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Abstract

Given Banach algebras A, B and a continuous homomorphism 6 : B — A with [|0]| < 1,
we obtain characterization of spectrum, homomorphisms and multipliers of A xy B, which
is a strongly splitting Banach algebra extension of B by A. Also we characterize the
semisimplicity of these algebras.
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1. Introduction

Let A and B be Banach algebras and ¢ : B — C be a multiplicative linear functional.
Then the direct product A x B equipped with the algebra multiplication

(a,b)(u,v) = (au + ¢(b)u + ¢(v)a,bv),  (a,b),(u,v) € Ax B,

and with the I'-norm is a Banach algebra which is called the Lau product of A and B and
is denoted by A x4 B.

This type of product was introduced by Lau [9] for certain class of Banach algebras and
was extended by Sangani Monfared [11] for the general case.

If we allow ¢ = 0, then we obtain the usual direct product of Banach algebras, and
when B = C and ¢ : C — C is the identity map, A x4 C coincides with the unitization
of A.

Some basic properties of A x4 B such as characterization of Gelfand space, topological
center, amenability, ideal structure and minimal idempotent are investigated in [11]. Also,
characterization of multipliers of these product discussed in [3] and [14]. Additionally,
many Banach algebras properties of A x4 B are studied in [1], [6], [8], [10], [13], for
example.

Bhatt and Dabhi in [2] introduced a new type of Lau product. Let # : B — A be a
continuous homomorphism between Banach algebras with [|]| < 1. Then A x B with the
multiplication

(a,b)(u,v) = (au+ 0(b)u + ab(v), bv),

and with the I'-norm turns into a Banach algebra, which is denoted by A x¢ B.
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The product A x¢ B provides not only new examples in Banach algebras by themselves,
but also it has the potential to serve as counter-examples in different branches of functional
and harmonic analysis.

Let A(A) be the set of all multiplicative linear functionals on Banach algebra A. Note
that every ¢ € A(A) is continuous and [|¢]| < 1, [5]. When A is unital with identity e
and ¢ € A(B), then 6 : B — A defined by 6(b) = ¢(b)e4 is a continuous homomorphism
with [|@|| < 1. Therefore in this case the Lau product coincides with A x4y B.

We remark that in A x¢ B, we identify A x {0} with A and {0} x B with B. Then A
is a closed ideal while B is a closed subalgebra of A xy B, and (A xg B)/A is isometric
isomorphism with B.

Spelitting of Banach algebra extensions has been a major tool in the study of Banach
algebras. For example, module extensions as generalizations of Banach algebras extensions
where introduced and studied by Gourdeau [7]. On the other hand, A x¢ B is a strongly
splitting Banach algebra extension of B by A that exhibits many properties that are not
shared, in general, by arbitrary strongly splitting extensions. For example, commutativity
is not preserved by a general strongly splitting extension. However, A Xy B is commutative
if and only if both A and B are commutative, [11, Proposition 2.3].

Let X be an A-bimodule, Y be an B-bimodule and 6 : B — A be a homomorphism.
We say that 0 : Y — X is a right (left) f-module homomorphism if for all b € B and
yey,

olby) = 60)oy),  (o(wb) = ow)A).
In particular, if X = A and Y = B, then o is called right (left) #-multiplier. It is clear
that each multiplier is a special case of a #-multiplier with 8 = id, the identity map on A.

Example 1.1. Let

0 a b
A=<¢10 0 c¢|: a,bceCy,,
0 0O
and define 0,0 : A — A by
0 a b 0 0 a 0 a b 0 a O
6110 0 ¢|] =10 0 Of, o]0 0O ¢||=1]0 0 ¢
0 0O 0 0O 0 0O 0 0O

Then, for all x,y € A,
o(zy) = 0(z)o(y) = o(z)0(y).

Therefore o is a 0-multiplier.

The purpose of the present paper is to investigate the spectrum, homomorphisms and
multipliers for Banach algebras induced by Lau product of Banach algebras defined by a
Banach algebra morphism.

Throughout the paper, we assume that A and B are Banach algebras and § : B — A
is a continuous homomorphism with ||6|| < 1.

2. Spectrum of Lau product
The spectrum of an element a € A is defined as
Spa(a) ={AeC: Xesa—a¢ Inv(A)},

where Inv(A) is the set of all invertible elements of A, and the spectral radius r4(a) of an
element a is defined as r4(a) = sup{|A\|: A € Spa(a)}.

