USING COMPLEX CONJUNCTIONS IN SOLVING NONLINEAR BOOLEAN EQUATIONS

Abdussattar Abdukadirovich BAYZHUMANOV ${ }^{1}$
Sh. Sholpan UTEBAEVA ${ }^{2}$
Zagira KOBEYEVA ${ }^{3}$

Abstract

In order to simplify the logical formulations and reduce the time for solving systems of nonlinear Boolean equations, a criterion for the absorption of complex conjunctions by a firstorder neighborhood of conjunctions of formulations of a separate class of systems of nonlinear Boolean equations above the second degree, specified by Zhegalkin polynomials, is introduced. In the class of systems of nonlinear Boolean equations under study, the logical formulas of Zhegalkin polynomials are completely or partially divided into some linear factors. As a result, logical formulas are reduced to the disjunction of complex elementary conjunctions, consisting of the product of individual arguments, linear polynomials or their negations, on the basis of which a system of nonlinear Boolean equations is obtained, where the solution to the system of nonlinear equations is obtained using multiplication methods, simultaneously applying the method of reducing complex conjunctions. Some problems of minimization of special disjunctive normal forms obtained from the Zhegalkin polynomial above the second degree of special classes are considered.

Keywords: Zhegalkin polynomial, linear Boolean functions, homogeneous-unit matrices, polynomial length, disjunctive normal forms

[^0]
DOĞRUSAL OLMAYAN BOOLE DENKLEMLERİNİN ÇÖZÜMÜNDE KARMAŞIK BAĞLAÇLARIN KULLANILMASI

Abstract

ÖZET Mantıksal formülasyonları basitleştirmek ve doğrusal olmayan Boole denklem sistemlerini çözme süresini azaltmak için, karmaşık bağlaçların, ikincinin üzerindeki ayrı bir doğrusal olmayan Boole denklem sistemleri sınıfının formülasyonlarının birinci dereceden bir komşuluğu tarafından soğurulması için bir kriter Zhegalkin polinomları tarafından belirtilen derece tanıtılır. İncelenmekte olan doğrusal olmayan Boole denklem sistemleri sınıfında, Zhegalkin polinomlarının mantıksal formülleri tamamen veya kısmen bazı doğrusal faktörlere bölünmüştür. Sonuç olarak, mantıksal formüller, sistemin çözümünün bulunduğu, doğrusal olmayan bir Boole denklemleri sisteminin elde edildiği, bireysel argümanların, doğrusal polinomların veya bunların olumsuzlamalarının ürününden oluşan karmaşık temel bağlaçların ayrışmasına indirgenir. doğrusal olmayan denklemlerin sayısı, aynı anda karmaşık bağlaçları azaltma yöntemini uygulayarak çarpma yöntemleri kullanılarak elde edilir. Özel sınıfların ikinci derecesinin üzerinde Zhegalkin polinomundan elde edilen özel ayrık normal formların minimizasyonuna ilişkin bazı problemler ele alınmıştır.

Anahtar Kelimeler: Zhegalkin Polinomu, Doğrusal Boole Fonksiyonları, Homojen Birimli Matrisler, Polinom Uzunluğu, Ayırıcı Normal Formlar

1 INTRODUCTION

The study of logical equations, their classification and the development of effective methods for solving them are of great importance, since it is to them that the solution of many scientific and technical problems that arise, for example, in the synthesis and analysis of discrete computing and control devices, the formalization of the search and proof of theorems, is largely reduced. in formal theories, search for faults in technical systems. These tasks are called logical tasks.

For a long time, a rich source of logical problems has been the theory of automata, using such advanced tools of modern discrete mathematics as graph theory. Automata theory considers complex discrete automatic devices composed of simple elements. Its main problem is the problem of the relationship between the structure and its function, the main task is logical synthesis, the purpose of which is to obtain a structure with predetermined functional properties. The synthesis problem can be formulated as the problem of decomposition of a given function in terms of a system of operators implemented by the elements from which the structure should be built. This task, in turn, is reduced to solving a system of logical equations. The task of analyzing the given structure of a discrete device is also quite important, especially in connection with the problem of troubleshooting. Finding the roots of a system of logical equations is reduced, for example, to the search for stable states of a device, the structure is described by this system [1-5].

Another source of logical problems, which is being intensively developed at the present time, is the problem of creating "artificial intelligence". Within the framework of the problem, a study of tasks is carried out, the formalization of which is associated with great difficulties. Such tasks are usually called "intellectual" or "creative". As a rule, these are also logical problems, many of which can be formulated as problems of solving logical equations of one type or another.

The solution of logical equations in general terms is associated with the need to implement a highly branching process of finding roots, an extensive enumeration of intermediate solutions. As a rule, this is so large that it cannot be realized even by modern high-speed computers. However, taking into account the features of specific equations, the process of finding roots can often be significantly accelerated. Therefore, the main way to develop effective methods for solving logical equations is the classification of equations and the development of appropriate methods for each class.

The paper investigates certain classes of systems of non-linear Boolean equations above the second degree, given by Zhegalkin polynomials. Some problems of minimizing special disjunctive normal forms obtained from the Zhegalkin polynomial above the second degree of special classes are considered. a criterion for the absorption of complex conjunctions by a neighborhood of the first order of conjunctions of propositions of a separate class of systems of non-linear Boolean equations of higher degree two, given by Zhegalkin polynomials, is proposed [6-10].

2 PROBLEM STATEMENT

Here we consider the criteria for analytical takeovers of one complex conjunction by a set of complex conjunctions. Let:
non-orthogonal complex conjunctions[11] where we denote by $Y_{i_{i}, \cdots, i_{k}}$ the sum $x_{i_{1}}+\cdots+x_{i_{k}}$: $Y_{i_{i}, \cdots, i_{k}}=x_{i_{1}}+\cdots+x_{i_{k}}$, here $1 \leq k \leq n ; x_{i j} \in X^{n}=\left\{x_{1}, \ldots, x_{n}\right\}, 1 \leq j \leq k$.

