkinin nasıl kullanılacağını göstermiştir. Kriptografi protokollerini analiz etmek için kaos analiz tekniklerinin kullanılıp 
kullanılamayacağına bakılmıştır. Rastgele sayı üreteçlerinin etkinliği, bir kaos analizi tekniği olan Lyapunov üstelleri 
kullanılarak değerlendirilmiştir. Araştırmanın bulguları, Lyapunov üstellerinin rasgele sayı üreteçlerini değerlendirmede bir 
standart olarak kullanılabileceğini göstermiştir. Makale, rasgele sayı üreteçlerinin istatistiksel özelliklerini değerlendirmek için 
popüler bir analiz yöntemi olan NIST test takımıyla ilgili sorunları vurgulamaktadır. Önerilen yeni test aracı ile bu sorunların 
olmadığı görülmüştür. Bu bulgular, önerilen stratejinin gelecekteki çeşitli uygulamalarda başarıyla uygulanabileceğini 
göstermektedir. 
 
Anahtar kelimeler: Kaos, kriptografi, Lyapunov Üsleri, Rastgele sayılar 
 

1. Introduction 
The main purpose of science and engineering studies is to understand real world systems and to use these results 
for the benefit of mankind. During these studies, chaos theory became increasingly important. Because this 
phenomenon is needed to understand the logic of real world events. Therefore, chaos theory has started to find its 
place in many applications [1]. One of the most common practical applications is the design of chaos based 
encryption systems [2]. In the simplest expression, chaos theory is defined as the randomness of a deterministic 
system. In other words, despite the fact that real world events are mathematical models, they contain an 
unpredictable randomness. This exciting relationship is the fundamental phenomenon desired in the cryptographic 
system design process [3]. A cryptographic protocol is an algorithm. However, this algorithm should provide two 
basic requirements, called confusion and diffusion. Chaos based cryptography studies have become increasingly 
popular among researchers over the last two decades, since chaotic systems have both a mathematical model and 
the randomness properties will provide confusion and diffusion requirements [4]. 
This close relationship between chaos theory and cryptography science has been used in the design process. 
In other words, chaotic systems have been used as an entropy source and this entropy source has been transformed 
into cryptographic primitives such as image encryption schema [2, 5, 6, 7, 8], hash functions [9, 10], s-box designs 
[11, 12] and key generators with the help of a protocol [13-17]. Again, random numbers and bits have been 
generated with FPGA using chaos-based maps in studies in the literature [18-20].  
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When the common aspects of these cryptographic primitive studies are examined, it is seen that the hypotheses of 
the researchers are based on the fact that the complexity of the entropy source contributes to the design of the 
cryptographic primitive. In other words, it is claimed that there is a strong relationship between the complexity of 
the chaotic system used as an entropy source and the robustness of the cryptographic protocols [2, 3, 4]. 
This study approaches this theory from a different angle. It has been looked at if chaos analysis techniques may 
be used to analyze cryptography protocols. The work tries to prove the notion that chaos analysis methods can be 
used to evaluate the quality of these cryptographic protocols if the complexity of the chaotic system employed in 
the protocol design contributes positively to it. This notion was tested in this study using cryptographic random 
number generators. 
Random number generators used in cryptography have been evaluated for quality using Lyapunov exponents, a 
chaos analysis technique. The findings of the investigation demonstrated that Lyapunov exponents can be utilized 
as a standard in assessing random number generators. These findings supported the putative idea. It has also 
demonstrated that it might offer a different way to handle issues when testing the statistical characteristics of 
applications that require short length sequences, particularly cryptographic key generators. 
The remainder of the research is structured as follows. In the second section, it was briefly described how to 
calculate the Lyapunov exponents for a dataset using chaos analysis methods. The design architecture of the chaos-
based random number generator is described in the third section. alternative datasets for three alternative initial 
circumstances and control parameter values of the chaotic system employed in the generator have been obtained, 
and they are presented in this section. The system exhibits periodic, chaotic, and optimally chaotic behavior for 
the chosen initial circumstances and control parameters. Results of the randomness test and Lyapunov analyses 
for various datasets are presented in the fourth section. The link between the results of the two investigations 
demonstrates that the purported hypothesis is accurate. The final section includes a summary of the findings and 
recommendations for additional research. 