It should be note that if A is not unital, then Spa(a) = Sp4:(a), where A* stands the
unitization of A, [12].
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Theorem 2.1. Let A and B be unital Banach algebras. Then
Inv(A x¢g B) =2 Inv(A) x Inv(B),  (homeomorphism). (2.1)
Proof. Let e4 and ep be unit of A and B, respectively. Then (e4 —6(ep), ep) is the unit
element of A xy B. Define
h:Inv(A) x Inv(B) — Inv(A x¢ B),

by h(a,b) = (a — 0(b),b). Let a € Inv(A) and b € Inv(B), then there exists u € A and
v € B such that au = e4 and bv = eg. So

(a—0(b),b)(u—0(v),v) = (au — 6(bv),bv) = (ea — 0(eR), eR).

Therefore (a — 6(b), b) has a right inverse.

Similarly, (a — 6(b),b) has a left inverse and thus h is well-defined. It is easy to check
that A is linear and one to one.

Suppose that (a,b) € Inv(A xg B). Hence there exist (u,v) € Inv(A xg B) such that

(au+ 0(b)u + ab(v),bv) = (a,b)(u,v) = (ea — O(ep), eR). (2.2)

It follows from (2.2) that bv = ep and
au~+ 0(b)u+ab(v) =es —b(ep) = ea — 6(bv).
Therefore
au~+ 0(b)u + ab(v) + 6(bv) = ea.

Since

(a+0())(u+0(v)) =au+0(0b)u+ab(v)+6(bv) = e,
hence a + 6(b) and b have right inverse in A and B, respectively. Similarly, a + 6(b) and b
have left inverse in A and B, respectively. Thus, a + 0(b) € Inv(A), b € Inv(B) and

h(a+6(b),b) = (a+0(b) — 0(b),b) = (a,b).
This means that h is surjective. For (a,b) € Inv(A) x Inv(B), we have
[7(a, b)|| = [[(a — 6(b), )]
= lla—6(b)[| + o]
< llall + |0]l[|o]l + (b
< L+ o1) (lall -+ (lof)-

Therefore, ||h|| < 2 and h is continuous. Similarly, A~ is continuous. This finishes the
proof. ]

Our next result concerns the spectrum in A xy B.
Theorem 2.2. For Banach algebras A and B, we have
Spax,p(a,b) = Spa(a+6(b)) U Spp(b). (2.3)
Proof. 1t is enough to show that
Spax,p(a,b) = Spa(a+6(b)) U Spp(b),

when A and B are unital.
Let A ¢ Spa(a) U Spp(b). Then Xeg —a € Inv(A) and Aep — b € Inv(A). Hence by
Theorem 2.1, we get

(Aea —a—0(Xep —b), \ep — b) € Inv(A x¢ B), (2.4)
which yields that

Aea —0(ep),ep) — (a— 0(b),b) € Inv(A x¢ B).
Therefore, A ¢ Spax,p(a — 0(b),b).
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Now suppose that A ¢ Spa(a+ (b)) U Spp(b). Then by the above argument,
A ¢ Spaxyp(a+0(b) —0(b),b) = Spax,s(a,b).
This means that
SpaxyB(a,b) € Spa(a+0(b)) USps(b).
For the converse, let A ¢ Spax,B(a,b). Then
Aea —0(ep),ep) — (a,b) € Inv(A xg B). (2.5)
But
Aea —0(e),e) — (a,b) = (Aea — N0(ep) — a, Aep — b)
= (Nea — N(eg) —a+ Nd(eg) — 0(b) — O(Nep — b), e — D)
= (Nea — (a+0(b) — 0(hep — b), e — b).
It follows from (2.5) and the above equality that
deg — (a+6(b)) € Inv(A), and Mep —b e Inv(B).
Consequently, A ¢ Spa(a +60(b)) and A\ ¢ Spp(b). Thus,
Spala+06(b)) USpp(b) € Spax,s(a,b).
This completes the proof. 0

The next corollary appeared in [4, Lemma 2.5] for commutative Banach algebras. Here
as a consequence of Theorem 2.2, we deduce it for the general case.

Corollary 2.3. Let A and B be Banach algebras. Then
rAx,B(a,b) = max{ra(a+6(b)),rp(b)}.

