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Abstract
Given Banach algebras A, B and a continuous homomorphism θ : B −→ A with ∥θ∥ ≤ 1,
we obtain characterization of spectrum, homomorphisms and multipliers of A×θB, which
is a strongly splitting Banach algebra extension of B by A. Also we characterize the
semisimplicity of these algebras.
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1. Introduction
Let A and B be Banach algebras and ϕ : B −→ C be a multiplicative linear functional.

Then the direct product A×B equipped with the algebra multiplication
(a, b)(u, v) = (au+ ϕ(b)u+ ϕ(v)a, bv), (a, b), (u, v) ∈ A×B,

and with the l1-norm is a Banach algebra which is called the Lau product of A and B and
is denoted by A×ϕ B.

This type of product was introduced by Lau [9] for certain class of Banach algebras and
was extended by Sangani Monfared [11] for the general case.

If we allow ϕ = 0, then we obtain the usual direct product of Banach algebras, and
when B = C and ϕ : C −→ C is the identity map, A ×ϕ C coincides with the unitization
of A.

Some basic properties of A×ϕ B such as characterization of Gelfand space, topological
center, amenability, ideal structure and minimal idempotent are investigated in [11]. Also,
characterization of multipliers of these product discussed in [3] and [14]. Additionally,
many Banach algebras properties of A ×ϕ B are studied in [1], [6], [8], [10], [13], for
example.

Bhatt and Dabhi in [2] introduced a new type of Lau product. Let θ : B −→ A be a
continuous homomorphism between Banach algebras with ∥θ∥ ≤ 1. Then A×B with the
multiplication

(a, b)(u, v) = (au+ θ(b)u+ aθ(v), bv),
and with the l1-norm turns into a Banach algebra, which is denoted by A×θ B.
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The product A×θB provides not only new examples in Banach algebras by themselves,
but also it has the potential to serve as counter-examples in different branches of functional
and harmonic analysis.

Let ∆(A) be the set of all multiplicative linear functionals on Banach algebra A. Note
that every ϕ ∈ ∆(A) is continuous and ∥ϕ∥ ≤ 1, [5]. When A is unital with identity eA

and ϕ ∈ ∆(B), then θ : B −→ A defined by θ(b) = ϕ(b)eA is a continuous homomorphism
with ∥θ∥ ≤ 1. Therefore in this case the Lau product coincides with A×θ B.

We remark that in A×θ B, we identify A× {0} with A and {0} × B with B. Then A
is a closed ideal while B is a closed subalgebra of A ×θ B, and (A ×θ B)/A is isometric
isomorphism with B.

Spelitting of Banach algebra extensions has been a major tool in the study of Banach
algebras. For example, module extensions as generalizations of Banach algebras extensions
where introduced and studied by Gourdeau [7]. On the other hand, A×θ B is a strongly
splitting Banach algebra extension of B by A that exhibits many properties that are not
shared, in general, by arbitrary strongly splitting extensions. For example, commutativity
is not preserved by a general strongly splitting extension. However, A×θB is commutative
if and only if both A and B are commutative, [11, Proposition 2.3].

Let X be an A-bimodule, Y be an B-bimodule and θ : B −→ A be a homomorphism.
We say that σ : Y −→ X is a right (left) θ-module homomorphism if for all b ∈ B and
y ∈ Y ,

σ(by) = θ(b)σ(y),
(
σ(yb) = σ(y)θ(b)

)
.

In particular, if X = A and Y = B, then σ is called right (left) θ-multiplier. It is clear
that each multiplier is a special case of a θ-multiplier with θ = id, the identity map on A.

Example 1.1. Let

A =


0 a b

0 0 c
0 0 0

 : a, b, c ∈ C

 ,

and define θ, σ : A −→ A by

θ

0 a b
0 0 c
0 0 0

 =

0 0 a
0 0 0
0 0 0

 , σ

0 a b
0 0 c
0 0 0

 =

0 a 0
0 0 c
0 0 0

 .
Then, for all x, y ∈ A,

σ(xy) = θ(x)σ(y) = σ(x)θ(y).
Therefore σ is a θ-multiplier.

The purpose of the present paper is to investigate the spectrum, homomorphisms and
multipliers for Banach algebras induced by Lau product of Banach algebras defined by a
Banach algebra morphism.

Throughout the paper, we assume that A and B are Banach algebras and θ : B −→ A
is a continuous homomorphism with ∥θ∥ ≤ 1.