Let $M(\tilde{x}, \mathrm{Y}(\tilde{x}))=U_{1}(\tilde{x}, \mathrm{Y}(\tilde{x})) \vee \cdots \vee U_{m}(\tilde{x}, \mathrm{Y}(\tilde{x}))$ be a disjunction of compound conjunctions. The problem is formulated as the absorption of a complex conjunction U by a disjunction M etc. $[U \rightarrow M] \equiv 1$ or $\left[U \rightarrow V_{i=1}^{m} U_{i}\right] \equiv 1[12]$.

3 CRITERIA FOR ABSORPTION

1-theorem. Disjunction $M(\tilde{x}, \mathrm{Y}(\tilde{x}))=U_{1}(\tilde{x}, \mathrm{Y}(\tilde{x})) \vee \cdots \vee U_{m}(\tilde{x}, \mathrm{Y}(\tilde{x}))$ absorbs the complex conjunction $U(\tilde{x}, Y(\tilde{x}))$ if and only if

$$
\left\{\begin{array}{c}
U(\tilde{x}, y(\tilde{x}))=1 \tag{2}\\
U_{1}(\tilde{x}, y(\tilde{x}))=0 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
U_{m}(\tilde{x}, y(\tilde{x}))=0
\end{array}\right.
$$

when the system is inconsistent.
Proof. Need. Empty d.n.f. $M(\tilde{x}, Y(\tilde{x}))$ absorbs complex conjunction(c.c.)
$U(\tilde{x}, Y(\tilde{x})):[U \rightarrow M] \equiv 1$ or $\left[U \rightarrow V_{i=1}^{m} U_{i}\right] \equiv 1$.
From here we have $\left[\bar{U} \vee V_{i=1}^{m} U_{i}\right] \equiv 1$ or $\left[U \wedge \neg\left(V_{i=1}^{m} U_{i}\right)\right] \equiv 0$.
Let $\left[U \wedge\left(\bar{m} V_{i=1}^{m} U_{i}\right)\right] \equiv 1$. Then there is $\tilde{\alpha} \in E_{n}^{2}$ such that $U(\tilde{\alpha})=1$ and $\neg\left(V_{i=1}^{m} U_{i}(\tilde{\alpha})\right)=1$ or $U(\tilde{\alpha})=1$ and $\sum_{i=1}^{m} U_{i}(\tilde{\alpha})=0$. Therefore, if the system

$$
\left\{\begin{array}{c}
U(\tilde{x}, y(\tilde{x}))=1 \tag{4}\\
U_{1}(\tilde{x}, y(\tilde{x}))=0 \\
\ldots \ldots \ldots \ldots \ldots \\
U_{m}(\tilde{x}, y(\tilde{x}))=0
\end{array}\right.
$$

is consistent, then there is a set $\tilde{\alpha}$ such that $U(\tilde{\alpha})=1, \prod_{i=1}^{m} U_{i}(\tilde{\alpha})=0$ and $\left[U(\tilde{\alpha}) \wedge \neg\left(V_{i=1}^{m} U_{i}(\tilde{\alpha})\right)\right] \equiv 1$. If system (4) is inconsistent, then there is no $\tilde{\alpha} \in E_{n}^{2}$ such that $\left[U(\tilde{\alpha}) \wedge \neg\left(V_{i=1}^{m} U_{i}(\tilde{\alpha})\right)\right] \neq 1$, etc. $\left[U(\tilde{\alpha}) \wedge \neg\left({ }_{i=1}^{m} U_{i}\left(\tilde{\alpha}_{i}\right)\right)\right]=0$ or $\left[U(\tilde{\alpha}) \rightarrow V_{i=1}^{m} U_{i}\left(\tilde{\alpha}_{i}\right)\right]=1$. Therefore, when (3) is satisfied, system (2) is inconsistent. The need has been proven.

Sufficiency. Let the condition of the theorem be satisfied. Let us show that $[U(\tilde{x}, Y(\tilde{x})) \rightarrow M(\tilde{x}, Y(\tilde{x}))] \equiv 1$. It is easy to see that the set $\tilde{\alpha} \in E_{n}^{2}$ in which $U(\tilde{\alpha})=0$ satisfies the equality $[U(\tilde{\alpha}) \rightarrow M(\tilde{\alpha})] \equiv 1$.

Let now $U(\tilde{\alpha})=1$. Let us show that $\mathrm{M}(\tilde{\alpha}) \equiv 1$ and, consequently, the $[U(\tilde{\alpha}) \rightarrow M(\tilde{\alpha})] \equiv 1$. Indeed, if system (2) is inconsistent, then there is an equation such that $U_{\kappa}(\tilde{\alpha})=1$, hence $\sum_{i=1}^{m} U_{i}(\tilde{\alpha})=1$. So, for any $\tilde{\alpha} \in E_{n}^{2}$ we have $[U(\tilde{\alpha}) \rightarrow M(\tilde{\alpha})] \equiv 1$.

These theorems have been fully proven.