3. Homomorphisms of Lau product

In this section, we assume that F and F' are Banach algebras, and 0 € Hom(F, E) with
llo|| <1, where Hom(F, E) denotes the set of all homomorphisms from F' into E.

Let pa : Axg B — A and pp : A X9 B — B be the usual projections which are
defined by pa(a,b) = a and pgp(a,b) = b, respectively.

Recall that an A-bimodule X is called left (right) faithful if the condition ax = 0
(xa = 0) for € X implies that x = 0. The Banach algebra A is faithful, if it is faithful
as an A-bimodule over itself.

Theorem 3.1. Suppose that
fiirA—E, fo:B—F f:AXxyB— E X/, F,
where f = (f1opa, faopp). Then,
(i) If f € Hom(A x¢ B, E X, F), then fi € Hom(A, E) and fo € Hom(B, F).

(ii) If f1 € Hom(A,E) and fo € Hom(B, F), fi1 is surjective and E is faithful, then
f€ Hom(A xg B,E X, F) if and only if 0 o fo = f106.

Proof. (i) Suppose that f € Hom(A x¢g B, E X, F), then for all (a,b), (u,v) € A Xy B,
f((a,0)(u,v)) = f(a,b)f(u,v). (3.1)
By using f = (f1 o pa, f2 0 pp) we get
f((a,b)(u,v)) = fau+ 0(b)u + ab(v), bv)
= (f1(au) + f1(0(b)u) + f1(ab(v)), f2(bv)).
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On the other hand,

fa; ) f(u,0) = (fi(a), f2(0))(f1(w), f2(v))
= (fi(@)fi(u) + o (f2(0)) fr(u) + fi(a)o(f2(v)), f2(b) fa(v)).
Hence by the above two equalities and (3.1), we have fa(bv) = fa(b) f2(v) and
filau) + f1(0(b)u) + fi(ab(v)) = fr(a)fi(u) + o(f2(0) fr(u) + fila)o(fa(v)).  (3.2)

By taking b = v = 0 in (3.2), we conclude that fi(au) = fi(a)fi(u) for all a,u € A. Thus,
f1 and fo are homomorphisms.

(ii) Assume that fi € Hom(A, E), fo € Hom(B,F) and let f: A xyg B — E X, F be
a homomorphism. Then by the equality (3.2),

J1(0(0)) fr(w) + f1(a) f1(6(v)) = o(f2(b)) f1(u) + fi(a)o(fa(v))- (3.3)

If we take a = 0 in (3.3), we obtain
(f1(6(0)) = o(f2(b))) fr(u) =0, u€ AbeB.
Since fy is surjective and FE is faithful, we get o o fo = f1 0. The converse is similar. [
If F=F =C and ¢ : C — C is the identity map, then we get the following result.
Corollary 3.2. Let
fi:A—C, f,:B—C, f:Ax¢gB— C?
where f = (f1opa, faopp). Then,
() If f € Hom(A x¢ B,C?), then f1 € A(A) and fo € A(B).

(ii) If 0 # f1 € A(A) and fo € A(B), then f € Hom(A xg B,C?) if and only if
fo=fi100.

It should be pointed out that the topology of A(A) is the induced weak* topology from
A*, the dual space of A. Note that A(A) is a locally compact Hausdorff space and it is
compact, whether A is unital, [5].

It is shown in [11, Proposition 2.4] that if A and B are commutative and 6 € A(B),
then A(A x9 B) = EUF, where

E={(6.0): ¢ €AA)}, and F={(0,0): v A(B)}.

The following result shows that A(A) and Hom(A xg B,C?) are homeomorphic as a
two locally compact Hausdorff spaces.

Corollary 3.3. For Banach algebras A and B,

A(A) = Hom(A x4 B,C?).
Proof. Define h: A(A) — Hom(A x4 B,C?) via

h(fi) = (fiopa, fiobopp).

Then h is linear and bijective. Moreover, both h and h~! are continuous. Indeed, for each
f1 € A(A), we have

[A(f)Il = I(f1opa, fiobopp)l
< ||fiopall+||ficbopgl
= |[fill +[[fi o 0]
< [ ANCQ+T01) < 2[fl-

Thus, h is continuous. The continuity of A~! is obvious. O
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The Jacobson radical of an algebra A, denoted by radA, is the intersection of maximal
modular left (right) ideals of A. The algebra A is called semisimple if radA = {0}. If A
is a commutative Banach algebra, then

radA = ﬂ{k:ergf)  peA(A)}.