2. Spectrum of Lau product
The spectrum of an element a ∈ A is defined as

SpA(a) = {λ ∈ C : λeA − a /∈ Inv(A)},

where Inv(A) is the set of all invertible elements of A, and the spectral radius rA(a) of an
element a is defined as rA(a) = sup{|λ| : λ ∈ SpA(a)}.

It should be note that if A is not unital, then SpA(a) = SpA♯(a), where A♯ stands the
unitization of A, [12].
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Theorem 2.1. Let A and B be unital Banach algebras. Then
Inv(A×θ B) ∼= Inv(A) × Inv(B), (homeomorphism). (2.1)

Proof. Let eA and eB be unit of A and B, respectively. Then (eA − θ(eB), eB) is the unit
element of A×θ B. Define

h : Inv(A) × Inv(B) −→ Inv(A×θ B),
by h(a, b) = (a − θ(b), b). Let a ∈ Inv(A) and b ∈ Inv(B), then there exists u ∈ A and
v ∈ B such that au = eA and bv = eB. So

(a− θ(b), b)(u− θ(v), v) = (au− θ(bv), bv) = (eA − θ(eB), eB).
Therefore (a− θ(b), b) has a right inverse.

Similarly, (a − θ(b), b) has a left inverse and thus h is well-defined. It is easy to check
that h is linear and one to one.

Suppose that (a, b) ∈ Inv(A×θ B). Hence there exist (u, v) ∈ Inv(A×θ B) such that
(au+ θ(b)u+ aθ(v), bv) = (a, b)(u, v) = (eA − θ(eB), eB). (2.2)

It follows from (2.2) that bv = eB and
au+ θ(b)u+ aθ(v) = eA − θ(eB) = eA − θ(bv).

Therefore
au+ θ(b)u+ aθ(v) + θ(bv) = eA.

Since
(a+ θ(b))(u+ θ(v)) = au+ θ(b)u+ aθ(v) + θ(bv) = eA,

hence a+ θ(b) and b have right inverse in A and B, respectively. Similarly, a+ θ(b) and b
have left inverse in A and B, respectively. Thus, a+ θ(b) ∈ Inv(A), b ∈ Inv(B) and

h(a+ θ(b), b) = (a+ θ(b) − θ(b), b) = (a, b).
This means that h is surjective. For (a, b) ∈ Inv(A) × Inv(B), we have

∥h(a, b)∥ = ∥(a− θ(b), b)∥
= ∥a− θ(b)∥ + ∥b∥
≤ ∥a∥ + ∥θ∥∥b∥ + ∥b∥
≤

(
1 + ∥θ∥

)(
∥a∥ + ∥b∥

)
.

Therefore, ∥h∥ ≤ 2 and h is continuous. Similarly, h−1 is continuous. This finishes the
proof. □

Our next result concerns the spectrum in A×θ B.

Theorem 2.2. For Banach algebras A and B, we have
SpA×θB(a, b) = SpA(a+ θ(b)) ∪ SpB(b). (2.3)

Proof. It is enough to show that
SpA×θB(a, b) = SpA(a+ θ(b)) ∪ SpB(b),

when A and B are unital.
Let λ /∈ SpA(a) ∪ SpB(b). Then λeA − a ∈ Inv(A) and λeB − b ∈ Inv(A). Hence by

Theorem 2.1, we get(
λeA − a− θ(λeB − b), λeB − b

)
∈ Inv(A×θ B), (2.4)

which yields that
λ

(
eA − θ(eB), eB

)
− (a− θ(b), b) ∈ Inv(A×θ B).

Therefore, λ /∈ SpA×θB(a− θ(b), b).
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Now suppose that λ /∈ SpA(a+ θ(b)) ∪ SpB(b). Then by the above argument,

λ /∈ SpA×θB

(
a+ θ(b) − θ(b), b

)
= SpA×θB(a, b).

This means that
SpA×θB(a, b) ⊆ SpA(a+ θ(b)) ∪ SpB(b).

For the converse, let λ /∈ SpA×θB(a, b). Then

λ
(
eA − θ(eB), eB

)
− (a, b) ∈ Inv(A×θ B). (2.5)

But

λ
(
eA − θ(eB), eB

)
− (a, b) =

(
λeA − λθ(eB) − a, λeB − b

)
=

(
λeA − λθ(eB) − a+ λθ(eB) − θ(b) − θ(λeB − b), λeB − b

)
=

(
λeA − (a+ θ(b)) − θ(λeB − b), λeB − b

)
.