2-theorem:

 $U_{2}(\tilde{x}, Y(\tilde{x}))=x_{j_{1}}^{\alpha_{1}} \cdots x_{j_{c}}^{\alpha_{c}} \cdot Y_{p_{1}^{1} \cdots p_{1}^{1}}^{\alpha_{c+1}^{1}} \cdot Y_{p_{1}^{2} \cdots p_{2}^{2}}^{\alpha_{c+2}} \cdots \cdots Y_{p_{1}^{2} \ldots p_{e}^{c}}^{\alpha_{c+e}}$ Complex conjunctions consisting of nonorthogonal expressions. If a $\left(x_{i_{1}}^{\sigma_{1}} \cdots x_{i_{k}}^{\sigma_{k}} \rightarrow x_{j_{1}}^{\alpha_{1}} \cdots x_{j_{c}}^{\alpha_{c}}\right) \equiv 1$,$$
\left.\begin{array}{c}
\sum_{i=1}^{t} \wp_{i}=\alpha_{c+1}, \sum_{i=1}^{t} Y_{v_{1}^{i} \cdots v_{k_{i}}^{i}}=Y_{p_{1}^{1} \cdots p_{z_{1}}^{1}} \\
\sum_{i=1}^{q} \wp_{t+i}=\alpha_{c+2}, \sum_{i=1}^{q} Y_{w_{1}^{i} \cdots w_{i}^{i}}=Y_{p_{1}^{2} \cdots p_{22}^{2}} \tag{5}\\
\ldots \\
\sum_{i=1}^{\tau} \wp_{t+q+i}=\alpha_{c+e}, \sum_{i=1}^{\tau} \gamma_{n_{1}^{i} \cdots n_{n_{i}}^{i}}=\gamma_{p_{1}^{c} \cdots p_{z_{e}}^{e}}
\end{array}\right\}
$$

then $\left[U_{1}(\tilde{x}, y(\tilde{x})) \rightarrow U_{2}(\tilde{x}, y(\tilde{x}))\right] \equiv 1$, etc. the compound conjunction U_{1} is absorbed by the compound conjunction U_{2}.

Proof. Let

$$
\left\{\begin{array}{l}
\sum_{i=1}^{t} \sigma_{i}=\sigma, \tag{6}\\
\sum_{\tau=1}^{t}\left(x_{i_{i}^{\tau}} \oplus \cdots \oplus x_{i_{k_{\tau}^{\tau}}}\right)=\sum_{i=1}^{e} x_{j_{i}}
\end{array}\right.
$$

 where $U(Y(\tilde{x})) \neq 0$, etc. Equality
is true when conditions (6) hold.By Theorem 1, it is known that for the fulfillment of (7) the system
${\underset{\tau=1}{t} Y_{i_{1}^{2} \cdots \cdots i_{t}}^{\sigma_{t}}=1, Y_{j_{1} \cdots j_{e}}^{\sigma_{t}}=0 ~}_{\sigma_{1}}^{\sigma_{i}}$
must be incompatible. Condition $\left({\underset{\tau}{\tau=1}}_{t}^{\sum_{i=\cdots i l_{t}}^{\sigma_{1}}} \equiv 0\right.$ implies that the system

It is easy to see that the equations $Y_{j_{1} \ldots j_{e}}^{\sigma}=0, Y_{j_{i} \ldots j_{e}}=\bar{\sigma}$ are equivalent.
Taking into account the above, we construct

$$
\left\{\begin{array}{l}
Y_{i_{1}^{\prime} \ldots i_{l_{1}}^{\prime}}=\sigma_{1} \tag{9}\\
\ldots \\
\ldots \\
Y_{i_{1}^{\prime}, \ldots l_{l_{t}^{\prime}}}=\sigma_{t} \\
Y_{j_{1} \ldots j_{l}}=\bar{\sigma}
\end{array}\right.
$$

which is equivalent to system (8).
It is known [12] that the system of linear Boolean equations is inconsistent when, after adding the left and right parts of, respectively, unequal constants are obtained. From here it is obvious that the resulting system is inconsistent when equalities $(1,2)$ are satisfied. Consequently, system (8) is inconsistent and therefore takes place.

Means, based on (6) and (7), conditions (5) can be represented as: $\left(x_{i_{1}}^{\sigma_{1}} \cdots x_{i_{k}}^{\sigma_{k}} \rightarrow x_{j_{1}}^{\alpha_{1}} \cdots x_{j_{c}}^{\alpha_{c}}\right) \equiv 1$,

Hence, it is obvious that when (11) is satisfied, the following is true:

The theorem is proved.

Let us consider the main criteria for simplifying the disjunctions of complex conjunctions.Let's put

$$
\begin{array}{ll}
U(x, Y(x))=0 & \text { (identically zero) } \\
U_{1}(x, Y(x)) \vee U_{2}(x, Y(x))=U_{2}(x, Y(x)) \text { (elemental }
\end{array}
$$

$$
\text { absorption), }\left[U(x, Y(x)) \rightarrow \stackrel{k}{\stackrel{k}{i=1}} U_{i}(x, Y(x))\right]=1
$$

(generalized absorption).
Let $U(x, Y(x))=x_{i_{1}}^{\sigma_{1}} \cdots x_{i_{i}}^{\sigma_{i}} Y_{v_{1} \cdots v_{p}}^{\delta_{1}} \cdots Y_{w_{1}, \cdots w_{r}}^{\delta_{y}}$ and

$$
\left\{\begin{array}{c}
x_{i_{1}}=\sigma_{1}, \ldots, Y_{v_{1} \ldots v_{p}}=\delta_{1} \tag{13}\\
\ldots \quad \ldots \\
x_{i_{l}}=\sigma_{l}, \ldots, Y_{w_{1} \ldots w_{r}}=\delta_{q}
\end{array}\right.
$$

$$
\begin{align*}
& \stackrel{{ }_{i=1}}{q} y_{w_{1}^{\prime} \cdots w_{c_{i}}^{i}}^{v_{t}+i} \rightarrow y_{p_{1}^{2} \cdots p_{z_{2}}^{2}}^{\sigma} \equiv 1, \tag{11}\\
& \text {...................................... } \\
& \hat{i=1}_{\tau}^{\tau} y_{m_{1}^{2}-\cdots n_{m_{i}}^{i}}^{g_{t q+1}} \rightarrow y_{p_{1}^{2} \cdots p_{z_{e}}^{e}}^{\alpha_{c+e}} \equiv 1,
\end{align*}
$$