2. Materials & Methods 

2.1. Chaos Analysis with Lyapunov Exponents 
Since chaotic behavior is an important characteristic, many researchers want to examine the existence of chaos in 
their systems [21, 22]. In this process, methods such as phase space portrait, power spectrum, Poincare mapping 
bifurcation diagram have been some of the most common methods used to determine chaotic behavior. However, 
the common point of these methods is that they are qualitative approaches. In other words, there is a need for an 
expert to interpret and evaluate the results. The chaos analysis method known as Lyapunov exponents has become 
more popular than others because it is a quantitative approach [22]. 
The idea that fixed (invariant) exponents could be used to determine the stability states of the sets of differential 
equations of nonlinear dynamic systems was first shown by Sonya Kovalevskaya in 1889. Following the 
introduction of this hypothesis, it was based on theoretical foundations by Alexandr Mikhailovich Lyapunov. In 
the Lyapunov study, he explained only the basics of his thoughts about the change of trajectories of a dynamic 
system (as a function of time) with Lyapunov exponents. The reliance of chaotic systems on their initial 
circumstances and control settings serves as the foundation for chaos analysis utilizing Lyapunov exponents. 
Chaos analysis can be done by relocating the orbits away from one another or by allowing them to converge in 
situations where a chaotic system is formed from two very close neighboring beginning conditions. A 
mathematical technique that gauges this separation between adjacent orbits is the use of Lyapunov exponents. 
Lyapunov exponentials are likened to eigenvalues used in linear systems [21, 22]. 
Lyapunov exponents can be calculated for continuous time system, discrete time systems and time series obtained 
from experimental or simulation results. Sensitivity to the initial conditions of a dynamic system is measured by 
Lyapunov exponents. Firstly, two trajectories have been determined with very close initial conditions on an 
attractor. If the attractor is showing chaotic behavior, the orbits are divided on an exponential rate, characterized 
by the largest Lyapunov exponent. The detection of a positive Lyapunov exponential is sufficient for the existence 
of chaos and indicates instability in a particular direction. 
The TISEAN 3.0.0 package will be used for the calculation of Lyapunov exponents [23]. There are two different 
algorithms to make the calculations using the program. These algorithms have been developed by Rosenstein and 
Kantz. These algorithms are coded as lyap_r and lyap_k in the program respectively. It has been shown to give 
similar results in both lyap_r and lyap_k. It is stated that the small differences that can be neglected in the 
calculations are due to various calculation parameters such as embedding time, embedding delay, iteration number 
etc. The calculations in the fourth section are realized by using Kant algorithm (lyap_k). 
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2.2. Chaos Based Random Number Generator 
An overview of the chaos-based random number generator that will be employed in the investigation is shown in 
Figure 1 [24]. The chaotic system has been utilized as an entropy source, as seen in Figure 1. The outputs of a 
chaotic system are computed for the chosen beginning conditions and control settings. The output values of the 
calculation are subjected to a threshold value function. Eq. (1) contains the thresholding function's mathematical 
model. The chaotic system outputs are converted to 0 or 1 values via this function. The resultant bit sequence 
was broken up into blocks of 8 bits each and transformed into values between 0 and 255.

 

Figure 1. Overview of the chaos based random number generator 
 

                                                                                                                                      (1) 
The logistic map [22] has been used as the chaotic system in the study. The reason for choosing the logistics map 
is its simple structure. The simple structure will contribute to the faster operation of the generator. The 
mathematical model of the logistic map is given in Eq. (2). The map has only one initial condition and one control 
parameter. 

                                                                                                                                  (2) 
The pseudocode is included in Table 1 so that readers can better comprehend how the suggested algorithm 
functions as a random number generator.  
The complexity of the entropy source (the chaotic system) is the fundamental tenet of chaos-based cryptography 
schemes. In other words, the quality of the random numbers will be higher in more complicated chaotic systems. 
Twelve different 1,000,00 lengths datasets have been generated using the proposed algorithm in the Table 1. 
Different initial conditions and control parameters have been used to obtain twelve different datasets.  
Figure 2 shows the bifurcation diagram of the logistic map. As can be seen in Figure 2, when the control parameter 
𝑎 is set to between 0 and 3.5, the system shows periodic behavior. That is, when 𝑎 value is selected in this range, 
the resulting logistic map outputs cannot be converted to random numbers by the proposed algorithm. Because 
values are not chaotic. The first six dataset used in the analyzes has been obtained for 𝒶=3.0, 𝒶=3.1, 𝒶=3.2, 𝒶=3.3, 
𝒶=3.4 , 𝒶=3.3 and 𝓍0=0.3. 
When 𝒶 value between 3.5 and 4 is selected, the resulting logistic maps outputs can be converted to random 
numbers. Because, as can be seen from the bifurcation diagram, the outputs are unpredictable. The five dataset 
used in the study has been obtained in this direction 𝒶 =3.6, 𝒶 =3,7, 𝒶=3.8 , 𝒶=3.9 and 𝒶=4.0 and 𝓍0=0.3. When 
generating these dataset 𝓍0=0.3 is selected randomly. The initial value is fixed to be consistent in all datasets.
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Table 1. Chaos Based Random Number Generator. 