Lemma 3.4. Let A and B be commutative and (a,b) € rad(Axg¢B). Then f(a,b) = (0,0)
for each f € Hom(A x4 B,C?).

Proof. Let (a,b) € rad(A x¢ B), then g(a,b) = 0 for each g € A(A Xy B). Assume to
contrary that there exist f € Hom(A x4 B,C?) such that f(a,b) # (0,0). By Corollary
(3.3), there exist f; € A(A) such that

(f1(a), fi 0 0(b)) = f(a,b) # (0,0).

Therefore fi(a) # 0 or f106(b) # 0.

Case I: Let fi(a) + f106(b) #0.
Let g : A X9 B — C defined by g(a,b) = fi(a) + f1 0 0(b). Then g € A(A xy B) and
g9(a,b) # 0.

Case II: Let fi(a) + f1060(b) =0.
Then f1060(b) # 0. Define g : A x9 B — C via g(a,b) = f1 00(b). Then g € A(A x¢ B)
and g(a,b) # 0.

In both cases we obtain a contradiction. Thus, we reach the desired result. ]

The following result is due to Sangani Monfared [11, Theorem 3.1] when 6§ € A(B), see
also [2, Corollary 2.2]. Here we outline an alternative proof for it with direct method.

Theorem 3.5. Let A and B be commutative. Then A xg¢ B is semisimple if and only if
A and B are semisimple.

Proof. Suppose that A xg B is semisimple and let b € rad(B). Then f2(b) = 0, for each
fo € A(B). Since f; 060 € A(B), for every multiplicative linear functional f; on A, so
(fi00)(b) = 0. Therefore, for all f € Hom(A x¢ B, C?),

F(0(b),b) = (f1(6(b)), f1 0 6(b)) = (0,0).
Noticing that
A(A x¢g B) C Hom(A x¢ B,C?),

hence for every g € A(AxgB), we have g(6(b),b) = 0. Thus, (0(b),b) € rad(Axy9B) = {0}
and hence b = 0. Consequently, B is semisimple.

Now we prove that rad(A) = {0}. To see this, let a € rad(A), then for each f; € A(A),
we have fi(a) = 0. Therefore for all f € Hom(A x4 B, C?),

f(a,O) = (fl(a)7f1 © 0(0)) = (070)7

which yields that g(a,0) = 0 for each g € A(A x¢ B). So (a,0) € rad(A x9 B) = {0} and
hence a = 0. Therefore, A is semisimple.

For the converse let A and B be semisimple. Suppose that g € A(A Xy B) is arbitrary
and g(a,b) = 0. Then by Lemma 3.4, we have (fi(a), fi 0 0(b)) = (0,0) where f; € A(A).
So fi(a) = fro6(b) = 0. It follows from the semisimplicity of A and B that a = b = 0.
Thus, A xg¢ B is semisimple. ([l

Corollary 3.6. Suppose that A is commutative and semisimple. If 6 is one to one, then

(i) A x¢ B is semisimple,
(ii) A(A xg B) separates the points of A xg B,
(iii) r7ax,B(a,b) is a norm on A xg B,

(iv) A Xg B has a unique complete norm.
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Proof. (i) Let b € rad(B). Then fa(b) = 0 for each fo € A(B). Since f; 06 € A(B), for
all f1 € A(A), so (f1080)(b) =0. Therefore 0(b) € rad(A) = {0}, and hence b = 0. Thus,
B is semisimple and by Theorem 3.5, A Xy B is semisimple.

(i), (iii), and (iv) follows from (i). O

4. Multipliers of Lau product

Let X be an A-bimodule, Y be an B-bimodule and suppose that ¢ : ¥ — X is a
f-module homomorphism. Consider X x, Y as a Banach space, then the action

(a,b)(x,y) = (ax + ao(y) + 0(b)x,by), (a,b) € Axy B, (z,y) € X X, Y.

turns X X, Y into a left (A xg B)-module. Indeed, for every (a,b), (u,v) € A Xy B and
(z,y) € X X, Y we have

((a,b)(u,v))(z, y) = (au+ 0(b)u + ab(v), bv)(z,y)
= (auz + 0(b)ux + ab(v)z + auo(y) + 0(b)uc(y) + ab(v)o(y)
+ 0(bv)z, bvy).
On the other hand,
(@,5) (1, 0)(2,9)) = (@,b) (uz + uo(y) + 0(v)z, vy)
= (auz + auo(y) + ab(v)z + ac(vy) + 0(b)ux + O(b)uc(y)
+0(b)f(v)z, bvy).