It follows from (2.5) and the above equality that

λeA − (a+ θ(b)) ∈ Inv(A), and λeB − b ∈ Inv(B).

Consequently, λ /∈ SpA(a+ θ(b)) and λ /∈ SpB(b). Thus,

SpA(a+ θ(b)) ∪ SpB(b) ⊆ SpA×θB(a, b).

This completes the proof. □

The next corollary appeared in [4, Lemma 2.5] for commutative Banach algebras. Here
as a consequence of Theorem 2.2, we deduce it for the general case.

Corollary 2.3. Let A and B be Banach algebras. Then

rA×θB(a, b) = max{rA(a+ θ(b)), rB(b)}.

3. Homomorphisms of Lau product
In this section, we assume that E and F are Banach algebras, and σ ∈ Hom(F,E) with

∥σ∥ ≤ 1, where Hom(F,E) denotes the set of all homomorphisms from F into E.
Let pA : A ×θ B −→ A and pB : A ×θ B −→ B be the usual projections which are

defined by pA(a, b) = a and pB(a, b) = b, respectively.
Recall that an A-bimodule X is called left (right) faithful if the condition ax = 0

(xa = 0) for x ∈ X implies that x = 0. The Banach algebra A is faithful, if it is faithful
as an A-bimodule over itself.

Theorem 3.1. Suppose that

f1 : A −→ E, f2 : B −→ F, f : A×θ B −→ E ×σ F,

where f = (f1 ◦ pA, f2 ◦ pB). Then,
(i) If f ∈ Hom(A×θ B,E ×σ F ), then f1 ∈ Hom(A,E) and f2 ∈ Hom(B,F ).
(ii) If f1 ∈ Hom(A,E) and f2 ∈ Hom(B,F ), f1 is surjective and E is faithful, then

f ∈ Hom(A×θ B,E ×σ F ) if and only if σ ◦ f2 = f1 ◦ θ.

Proof. (i) Suppose that f ∈ Hom(A×θ B,E ×σ F ), then for all (a, b), (u, v) ∈ A×θ B,

f
(
(a, b)(u, v)

)
= f(a, b)f(u, v). (3.1)

By using f = (f1 ◦ pA, f2 ◦ pB) we get

f
(
(a, b)(u, v)

)
= f

(
au+ θ(b)u+ aθ(v), bv

)
=

(
f1(au) + f1(θ(b)u) + f1(aθ(v)), f2(bv)

)
.
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On the other hand,

f(a, b)f(u, v) = (f1(a), f2(b))(f1(u), f2(v))
=

(
f1(a)f1(u) + σ(f2(b))f1(u) + f1(a)σ(f2(v)), f2(b)f2(v)

)
.

Hence by the above two equalities and (3.1), we have f2(bv) = f2(b)f2(v) and

f1(au) + f1(θ(b)u) + f1(aθ(v)) = f1(a)f1(u) + σ(f2(b))f1(u) + f1(a)σ(f2(v)). (3.2)

By taking b = v = 0 in (3.2), we conclude that f1(au) = f1(a)f1(u) for all a, u ∈ A. Thus,
f1 and f2 are homomorphisms.

(ii) Assume that f1 ∈ Hom(A,E), f2 ∈ Hom(B,F ) and let f : A×θ B −→ E ×σ F be
a homomorphism. Then by the equality (3.2),

f1(θ(b))f1(u) + f1(a)f1(θ(v)) = σ(f2(b))f1(u) + f1(a)σ(f2(v)). (3.3)

If we take a = 0 in (3.3), we obtain(
f1(θ(b)) − σ(f2(b))

)
f1(u) = 0, u ∈ A, b ∈ B.

Since f1 is surjective and E is faithful, we get σ ◦ f2 = f1 ◦ θ. The converse is similar. □

If E = F = C and σ : C −→ C is the identity map, then we get the following result.

Corollary 3.2. Let

f1 : A −→ C, f2 : B −→ C, f : A×θ B −→ C2,

where f = (f1 ◦ pA, f2 ◦ pB). Then,
(i) If f ∈ Hom(A×θ B,C2), then f1 ∈ ∆(A) and f2 ∈ ∆(B).
(ii) If 0 ̸= f1 ∈ ∆(A) and f2 ∈ ∆(B), then f ∈ Hom(A ×θ B,C2) if and only if

f2 = f1 ◦ θ.