It is easy to see that system (13) is inconsistent if and only if $x_{i 1}^{\sigma_{1}} \cdots x_{i \mid}^{\sigma_{i}} Y_{v_{1}, w_{p}}^{\delta_{1}} \cdots Y_{w_{1} \ldots w_{r}}^{\delta_{q}}=0$.
3-theorem. Complex conjunctions
$Y_{i_{1} \ldots i_{k}}^{\sigma_{1}} \ldots Y_{j_{1} \ldots j_{p}}^{\sigma_{j}} \cdot Y_{\tau_{1} \ldots \tau_{q}}^{\sigma_{j+1}}, \quad Y_{i_{1} \ldots i_{k}}^{\sigma_{1}} \ldots Y_{j_{1} \ldots j_{p}}^{\sigma_{j}} \cdot Y_{v_{1} \ldots v_{l}}^{\sigma}$
identically equal if the following conditions are met:
a) $\sigma_{1} \oplus \sigma_{2} \oplus \ldots \oplus \sigma_{j} \oplus \sigma_{j+1}=\sigma$,
b) $Y_{i_{1} \ldots i_{k}} \oplus \ldots \oplus Y_{j_{1} \ldots j_{p}} \oplus Y_{\tau_{1} \ldots \tau_{q}}=Y_{v_{1} \ldots v_{l}}$

Proof.

Condition b) according to the notation of linear expressions can be written as follows: $Y_{v_{1}, \ldots v_{l}}=Y_{i_{1} \ldots i_{k} \ldots j_{1} \ldots j_{p} \tau_{1} \ldots \tau_{q}}$ therefore, if condition a) is also taken into account, then the complex conjunction (14) has the form : $Y_{i_{i} \ldots i_{k}}^{\sigma_{i}} \ldots Y_{j_{i} \ldots j_{p}}^{\sigma_{j}} \cdot Y_{i_{1} \ldots i_{k} \ldots \ldots \ldots j_{j} \ldots \sigma_{i} \ldots \tau_{q}}^{\sigma_{1} \oplus \sigma_{q} \oplus \oplus \sigma_{j}}$.

Let
$\left(x_{i_{1}} \oplus x_{i_{2}} \oplus \ldots \oplus x_{i_{k}}\right)^{\sigma_{1}}=1, \ldots,\left(x_{j_{1}} \oplus x_{j_{2}} \oplus \ldots \oplus x_{j_{p}}\right)^{\sigma_{j}}=1, \ldots$
$\left(x_{i_{1}} \oplus x_{i_{2}} \oplus \ldots \oplus x_{i_{k}} \oplus \ldots \oplus x_{j_{1}} \oplus x_{j_{2}} \oplus \ldots \oplus x_{j_{p}} \oplus x_{\tau_{1}} \oplus x_{\tau_{2}} \oplus \ldots \oplus x_{\tau_{q}}\right)^{\sigma_{1} \oplus \sigma_{2} \oplus \ldots \oplus \sigma_{j+1}}=$
$=1$
Hence there is
$\left(x_{i_{1}} \oplus x_{i_{2}} \oplus \ldots \oplus x_{i_{k}}\right)=\sigma_{1}, \ldots,\left(x_{j_{1}} \oplus x_{j_{2}} \oplus \ldots \oplus x_{j_{p}}\right)=\sigma_{j}, \ldots$,
$\left(x_{i_{1}} \oplus x_{i_{2}} \oplus \ldots \oplus x_{i_{k}} \oplus \ldots \oplus x_{j_{1}} \oplus x_{j_{2}} \oplus \ldots \oplus x_{j_{p}} \oplus x_{\tau_{1}} \oplus x_{\tau_{2}} \oplus \ldots \oplus x_{\tau_{q}}\right)=$
$=\sigma_{1} \oplus \sigma_{2} \oplus \ldots \oplus \sigma_{j+1}$
After simple transformations, we have $x_{\tau_{1}} \oplus \ldots \oplus x_{\tau_{\varphi}}=\sigma_{j+1}$ or $Y_{\tau_{1} \ldots \tau_{q}}=\sigma_{j+1}$. And this shows that the identity $Y_{i_{1} \ldots i_{k}}^{\sigma_{1}} \ldots Y_{j_{1} \ldots j_{p}}^{\sigma_{j}} \cdot Y_{\tau_{1} \ldots \tau_{q}}^{\sigma_{j+1}}, \quad Y_{i_{1} \ldots, i_{k}}^{\sigma_{1}} \ldots Y_{j_{1} \ldots j_{p}}^{\sigma_{j}} \cdot Y_{v_{1} \ldots v_{l}}^{\sigma}$ is true when conditions a) and b) are satisfied.

The theorem has been proven.