Algorithm Chaos Based Random Number Generator 
Input  𝓍0 : initial condition of logistic map 

 𝒶  : control parameter of logistic map 
𝓃 : length of sequence  

Output 𝓃 -length sequence values ranging from 0-255 
 
rng_sequence[1:n] 
xold = x 0 

  
for i in 1000 
     xnew = a * xold* (1-xold) 
end 
for j in n 
  value=””     
  for k in 8 
    xnew = a * xold* (1-xold) 
    value=value+convert_str (fthreshold(xnew)) 
  end for 
  rng_sequence[j]= convert_decimal (value) 
end for 
return rng_sequence 

 

 
Figure 2. Bifurcation diagram of logistic maps 

 

The final dataset illustrates the connection between chaos and randomness using optimization strategies. The best 
values for 𝒶  and 𝓍0 are looked at first. With the assistance of the differential evaluation optimization procedure, 
𝒶 and 𝓍0 values have been established. In this direction, the last dataset has been obtained for 𝒶=4 and 
𝓍0=0.444369092261707. 

3. Results 
Randomness is related to probability, so that the properties of the random sequence can be defined as probabilistic. 
There are many statistical tests to evaluate the probabilistic properties of random numbers. These tests are used in 
the process of identifying samples that will ensure that the sequence is random.  
Because there are many statistical tests, a generator that passes all tests cannot even say randomly. Because there 
is a possibility that the generator will fail for a new test. Therefore, the results of statistical tests should be 
interpreted well. 
In order for a value to be defined random, it must be arbitrarily selected from the sequence and the values must be 
uniformly distributed.  
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However, when the distribution of a non-random sequence is examined, it does not seem to have a uniform 
distribution. Therefore, the probability distribution of the sequence is examined to test the randomness. 
One of the simplest approaches to assess the randomness of a generator is the chi-square test. This test analyzes 
whether the data is uniformly distributed. If 𝑚 random data is generated from the values between 0 and 𝑛, then it 
is expected that each value will be 𝑚/𝑛 units for the ideal situation. The chi-square values are calculated using 
Eq. (3). 
 
  Χ!" = ∑ ($!%&!)"

&!
                                                                                                                               (3) 

 
If the calculated chi-square value is smaller than the confidence values determined for the degree of freedom, the 
data may be random. 16 different values ranging from 0 to 15 are produced using RNG, therefore the degree of 
freedom is 16. The confidence values for this degree of freedom are given in Table 2.  
 

Table 2. Confidence values for degree of freedom 16 
DF 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.002 0.001 
16 20.465 23.542 26.296 28.845 29.633 32.000 34.267 37.146 39.252 

 
Calculated chi-square values for twelve different random sequences are given in Figure 3. The number of observed 
data from each value is given in Figure 4. 
 

 
Figure 3. Chi-Square Values for Random Sequences 

 

 
Figure 4. The Number of Observed Data from Each Value 
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The most widely used statistical test package is NIST tests [25]. This analysis method, published as a test package, 
is accepted as the standard in many studies. There are 15 tests in NIST test package. These tests are “Monobit test, 
Frequency within block test, Runs_test, Longest run ones in a block test, Binary matrix rank test, Dft test, Non 
overlapping template matching test, Overlapping template matching test, Maurers universal test, Linear 
complexity test, Serial test, Approximate entropy test, Cumulative sums test, Random excursion test, Random 
excursion variant test”.  
NIST test results for twelve different dataset are given in Figure 5 and Figure 6. The S and F symbols in the figure 
indicate successful and unsuccessful test results, respectively. P symbol is the calculated probability value of the 
test. The test results revealed some problems of the NIST test package. The logistic map output values are periodic 
for control parameter less than 3.5. The periodicity of output of logistic map can be observed both in the bifurcation 
diagram in Figure 2 and in the distribution of numbers in Figure 4. However,  NIST test results for random 
sequences generated for a = 3.3 and a = 3.4, are better than the sequences generated for a = 3.6, a=3.7, a=3.8, 
a=3.9. In other words, according to NIST test results, the values produced from periodic data are more random 
than the values produced from chaotic data. However, it is understood from the data distribution in Figure 4 that 
this claim is invalid. This indicates that the NIST test package cannot be used for analysis alone. 