Since o is a right §-module homomorphism, by comparing the above two expressions, we

obtain
((a’ b) (u7 U)) (33, y) = (av b) ((uv U)(x’ y)) :
Similarly, X x, Y is a right (A Xy B)-module with the module action

(2.9)(a,b) = (za + o (y)a+ 26(b), yb).
and in this case we arrive at
(z,9)((a,b)(u,v)) = ((z,y)(a, b)) (u,v).
Theorem 4.1. Suppose that o : Y — X is a 0-module homomorphism and set
Th:A— X, Th:B—Y, T:AxyB— X X,Y,
where T = (Ty opa,To o pg). Then,

(i) If T is a right multiplier, then T1 and Ty are so.
(ii) If T1 and Ty are right multiplier and X is faithful, then T is right multiplier if and
only if coTy =Ty 00.

Proof. (i) Suppose that T is a right multiplier, then for all (a,b), (u,v) € A x4 B,

T ((a,b)(u,v)) = (a,b)T(u,v). (4.1)
It follows from (4.1) and our assumption that
)(T1(u), Ty(v))

(
(au+ 6(b)u + ab(v), bv)
= (Th(au+ 0(b)u + ab(v)), To(bv)).

Therefore, To(bv) = b1(v) and
aTi(u) + ac(Ta(v)) 4+ 0(b)Th (u) = T (au + O(b)u + ab(v)). (4.2)
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Setting b = v = 0 in (4.2), we get aT}(u) = Ti(au) for all a,u € A. Thus, 71 and T3 are
right multipliers.
(ii) Let T3, Ty and T are right multipliers. Then (4.2) gives

ac(Ty(v)) =T (ab(v)) = aT1(0(v)), a€ AveE B.

Therefore, a(o(T>(v)) — T1(0(v)) = 0 and since X is faithful, we get o 0T =T} 0 6.
The converse is immediate. O

Let M, (A) denotes the set of all right multipliers from A into a left A-module X, and
let
M (AxgB)={T:AxgB— X x,Y, T isaright multiplier}.

In the next result we turns our attention to the multipliers of A xy B.

Theorem 4.2. Suppose that o : Y — X is a invertible 0-module homomorphism. If X
is faithful and o~ is continuous, then

SDTT(A) = mT(A X9 B)
Proof. Let h: M, (A) — M, (A xg B) defined by
h(T1) = (Tyopa,0~" o Tyofopp).

First note that h is linear and well-defined. To see this, let 71 : A — X be a right
multiplier and take Th = 0! o T} 0 . Then for by, by € B,

Ty(bibs) = o' o T) 0 0(byby)
=0 1o T1(0(by)(0(b2))
= o 1 (0(b1)T1(0(b2)))
=0 (0(b1)a(Ta(b2)))
— b To(bs).

The last equality is true, because o is a #-module homomorphism. Hence 75 is a right
multiplier from B into Y, so by Theorem 4.1 (ii), h(T1) € M, (A x¢ B).

Clearly, h is one to one. We show that h is surjective. Let T : A x9g B — X X, Y be
a right multiplier. Then for all (a,b) € A x4 B,

T(a,b) = (S1(a,b), S2(a, b)),

where S71: AxgB — X and Sy : AxgB — Y. DefineT) : A— X viaTiopg =51
and To : B — Y by Th o pp = So. Then by the preceding theorem 77 and T, are right
multipliers. Also the equality o o To = T3 o 6 holds true. So

h(Th) = (S1,52) =T.
Note that h~! is automatically continuous. In fact, for each T € 9M,.(A xg B),
IR (D) = 1Tl < Tl + (1Tl = (1T,

and hence ||h71|| < 1.
On the other hand, for each 77 € 9M,.(A) we have

IR(T0)|| = [[(T1 0 pa,o ™" o Ti o opp)|
<||Tyopall + oo Ty 0 b opp|
=71l + llo™ o Ty 0 6]
< Tl (L + o~ 16l])-
Consequently, h is continuous. This finishes the proof. 0

As a consequence of Theorem 4.2, we deduce the next result.
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Corollary 4.3. Let A be a unital Banach algebra. If 6 is invertible and 6~ is continuous,
then T is a right multiplier on A if and only if T is a right multiplier on A xg B.