The assertion of the theorem implies the validity of the following corollaries:
Corollary 1. If $\sigma_{1} \oplus \sigma_{2} \oplus \ldots \oplus \sigma_{l}=\bar{\sigma}$ then $x_{i_{1}}^{\sigma_{1}} \cdot x_{i_{2}}^{\sigma_{2}} \cdot \ldots \cdot x_{i 1}^{\sigma_{1}} \cdot Y_{i_{1} \ldots i_{i}}^{\sigma}=0$.
Corollary 2. If $\sigma_{1} \oplus \sigma_{2} \oplus \ldots \oplus \sigma_{l}=\sigma$ then $x_{i 1}^{\sigma_{1}} \cdot x_{i 2}^{\sigma_{2}} \cdot \ldots \cdot x_{i i}^{\sigma_{l}} \cdot Y_{i 1 \ldots, i l}^{\sigma}=x_{i 1}^{\sigma_{1}} \cdot x_{i_{2}}^{\sigma_{2}} \cdot \ldots \cdot x_{i i}^{\sigma_{l}}$.
Corollary 3. If $\sigma_{1} \oplus \sigma_{2} \oplus \ldots \oplus \sigma_{l}=\sigma$ then $x_{i 1}^{\sigma_{1}} \cdot x_{i_{2}}^{\sigma_{2}} \cdot \ldots \cdot x_{i 1}^{\sigma_{1}} \cdot Y_{i, \ldots i_{1+1}}^{\sigma}=x_{i 1}^{\sigma_{1}} \cdot x_{i-}^{\sigma_{2}} \cdot \ldots \cdot x_{i-}^{\sigma_{l}} \cdot \overline{x_{i+1}}$.
Corollary 4. If $\sigma_{1} \oplus \sigma_{2} \oplus \ldots \oplus \sigma_{l}=\bar{\sigma}$ then $x_{i_{1}}^{\sigma_{1}} \cdot x_{i_{2}}^{\sigma_{2}} \cdot \ldots \cdot x_{i-}^{\sigma_{l}} \cdot Y_{i_{1}, \ldots i_{i+1}}^{\sigma}=x_{i_{1}}^{\sigma_{1}} \cdot x_{i 2}^{\sigma_{2}} \cdot \ldots \cdot x_{i i_{1}}^{\sigma_{l}} \cdot x_{i_{i+1}}$.
Corollary 5. If $\sigma^{\prime \prime}=\sigma_{1} \oplus \sigma_{2} \oplus \ldots \oplus \sigma_{l} \oplus \sigma^{\prime}$ then $x_{i_{1}}^{\sigma_{1}} \cdot x_{i_{2}}^{\sigma_{2}} \cdot \ldots \cdot x_{i_{i}}^{\sigma_{1}} \cdot Y_{i_{1}, \ldots i_{1+1}+i_{k}}^{\sigma_{i}^{\prime}}=x_{i_{1}}^{\sigma_{1}} \cdot x_{i_{2}}^{\sigma_{2}} \cdot \ldots \cdot x_{i_{i}}^{\sigma_{l}} \cdot Y_{i_{1+1}, \ldots i_{k}}^{\sigma^{\prime \prime}}$.
Corollary 6. $Y_{i_{i} \ldots i_{k}}^{\sigma_{1}} \cdot Y_{i_{1} \ldots, i_{i k+1}+\cdots i_{m}}^{\sigma_{2}}=Y_{i_{i} \ldots i_{k}}^{\sigma_{1}} \cdot Y_{i_{k+1}, \ldots i_{m}}^{\sigma_{\oplus} \oplus \sigma_{2}}$.

Reduction criterion for systems of nonlinear logical equations of a special class
Let G :

$$
\left\{\begin{array}{l}
F_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\alpha_{1} \\
F_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\alpha_{2} \\
\ldots \quad \ldots \quad \ldots \\
F_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\alpha_{m}
\end{array}\right.
$$

system of non-linear Boolean equations.
Moreover, the statement $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from G has the form:
$F_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i, j=k, i<j}^{k+3} a_{i j} x_{i} x_{j} \oplus \sum_{i, j=l, i<j}^{l+3} b_{i j} x_{i} x_{j} \oplus$
$\sum_{i, j=p, i<j}^{p+3} c_{i j} x_{i} x_{j} \oplus \sum_{i, j=q, i<j}^{q+3} d_{i j} x_{i} x_{j} \oplus \sum_{i=t}^{t+3} e_{i} x_{i}$
where

$$
k+3<l, l+3<p, p+3<q, q+3<t, \sum_{i, j=k}^{k+3} a_{i j}=\sum_{i, j=l}^{l+3} b_{i j}=\sum_{i, j=p}^{p+3} c_{i j}=\sum_{i, j=q}^{q+3} d_{i j}=4
$$

$\left\{a_{i j}, b_{i j}, c_{i j}, d_{i j}, e_{i}\right\} \in\{0,1\}$.
Here the signs $\oplus,+, \Sigma-$ are meant as logical addition on $\bmod 2$.
Here a mum of the form $\sum_{i, j=w}^{w+3} q_{i j} x_{i} x_{j}$ and $\sum_{i=v}^{v+3} e_{i} x_{i}$ is called the group of elements of the statement F. In addition, the groups of different equations (statements) of the G system do not match in pairs.

The method for solving the system G consists in compact representations of F_{i} by grouping elements by introducing new variables, transforming the latter into d.n.f. and their simplification. The search for solutions to the system G is carried out using the algorithm for solving the system of linear Boolean equations [1-3].

It is easy to see that the groupings of elements in the statements of the G system are applicable only within individual groups. Obviously, elements of different groups are not grouped.

When grouping elements, there are three cases:
a) each variable is included in exactly two elements of the group;
b) one variable participates in three elements, the other - in one and the remaining two - in two elements;
c) two variables in two elements can also be involved in pairs.

Since the groups in one equation do not intersect in pairs, the grouping and introduction of new variables can be done as follows:

1) $x_{i} x_{j}+x_{i} x_{l}+x_{k} x_{j}+x_{l} x_{j}=\left(x_{i}+x_{j}\right)\left(x_{k}+x_{l}\right)=Y_{i j} Y_{k l}$;
2) $x_{i} x_{j}+x_{i} x_{l}+x_{k} x_{i}+x_{i} x_{j}=x_{i}\left(x_{j}+x_{l}+x_{k}\right)+x_{k} x_{l}=x_{i} Y_{j l k}+x_{k} x_{l}$;
3) $x_{i} x_{j}+x_{i} x_{l}+x_{i} x_{k}+x_{k} x_{l}=x_{i}\left(x_{j}+x_{l}\right)+x_{k}\left(x_{i}+x_{l}\right)=x_{i} Y_{j l}+x_{k} Y_{i l}$;
where $Y_{v_{1} v_{2} \ldots v_{z}}=x_{v_{1}}+x_{v_{2}}+\ldots+x_{v_{z}}$.
Thus, when each variable participates twice in a group, the grouping is done in a unique way. (Case I). Otherwise, grouping can be done in two ways (case 2 and 3).