It should be pointed out that the topology of ∆(A) is the induced weak∗ topology from
A∗, the dual space of A. Note that ∆(A) is a locally compact Hausdorff space and it is
compact, whether A is unital, [5].

It is shown in [11, Proposition 2.4] that if A and B are commutative and θ ∈ ∆(B),
then ∆(A×θ B) = E ∪ F , where

E = {(ϕ, θ) : ϕ ∈ ∆(A)}, and F = {(0, ψ) : ψ ∈ ∆(B)}.

The following result shows that ∆(A) and Hom(A ×θ B,C2) are homeomorphic as a
two locally compact Hausdorff spaces.

Corollary 3.3. For Banach algebras A and B,

∆(A) ∼= Hom(A×θ B,C2).

Proof. Define h : ∆(A) −→ Hom(A×θ B,C2) via

h(f1) = (f1 ◦ pA, f1 ◦ θ ◦ pB).

Then h is linear and bijective. Moreover, both h and h−1 are continuous. Indeed, for each
f1 ∈ ∆(A), we have

∥h(f1)∥ = ∥(f1 ◦ pA, f1 ◦ θ ◦ pB)∥
≤ ∥f1 ◦ pA∥ + ∥f1 ◦ θ ◦ pB∥
= ∥f1∥ + ∥f1 ◦ θ∥
≤ ∥f1∥

(
1 + ∥θ∥

)
≤ 2∥f1∥.

Thus, h is continuous. The continuity of h−1 is obvious. □
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The Jacobson radical of an algebra A, denoted by radA, is the intersection of maximal
modular left (right) ideals of A. The algebra A is called semisimple if radA = {0}. If A
is a commutative Banach algebra, then

radA =
∩

{kerϕ : ϕ ∈ ∆(A)}.

Lemma 3.4. Let A and B be commutative and (a, b) ∈ rad(A×θB). Then f(a, b) = (0, 0)
for each f ∈ Hom(A×θ B,C2).

Proof. Let (a, b) ∈ rad(A ×θ B), then g(a, b) = 0 for each g ∈ ∆(A ×θ B). Assume to
contrary that there exist f ∈ Hom(A ×θ B,C2) such that f(a, b) ̸= (0, 0). By Corollary
(3.3), there exist f1 ∈ ∆(A) such that(

f1(a), f1 ◦ θ(b)
)

= f(a, b) ̸= (0, 0).

Therefore f1(a) ̸= 0 or f1 ◦ θ(b) ̸= 0.
Case I: Let f1(a) + f1 ◦ θ(b) ̸= 0.

Let g : A ×θ B −→ C defined by g(a, b) = f1(a) + f1 ◦ θ(b). Then g ∈ ∆(A ×θ B) and
g(a, b) ̸= 0.

Case II: Let f1(a) + f1 ◦ θ(b) = 0.
Then f1 ◦ θ(b) ̸= 0. Define g : A×θ B −→ C via g(a, b) = f1 ◦ θ(b). Then g ∈ ∆(A×θ B)
and g(a, b) ̸= 0.

In both cases we obtain a contradiction. Thus, we reach the desired result. □

The following result is due to Sangani Monfared [11, Theorem 3.1] when θ ∈ ∆(B), see
also [2, Corollary 2.2]. Here we outline an alternative proof for it with direct method.

Theorem 3.5. Let A and B be commutative. Then A ×θ B is semisimple if and only if
A and B are semisimple.

Proof. Suppose that A×θ B is semisimple and let b ∈ rad(B). Then f2(b) = 0, for each
f2 ∈ ∆(B). Since f1 ◦ θ ∈ ∆(B), for every multiplicative linear functional f1 on A, so
(f1 ◦ θ)(b) = 0. Therefore, for all f ∈ Hom(A×θ B,C2),

f(θ(b), b) =
(
f1(θ(b)), f1 ◦ θ(b)

)
= (0, 0).

Noticing that
∆(A×θ B) ⊆ Hom(A×θ B,C2),

hence for every g ∈ ∆(A×θB), we have g(θ(b), b) = 0. Thus, (θ(b), b) ∈ rad(A×θB) = {0}
and hence b = 0. Consequently, B is semisimple.