Let o be a 8-module homomorphism and define

Lx={Ly;:A— X: Ly(a) =azx, Ve X},

Ly ={L,:B—Y: Lyb) =by, VyeY},
and

(Lx,Ly)={(Ls, Ly): ze€X, yeY}
Moreover, for x € X and y € Y we set
LXXUY = {L(:c,y) cA X9 B—X Xa Y : L(ij)(a,b) = (a, b)(ac,y)}

Then for all z € X and y € Y, L, Ly and L, ,) are right multipliers.

The next example provided that (Lx, Ly) is different from 9, (A xg B).

Example 4.4. Let A be a unital Banach algebra, and let 0 = o : A — A be the identity
map. Then by Theorem 4.1, (Ly, Ly) € M, (AxgB) if and only if oo Ly = Ly06. Howewver,
forx=ea, y=2e4 and a = e4 we have,

ogoLy(a) =0(2e4) = 2eq, Ly o6(a) = Ly(a) = ey.
Therefore, (Lg, Ly) is not a right multiplier.

Proposition 4.5. Let 0 : Y — X be a 0-module homomorphism. If X is faithful and 0
is surjective, then (Lg, Ly) € M (A Xg B) if and only if x = o(y).

Proof. Let (Ly, Ly) € M, (A xg B). Then by Theorem 4.1, for every b € B,
(00 Ly)(b) = (Lz 0 0)(b),

which imply that 0(b)o(y) = o(by) = 6(b)x. For each a € A there exist b € B such that
0(b) = a. Therefore, we have ax = ac(y) and hence a(x — o(y)) = 0. Since X is faithful,
we conclude that x = o(y). The converse is similar. O

The next corollary follows immediately from preceding result.
Corollary 4.6. Let A be a unital Banach algebra. Then for all a € A,
(Lg, Lg) € M. (A xg A).

Lemma 4.7. Let 0 : Y — X be a 0-module homomorphism. Then for each x € X and
yey,
Lzy) = (Lgto(y) ©PA+ Lz oo pp, Ly opp).
Proof. Let (a,b) € (A x¢ B). Then
Lz y)(a,b) = (a,b)(z, )

= (az 4 ao(y) + 0(b)z, by)

(L z+a(y) + Ly Og(b) L (b))

(L (@40 (y)) opA(a b)+ Ly 08opg(a,b),L,opp(a,b)),
as required. ]

Theorem 4.8. Suppose that o0 : Y — X is a 8-module homomorphism. If 0 is surjective,
then

(Lx,Ly) = Lxx,y-
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Proof. Let h: (Lx,Ly) — Lxx,y defined by

h((Lz, Ly)) = (L(zto(y)) ©Pa + Ly 00 0 pp, Ly o pp).
The mapping h is linear and it is well-defined by Lemma 4.7. Clearly, h is surjective. We
show that h is one to one. Let h((Ls, Ly)) = h((Ls, L¢)), then

Ligto)) oPa+ Lzobopp = Lsior)opa+ Lsobopp, (4.3)
and
L,opp = Liopp. (4.4)
It follows from (4.4) that L, = L; and hence for each b € B,
by = Ly(b) = Li(b) = bt. (4.5)
Since o is a right #-module homomorphism, by (4.5) we get
0(b)o(y) = o(by) = o(bt) = (b)), (46)
and the surjectivity of 0 together (4.6) implies that
Lo(y)(a) = ao(y) = ao(t) = Lo)(a), (4.7)

for all a € A. From (4.3) we have
Lizto(y))(@) = (Lato(y)) ©Pa + Lz 00 0 pp)(a,0)
= (L(s+o(y) ©Pa+ Ls 00 0 pp)(a,0)

= Lis+o(1))(a)-
By (4.7) and the above equality, we obtain L, = Ls. Therefore, (L, Ly) = (Ls, L;) and h
is one to one. The continuity of h and h~! are obvious. O

From Theorem 4.8, we have the next result.

Corollary 4.9. If 0 is surjective, then (La,Lp) = Lax,B-
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