The functional of an arbitrary system α, obtained from G by grouping and changing the variable elements of statements, is denoted as follows:

$$
\Psi_{\alpha}=\sum_{y \in\{Y\}} \varphi_{y}|Y|
$$

here $\{Y\}$ is the set of variables in the system α, φ_{y} is the number of variables in Y, and $|Y|$ is the number of elements in Y.

Example: For $Y_{v_{1} v_{2} \ldots v_{z}}=x_{v_{1}}+x_{v_{2}}+\ldots+x_{v_{z}}$ we have $\left|Y_{v_{1} v_{2} \ldots v_{2}}\right|=z$.
The algorithm for grouping system G from a given class is as follows.Groups of elements of statements of the system G are distinguished. All kinds of groupings are made in groups and new variables are introduced. From each group such groupings of elements are selected so that for the resulting system α the functional Ψ_{α} is the maximum among all functionals Ψ_{β} of the systems β formed from the groupings of the groups of the system G.

It is easy to see that after grouping and introducing new variables, statements F of system G will contain no more than nine e.c. Note that 17 elementary conjunctions are involved in the initial functions F.It is known [4] that for an arbitrary Zhegalkin polynomial $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=U_{1}+U_{2}+\ldots U_{t}$ where U_{i} are elementary conjunctions, $i=\overline{1, t}$ we have the equality
$Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\underset{\sigma_{1}+\sigma_{2}+\ldots+\sigma_{t}=1}{\vee} U_{1}^{\sigma_{1}} \& U_{2}^{\sigma_{2}} \& \ldots \& U_{t}^{\sigma_{t}}$
where $\sigma_{j} \in\{0,1\}$:
$U^{\sigma_{1}}=\left\{\begin{array}{l}U, \text { if } \sigma=1 \\ \neg U, \text { otherwise } .\end{array}\right.$
Obviously, from equality, using transformations of analytic expressions, one can obtain a d.n.f. functions Q.

Let the statement F from G after groupings and change of variables have the form:

$$
F\left(z_{1}, z_{2}, \ldots, z_{l}\right)=\sum_{i=1}^{m} z_{i} z_{i}^{\prime}=\sum_{i=1}^{m} U_{i}
$$

where $\quad m<10, l \leq 18, z_{i}, z_{i}^{\prime} \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\},\left\{Y_{v, w}\right\} ;|v-w| \leq 3 ;$
$v, w=\{1,2, \ldots, n\}, U_{i}=z_{i} z_{i}^{\prime} ; z_{i} z_{i}^{\prime} \in\left\{z_{1}, z_{2}, \ldots z_{l}\right\}, i=\overline{1, m}$.
Here, logical products will be called complex conjunctions (c.c.).
Now consider the problem of transforming Zhegalkin polynomials consisting of complex conjunctions to complex d.n.f. To do this, we use a more optimal method for Electronic computer
(E.C.) decimal representations of e.c. Consider the decimal representation[5-11] $\left(a_{i}, b_{i}\right)$ c.c. $U_{i}(i=\overline{1, m})$.

It's obvious that $c_{i}=0, b_{i}=\sum_{i=1}^{n} \alpha_{i} 2^{n-i},\left|\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right|=2$. Algorithm for converting $F\left(z_{1}, z_{2}, \ldots, z_{l}\right)$ to d.n.f. next:

1) C.c. $U_{i}(i=\overline{1, m})$ can be represented as decimal representations of b_{i};
2) For each conjunction $U_{1}^{\sigma_{1}}, U_{2}^{\sigma_{2}}, \ldots, U_{m}^{\sigma_{m}}$ in disjunction $F\left(z_{1}, z_{2}, \ldots, z_{l}\right)=\underset{\sigma_{1}+\sigma_{2}+\ldots+\sigma_{t}=1}{\vee} U_{1}^{\sigma_{1}} \& U_{2}^{\sigma_{2}} \& \ldots \& U_{t}^{\sigma_{t}}$ where $\sigma_{i} \in\{0,1\}, i=\overline{1, m}$, we write out all the unit coordinates $\left(\sigma_{i_{1}}, \sigma_{i_{2}}, \ldots, \sigma_{i_{k}}\right)$ of the set $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$. With the help of $b_{i 1}, b_{i 2}, \ldots, b_{i k}$ we calculate the decimal representation of the conjunction $U_{i 1}, U_{i 2}, \ldots, U_{i k}$. For the zero coordinates $\sigma_{i j}(j=\overline{k+1, m})$ of the set $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$ we write out $c_{i j}$, which are decimal representations of the c.c. $U_{i j}=z_{t} z_{k}$. From $b_{i j}=2^{t}+2^{k}$ we construct $C_{1}^{i j}=2^{t}$ and $C_{2}^{i j}=2^{k}$ corresponding to the c.c. $\neg z_{t}$ and $\neg z_{k}$;
3) Using $U_{i}=\left\{\neg z_{t}, \neg z_{k}\right\}, i=\overline{1, n-k}$, we construct pairs of all possible s.c. $U_{i j}$ and $\neg z_{1}, \neg z_{2}, \ldots, \neg z_{n-k}$, where $\neg z_{i} \in U_{i}$ and C_{i} correspond to c.c. $\neg z_{1}, \neg z_{2}, \ldots, \neg z_{n-k}$.
4) For decimal representations (b, c), we write out the corresponding s.c. The result of the algorithm will be d.n.f. feature $F\left(z_{1}, z_{2}, \ldots, z_{l}\right)$.