Now we prove that rad(A) = {0}. To see this, let a ∈ rad(A), then for each f1 ∈ ∆(A),
we have f1(a) = 0. Therefore for all f ∈ Hom(A×θ B,C2),

f(a, 0) =
(
f1(a), f1 ◦ θ(0)

)
= (0, 0),

which yields that g(a, 0) = 0 for each g ∈ ∆(A×θ B). So (a, 0) ∈ rad(A×θ B) = {0} and
hence a = 0. Therefore, A is semisimple.

For the converse let A and B be semisimple. Suppose that g ∈ ∆(A×θ B) is arbitrary
and g(a, b) = 0. Then by Lemma 3.4, we have

(
f1(a), f1 ◦ θ(b)

)
= (0, 0) where f1 ∈ ∆(A).

So f1(a) = f1 ◦ θ(b) = 0. It follows from the semisimplicity of A and B that a = b = 0.
Thus, A×θ B is semisimple. □

Corollary 3.6. Suppose that A is commutative and semisimple. If θ is one to one, then
(i) A×θ B is semisimple,
(ii) ∆(A×θ B) separates the points of A×θ B,
(iii) rA×θB(a, b) is a norm on A×θ B,
(iv) A×θ B has a unique complete norm.
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Proof. (i) Let b ∈ rad(B). Then f2(b) = 0 for each f2 ∈ ∆(B). Since f1 ◦ θ ∈ ∆(B), for
all f1 ∈ ∆(A), so (f1 ◦ θ)(b) = 0. Therefore θ(b) ∈ rad(A) = {0}, and hence b = 0. Thus,
B is semisimple and by Theorem 3.5, A×θ B is semisimple.

(ii), (iii), and (iv) follows from (i). □

4. Multipliers of Lau product
Let X be an A-bimodule, Y be an B-bimodule and suppose that σ : Y −→ X is a

θ-module homomorphism. Consider X ×σ Y as a Banach space, then the action
(a, b)(x, y) = (ax+ aσ(y) + θ(b)x, by), (a, b) ∈ A×θ B, (x, y) ∈ X ×σ Y.

turns X ×σ Y into a left (A ×θ B)-module. Indeed, for every (a, b), (u, v) ∈ A ×θ B and
(x, y) ∈ X ×σ Y we have(

(a, b)(u, v)
)
(x, y) = (au+ θ(b)u+ aθ(v), bv)(x, y)

=
(
aux+ θ(b)ux+ aθ(v)x+ auσ(y) + θ(b)uσ(y) + aθ(v)σ(y)

+ θ(bv)x, bvy
)
.

On the other hand,
(a, b)

(
(u, v)(x, y)

)
= (a, b)

(
ux+ uσ(y) + θ(v)x, vy

)
=

(
aux+ auσ(y) + aθ(v)x+ aσ(vy) + θ(b)ux+ θ(b)uσ(y)

+ θ(b)θ(v)x, bvy
)
.

Since σ is a right θ-module homomorphism, by comparing the above two expressions, we
obtain (

(a, b)(u, v)
)
(x, y) = (a, b)

(
(u, v)(x, y)

)
.

Similarly, X ×σ Y is a right (A×θ B)-module with the module action
(x, y)(a, b) = (xa+ σ(y)a+ xθ(b), yb),

and in this case we arrive at
(x, y)

(
(a, b)(u, v)

)
=

(
(x, y)(a, b)

)
(u, v).

Theorem 4.1. Suppose that σ : Y −→ X is a θ-module homomorphism and set
T1 : A −→ X, T2 : B −→ Y, T : A×θ B −→ X ×σ Y,

where T = (T1 ◦ pA, T2 ◦ pB). Then,
(i) If T is a right multiplier, then T1 and T2 are so.
(ii) If T1 and T2 are right multiplier and X is faithful, then T is right multiplier if and

only if σ ◦ T2 = T1 ◦ θ.

Proof. (i) Suppose that T is a right multiplier, then for all (a, b), (u, v) ∈ A×θ B,
T

(
(a, b)(u, v)

)
= (a, b)T (u, v). (4.1)

It follows from (4.1) and our assumption that(
aT1(u) + aσ(T2(v)) + θ(b)T1(u), bT2(v)

)
= (a, b)

(
T1(u), T2(v)

)
= (a, b)T (u, v)
= T

(
(a, b)(u, v)

)
= T

(
au+ θ(b)u+ aθ(v), bv

)
=

(
T1(au+ θ(b)u+ aθ(v)), T2(bv)

)
.