 
Figure 5. Nist Test Results For Twelve Different Dataset Part 1 

 

 
Figure 6. Nist Test Results For Twelve Different Dataset Part 2 
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Table 3 shows the calculated Lyapunov exponential values for the outputs obtained by converting the chaotic 
system outputs to random numbers. 
 

Table 3. Lyapunov Exponents For Rng Sequences 
Name of Dataset Lyapunov exponents 
a=3 and x0=0.3 does not compute 
a=3.1 and x0=0.3 does not compute 
a=3.2 and x0=0.3 does not compute 
a=3.2 and x0=0.3 does not compute 
a=3.4 and x0=0.3 does not compute 
a=3.5 and x0=0.3 does not compute 
a=3.6 and x0=0.3 0.23337 
a=3.7 and x0=0.3 0.23397 
a=3.8 and x0=0.3 0.26141 
a=3.9 and x0=0.3 0.29167 
a=4 and x0=0.3 0.30655 
Optimum values 0.37462 

 
The analysis has been shown that the NIST test results and the Lyapunov exponents calculated for both raw chaotic 
data outputs and random number sequence have been consistent. Another statement that the calculated Lyapunov 
exponential for a random number sequence is positive can be used as an indicator for the cryptographic quality of 
the generator. 

4. Discussion 
In the literature, it is seen that various statistical tests are used in the evaluation of many new chaos based 
cryptography proposals. The approaches such as histogram analysis, NPCR, UACI, and correlation analysis are 
used almost as standard in the analysis of image encryption algorithms. However, cryptanalysis studies in the 
literature have shown that many designs that pass these tests can be easily broken [26-31]. That is, these 
cryptanalysis have repeatedly shown that statistical analysis are necessary but not sufficient for the evaluation of 
chaos based designs. Therefore, new testing tools are needed to make more detailed assessments. 
An important statistical analysis is known to be the NIST statistical randomness test suite. This analysis is seen as 
an important criterion in the evaluation of chaos based RNG studies. However, the analysis results in the section 
3 showed that random numbers produced from non-chaotic data may show better statistical characteristics than 
random numbers produced from chaotic data. This is a significant disadvantage of the NIST test. The presence of 
a similar problem is shown on both monobit and chi-square tests. 
Another problem with the NIST test suite is the number of bits required to perform the tests. 1000000 bits are 
required to evaluate the statistical properties of the generator. This is a very large number for cryptography 
applications. Because it is often taken into account that the generators are used in the key planning algorithm of 
cryptographic design, short length bit sequences like 256 bits (AES) or 1024 bits (RSA) are needed. 
It has been revealed that these problems can be eliminated by the proposed new analysis method. The analysis 
results can be interpreted as follows.  

• Whether it is produced from periodic or chaotic data, it has been shown to have negative Lyapunov 
implications if the generated sequence do not meet the randomness requirements. 

• The fact that the Lyapunov exponents can be calculated in short-length sequences has eliminated the 
1000000-bit requirement problem. 

• The simplicity of the calculations increases the applicability of the method. 

5. Conclusions 
Theoretically, cryptography and chaos have a close link. The two fields' primary traits are similar to one another. 
The creation of new cryptographic protocols has always taken advantage of this tight link. This study has 
demonstrated how to exploit this relationship to decrypt chaos-based encryption schemes. The generated data can 
be used as a key or seed value in similar chaos-based encryption algorithms [32]. 
To be considered secure, a cryptographic design is assumed to meet the conditions for confusion and dispersion.  
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According to some, the Lyapunov exponential can be used to measure these criteria. An analytical tool for 
quantifying chaos is the Lyapunov exponent. Given the connection between chaos and cryptography, it has been 
proposed that mixing and diffusion requirements can be verified by the presence of chaos. 
This study has demonstrated that Lyapunov exponents can be used to examine random number generators. The 
successful analytical results supported the potential of the suggested approach to serve as a test tool for 
cryptography design. It has also been demonstrated that a number of issues with the NIST test suite can be fixed. 
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