4 SOLUTION OF SYSTEMS OF BOOLEAN NONLINEAR EQUATIONS

Let a system of nonlinear Boolean equations be given, the statements of which consist of disjunctions of complex conjunctions

$$
\left\{\begin{array}{c}
U_{11} \vee U_{12} \vee \ldots \vee \ldots U_{1,11}=1 \tag{18}\\
U_{21} \vee U_{22} \vee \ldots \vee \ldots U_{2,12}=1 \\
\ldots \quad \ldots \quad \ldots \\
U_{m 1} \vee U_{m 2} \vee \ldots \vee \ldots U_{m, 1 m}=1
\end{array}\right.
$$

where $U_{i j}=x_{i_{1}}^{\delta_{1}} x_{i 2}^{\delta_{2}} \ldots x_{i_{k}}^{\delta_{k}} Y_{v_{1}, w_{i}}^{\delta_{(+1)}} \ldots Y_{v_{i}, w_{i}}^{\delta_{(t+1}}$

$$
Y^{\delta}=\left\{\begin{array}{l}
Y, \text { if } \delta=1 \tag{19}\\
\bar{Y}, \text { otherwise }
\end{array}\right.
$$

It is easy to see that the binary set α is a solution to system (18) if and only if there exists an equation

$$
\begin{equation*}
U_{1, i 1} \vee U_{2, i 2} \vee \ldots \vee \ldots U_{m, i m}=1 \tag{20}
\end{equation*}
$$

for which α is the solution.
The algorithm for solving system (18) is as follows: Let $l_{j} \leq l_{1}, l_{2}, \ldots, l_{j-1}, l_{j+1}, \ldots, l_{m}$ or, for simplicity, $l_{j}=l_{1}$.

We organize groups for each complex conjunction (c.c.) $U_{1 i}\left(i=\overline{1, l_{1}}\right)$, from system (18), in which: $U_{1 i}\left\{U_{k, i 1}, U_{k, i 2}, \ldots, U_{k, i t}\right\} \neq 0$.

$$
\left\{\begin{array}{l}
U_{1 i}=1 \tag{21}\\
U_{2, i 1} \vee U_{2, i 2} \vee \cdots \vee U_{2, i_{2}}=1 \\
\quad \cdots \quad \cdots \quad \cdots \\
U_{m, i 1} \vee U_{m, i 2} \vee \cdots \vee U_{m, i t_{m}}=1
\end{array}\right.
$$

The multiplication of subsystem equations (21) is carried out by the method of chains, the product of which includes one s.c., which leads to the form (20). Performing operation $U \& U=U$, we represent equation (20) in the following form:

$$
\begin{equation*}
x_{j_{1}}^{\delta_{1}} x_{j_{2}}^{\delta_{2}} \ldots x_{j_{k}}^{\delta k} Y_{l_{1}, m_{1}}^{\delta(l+1)} Y_{l_{2}, m_{2}}^{\delta(l+2)} \ldots Y_{l_{n}, m_{n}}^{\delta(l n)}=1 \tag{22}
\end{equation*}
$$

With the help of identities:

$$
\begin{align*}
& x_{i} x_{j} Y_{i j}=0, \\
& x_{i} \bar{x}_{j} \overline{Y_{i j}}=0, \\
& \overline{x_{i}} x_{j} Y_{i j}=0, \tag{23}\\
& \bar{x}_{i} \bar{x}_{j} Y_{i j}=0, \\
& U \& \bar{U}=0 .
\end{align*}
$$

we check whether equation (22) has roots.
Next, with the help of transformations:

$$
\begin{array}{ll}
x_{i} x_{j} \overline{Y_{i j}}=x_{i} x_{j}, & \overline{x_{i}} \overline{Y_{i j}}=\overline{x_{i}} \overline{x_{j}}, \\
\overline{x_{i}} x_{j} Y_{i j}=\overline{x_{i}} x_{j}, & x_{i} \overline{Y_{i j}}=x_{i} x_{j}, \\
x_{i} \overline{x_{j}} Y_{i j}=x_{i} \overline{x_{j}}, & x_{j} Y_{i j}=\overline{x_{i}} x_{j}, \\
\overline{x_{i}} \bar{x}_{j} \overline{Y_{i j}}=\overline{x_{i}} \overline{x_{j}}, & \overline{x_{j}} Y_{i j}=x_{i} \overline{x_{j}}, \tag{24}\\
\overline{x_{i} Y_{i j}}=\overline{x_{i}} x_{j}, & x_{j} \overline{Y_{i j}}=x_{i} x_{j}, \\
x_{i} Y_{i j}=x_{i} \overline{x_{j}}, & \overline{x_{j}} \overline{Y_{i j}}=\overline{x_{i}} \overline{x_{j}} .
\end{array}
$$

simplify equation (22).
As a result, we obtain an equation of the form: $x_{t_{1}}^{\delta_{1}} t_{t_{2}}^{\delta_{2}} \cdots x_{t_{k}}^{\delta_{k}} Y_{p_{1}, q_{1}}^{\delta(m+1)} Y_{p_{2}, q_{2}}^{\delta(m+2)} \cdots Y_{p_{1}, q_{t}}^{\delta(m+t)}=1$.
Bearing in mind that $Y_{i j}=x_{i} \bar{x}_{j} \vee \bar{x}_{i} x_{j}, \overline{Y_{i j}}=\overline{x_{i}} \bar{x}_{j} \vee x_{i} x_{j}$. We build a set of equations of the form $x_{t_{1}}^{\delta_{1}} x_{t_{2}}^{\delta_{2}} \cdots x_{t_{k}}^{\delta_{k}} A_{1} A_{2} \cdots A_{t}=1$, here $A_{i},(i=\overline{1, t})$ is obtained from $Y_{p_{i}, q_{i}}^{\delta_{i}}$ as follows:

$$
\begin{align*}
& A_{i} \in\left\{\left(\overline{x_{p_{i}}}, x_{q_{i}}\right)\left(x_{p_{i}}, \overline{x_{q_{i}}}\right)\right\} \text {, if } \delta_{i}=1, \tag{25}\\
& A_{i} \in\left\{\left(x_{p_{i}}, x_{q_{i}}\right)\left(\overline{x_{p_{i}}}, \overline{x_{q_{i}}}\right)\right\} \text {, if } \delta_{i}=0 .
\end{align*}
$$