Therefore, T2(bv) = bT2(v) and
aT1(u) + aσ(T2(v)) + θ(b)T1(u) = T1

(
au+ θ(b)u+ aθ(v)

)
. (4.2)
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Setting b = v = 0 in (4.2), we get aT1(u) = T1(au) for all a, u ∈ A. Thus, T1 and T2 are
right multipliers.

(ii) Let T1, T2 and T are right multipliers. Then (4.2) gives
aσ(T2(v)) = T1(aθ(v)) = aT1(θ(v)), a ∈ A, v ∈ B.

Therefore, a
(
σ(T2(v)) − T1(θ(v)

)
= 0 and since X is faithful, we get σ ◦ T2 = T1 ◦ θ.

The converse is immediate. □
Let Mr(A) denotes the set of all right multipliers from A into a left A-module X, and

let
Mr(A×θ B) = {T : A×θ B −→ X ×σ Y, T is a right multiplier}.

In the next result we turns our attention to the multipliers of A×θ B.

Theorem 4.2. Suppose that σ : Y −→ X is a invertible θ-module homomorphism. If X
is faithful and σ−1 is continuous, then

Mr(A) ∼= Mr(A×θ B).

Proof. Let h : Mr(A) −→ Mr(A×θ B) defined by
h(T1) = (T1 ◦ pA, σ

−1 ◦ T1 ◦ θ ◦ pB).
First note that h is linear and well-defined. To see this, let T1 : A −→ X be a right
multiplier and take T2 = σ−1 ◦ T1 ◦ θ. Then for b1, b2 ∈ B,

T2(b1b2) = σ−1 ◦ T1 ◦ θ(b1b2)
= σ−1 ◦ T1

(
θ(b1)(θ(b2)

)
= σ−1(

θ(b1)T1(θ(b2))
)

= σ−1(
θ(b1)σ(T2(b2))

)
= b1T2(b2).

The last equality is true, because σ is a θ-module homomorphism. Hence T2 is a right
multiplier from B into Y , so by Theorem 4.1 (ii), h(T1) ∈ Mr(A×θ B).

Clearly, h is one to one. We show that h is surjective. Let T : A×θ B −→ X ×σ Y be
a right multiplier. Then for all (a, b) ∈ A×θ B,

T (a, b) =
(
S1(a, b), S2(a, b)

)
,

where S1 : A ×θ B −→ X and S2 : A ×θ B −→ Y . Define T1 : A −→ X via T1 ◦ pA = S1
and T2 : B −→ Y by T2 ◦ pB = S2. Then by the preceding theorem T1 and T2 are right
multipliers. Also the equality σ ◦ T2 = T1 ◦ θ holds true. So

h(T1) =
(
S1, S2) = T.

Note that h−1 is automatically continuous. In fact, for each T ∈ Mr(A×θ B),
∥h−1(T )∥ = ∥T1∥ ≤ ∥T1∥ + ∥T2∥ = ∥T∥,

and hence ∥h−1∥ ≤ 1.
On the other hand, for each T1 ∈ Mr(A) we have

∥h(T1)∥ = ∥(T1 ◦ pA, σ
−1 ◦ T1 ◦ θ ◦ pB)∥

≤ ∥T1 ◦ pA∥ + ∥σ−1 ◦ T1 ◦ θ ◦ pB∥
= ∥T1∥ + ∥σ−1 ◦ T1 ◦ θ∥
≤ ∥T1∥

(
1 + ∥σ−1∥∥θ∥

)
.

Consequently, h is continuous. This finishes the proof. □
As a consequence of Theorem 4.2, we deduce the next result.
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Corollary 4.3. Let A be a unital Banach algebra. If θ is invertible and θ−1 is continuous,
then T1 is a right multiplier on A if and only if T is a right multiplier on A×θ B.

Let σ be a θ-module homomorphism and define

LX = {Lx : A −→ X : Lx(a) = ax, ∀x ∈ X},

LY = {Ly : B −→ Y : Ly(b) = by, ∀y ∈ Y },
and

(LX , LY ) = {(Lx, Ly) : x ∈ X, y ∈ Y }.
Moreover, for x ∈ X and y ∈ Y we set

LX×σY = {L(x,y) : A×θ B −→ X ×σ Y : L(x,y)(a, b) = (a, b)(x, y)}.