Simplifying $x \& x=x$ and discarding combinations in which the situation $x \& \neg x=0$ arises, we obtain a set of equations of the form $x_{i_{1}}^{\delta_{1}} \& x_{i_{2}}^{\delta_{2}} \& \ldots \& x_{i_{k}}^{\delta_{k}}=1$, for each of which we write out the solution $\alpha^{\prime}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, where

$$
\alpha_{\gamma}=\left\{\begin{array}{l}
\delta_{\gamma}, \text { if } \gamma \in\left(i_{1}, i_{2}, \ldots, i_{p}\right) \tag{26}\\
2
\end{array}\right.
$$

5 CONCLUSION

In this paper, separate classes of systems of non-linear Boolean equations above the second degree, given by Zhegalkin polynomials, are investigated. Problems of minimizing special disjunctive normal forms obtained from the Zhegalkin polynomial above the second degree of special classes are solved. A criterion for the absorption of complex conjunctions by a neighborhood of the first order of conjunctions of propositions of a separate class of systems of non-linear Boolean equations of higher degree two, given by Zhegalkin polynomials, is proved.

REFERENCES

[1] Kabulov, A., Baizhumanov, A., Saymanov, I., Berdimurodov, M. "E_ective methods for solving systems of nonlinear equations of the algebra of logic based on disjunctions of complex conjunctions". 2022 International Conference of Science and Information Technology in Smart Administration, ICSINTESA 2022, 2022, pp. 95_99
[2] Kabulov, A., Baizhumanov, A., Saymanov, I., Berdimurodov, M. "Algorithms for Minimizing Disjunctions of Complex Conjunctions Based on First-Order Neighborhood Information for Solving Systems of Boolean Equations". 2022 International Conference of Science and Information Technology in Smart Administration, ICSINTESA 2022, 2022, pp. 100_104
[3] E. Navruzov and A. Kabulov, "Detection and analysis types of DDoS attack,"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 2022, pp. 1-7, doi: 10.1109/IEMTRONICS55184.2022.9795729.
[4] A. Kabulov, I. Saymanov, I. Yarashov and F. Muxammadiev, "Algorithmic method of security of the Internet of Things based on steganographic coding,"2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 2021, pp. 1-5, doi: 10.1109/IEMTRONICS52119.2021.9422588.
[5] A. Kabulov, I. Normatov, E. Urunbaev and F. Muhammadiev, "Invariant Continuation of Discrete Multi-Valued Functions and Their Implementation," 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 2021, pp. 1-6, doi: 10.1109/IEMTRONICS52119.2021.9422486.
[6] A. Kabulov, I. Normatov, A.Seytov and A.Kudaybergenov, "Optimal Management of Water Resources in Large Main Canals with Cascade Pumping Stations," 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 2020, pp. 1-4, doi: 10.1109/IEMTRONICS51293.2020.9216402.
[7] Kabulov, A.V., Normatov, I.H. (2019). About problems of decoding and searching for the maximum upper zero of discrete monotone functions. Journal of Physics: Conference Series, 1260(10), 102006. doi:10.1088/1742-6596/1260/10/102006
[8] Kabulov, A.V., Normatov, I.H. Ashurov A.O. (2019). Computational methods of minimization of multiple functions. Journal of Physics: Conference Series, 1260(10), 10200. doi:10.1088/1742-6596/1260/10/102007
[9] Yablonskii S.V. Vvedenie v diskretnuyumatematiku: Ucheb. posobiedlyavuzov. -2e izd., pererab. idop. -M.:Nauka, Glavnayaredaksiya_ziko-matematicheskoy literature, -384 s .
[10] Djukova, E.V., Zhuravlev, Y.I. Monotone Dualization Problem and Its Generalizations: Asymptotic Estimates of the Number of Solutions. Comput. Math. and Math. Phys. 58, 2064_2077 (2018). https://doi.org/10.1134/S0965542518120102
[11] Leont'ev, V.K. Symmetric boolean polynomials. Comput. Math. and Math. Phys. 50, 1447_1458 (2010). https://doi.org/10.1134/S0965542510080142
[12] Nisan, N. and Szegedy, M. (1991). On the Degree of Boolean Functions as Real Polynomials, in preparation.
[13] RamamohanPaturi. 1992. On the degree of polynomials that approximate symmetric Boolean functions (preliminary version). In Proceedings of the twenty-fourth annual ACM symposium on Theory of Computing (STOC '92). Association for Computing Machinery, New York, NY, USA, 468_474. https://doi.org/10.1145/129712.129758.
[14] Gu J., Purdom P., Franco J., Wah B.W. Algorithms for the satis_ability (SAT) problem:A Survey // DIMACS Series in Discrete Mathematics and Theoretical Computer Science. 1997.Vol. 35. P. 19_152.
[15] Goldberg E., Novikov Y. BerkMin: A Fast and Robust SAT Solver // Automation andTest in Europe (DATE). 2002. P.142_149.

[^0]: ${ }^{1}$ Ph.D. ,Associate Professor of the Department of Mathematics, Shymkent University ORCID: 0009-0007-1309-548, absattar52@mail.ru
 ${ }^{2} \mathrm{PhD}$, the Department of Mathematics, Shymkent University, Utebayeva57@mail.ru
 ${ }^{3}$ Ph.D. ,Associate Professor of the Department of Mathematics, Shymkent University ORCID:0000-0002-7471-5098 Kobeebazagi82@mail.ru
 Araştırma Makalesi/Research Article, Geliş Tarihi/Received: 27/04/2023-Kabul Tarihi/Accepted: 11/05/2023