Then for all x ∈ X and y ∈ Y , Lx, Ly and L(x,y) are right multipliers.

The next example provided that (LX , LY ) is different from Mr(A×θ B).

Example 4.4. Let A be a unital Banach algebra, and let θ = σ : A −→ A be the identity
map. Then by Theorem 4.1, (Lx, Ly) ∈ Mr(A×θB) if and only if σ◦Ly = Lx◦θ. However,
for x = eA, y = 2eA and a = eA we have,

σ ◦ Ly(a) = σ(2eA) = 2eA, Lx ◦ θ(a) = Lx(a) = eA.

Therefore, (Lx, Ly) is not a right multiplier.

Proposition 4.5. Let σ : Y −→ X be a θ-module homomorphism. If X is faithful and θ
is surjective, then (Lx, Ly) ∈ Mr(A×θ B) if and only if x = σ(y).

Proof. Let (Lx, Ly) ∈ Mr(A×θ B). Then by Theorem 4.1, for every b ∈ B,

(σ ◦ Ly)(b) = (Lx ◦ θ)(b),

which imply that θ(b)σ(y) = σ(by) = θ(b)x. For each a ∈ A there exist b ∈ B such that
θ(b) = a. Therefore, we have ax = aσ(y) and hence a(x− σ(y)) = 0. Since X is faithful,
we conclude that x = σ(y). The converse is similar. □

The next corollary follows immediately from preceding result.

Corollary 4.6. Let A be a unital Banach algebra. Then for all a ∈ A,

(La, La) ∈ Mr(A×θ A).

Lemma 4.7. Let σ : Y −→ X be a θ-module homomorphism. Then for each x ∈ X and
y ∈ Y ,

L(x,y) =
(
L(x+σ(y)) ◦ pA + Lx ◦ θ ◦ pB, Ly ◦ pB

)
.

Proof. Let (a, b) ∈ (A×θ B). Then

L(x,y)(a, b) = (a, b)(x, y)
=

(
ax+ aσ(y) + θ(b)x, by

)
=

(
L(x+σ(y))(a) + Lx ◦ θ(b), Ly(b)

)
.

=
(
L(x+σ(y)) ◦ pA(a, b) + Lx ◦ θ ◦ pB(a, b), Ly ◦ pB(a, b)

)
,

as required. □

Theorem 4.8. Suppose that σ : Y −→ X is a θ-module homomorphism. If θ is surjective,
then

(LX , LY ) ∼= LX×σY .
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Proof. Let h : (LX , LY ) −→ LX×σY defined by
h((Lx, Ly)) =

(
L(x+σ(y)) ◦ pA + Lx ◦ θ ◦ pB, Ly ◦ pB

)
.

The mapping h is linear and it is well-defined by Lemma 4.7. Clearly, h is surjective. We
show that h is one to one. Let h((Lx, Ly)) = h((Ls, Lt)), then

L(x+σ(y)) ◦ pA + Lx ◦ θ ◦ pB = L(s+σ(t)) ◦ pA + Ls ◦ θ ◦ pB, (4.3)
and

Ly ◦ pB = Lt ◦ pB. (4.4)
It follows from (4.4) that Ly = Lt and hence for each b ∈ B,

by = Ly(b) = Lt(b) = bt. (4.5)
Since σ is a right θ-module homomorphism, by (4.5) we get

θ(b)σ(y) = σ(by) = σ(bt) = θ(b)σ(t), (4.6)
and the surjectivity of θ together (4.6) implies that

Lσ(y)(a) = aσ(y) = aσ(t) = Lσ(t)(a), (4.7)
for all a ∈ A. From (4.3) we have

L(x+σ(y))(a) =
(
L(x+σ(y)) ◦ pA + Lx ◦ θ ◦ pB

)
(a, 0)

=
(
L(s+σ(t)) ◦ pA + Ls ◦ θ ◦ pB

)
(a, 0)

= L(s+σ(t))(a).
By (4.7) and the above equality, we obtain Lx = Ls. Therefore, (Lx, Ly) = (Ls, Lt) and h
is one to one. The continuity of h and h−1 are obvious. □

From Theorem 4.8, we have the next result.

Corollary 4.9. If θ is surjective, then (LA, LB) ∼= LA×θB.
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