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Department of Mathematics, Middle East Technical University, Ankara, Turkey
muhid@metu.edu.tr

Research Paper Received: 27.04.2023 Revised: 08.06.2023 Accepted: 19.06.2023

Abstract—Cryptographic parameters such as secret keys, should be chosen randomly and at the same time it should not be so
difficult to reproduce them when necessary. Because of this, pseudorandom bit (or number) generators take the role of true random
generators. Outputs of pseudorandom generators, although they are produced through some deterministic process, should be
random looking, that is not distinguishable from true random sequences. In other words they should not follow any pattern. In this
paper we propose a new approach using graph theory, to determine the expected value of the index at which a fixed pattern start to
appear in a random sequence for the first time. Using the method proposed, a recursion for the number of paths of length n starting
from a pattern and never coming back to that pattern can be computed. By means of these recursions, we obtain the probabilities
for the indexes at which a fixed pattern appears in the sequence for the first time. Using these expected values and comparing them
with the observed values a randomness test can be defined. In this work patters are traced through the sequence in an overlapping
manner.
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1. Introduction

The concept of random sequences is vital in
cryptography and also in many other fields varying
from statistic to computer simulations. In cryptog-
raphy, random sequences are needed not only in
symmetric key encryption or key generation but
also for generation of primes for RSA encryption,
initialization vectors, salts in hash functions and the
like.

Sources of True Random Number Generators
(TRNG) are usually some complicated physical
events such as lightnings or atmospheric or thermal
noises and hence reproduction of them are usually
very difficult if not impossible and hence they

are not practical in cryptographic applications. The
solution for this problem is Pseudo Random Num-
ber Generators (PRNG). PRNG produces random
looking sequences from short random seeds, by
making use of deterministic algorithms. Sequences
produced by PRNGs must behave like those ob-
tained from TRNGs, that is, they should not contain
any recognizable pattern or an order.

In order to be used safely in cryptography,
PRNG’s and their outputs must be tested in terms of
randomness from many different aspects. A set of
statistical randomness tests, called a test suite, can
be used to make sure that there is no weakness in the
randomness of the sequence that will be used. There
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are many documents outlining how these statistical
randomness test can be designed, [1] gives a detailed
information on this.
There are many tests defined in the literature [2],
[3], [4], [5], [6], [7], [8], [9] are some of them.
Also many test suites are available in the literature
[10], [11], [12], [13], [14], [15].

The number of rounds at which a block cipher
achieves randomness is one of the most important
design criteria. Soto et. al.[16] used this idea and
analyzed AES competition finalist algorithms from
this point of view, using the NIST test suite [15]. In
the NIST test suite, there are two randomness tests
considering the number of occurrences of a pre-
defined template in a sequence, namely the overlap-
ping template matching test and the non overlapping
template matching test. Their computations is valid
only for the template B = 111111111. In fact, the
probabilities changes depending on the period of the
template. In [17], the classification of all possible
templates according to their period is given and for
each template the exact values of the probabilities
are evaluated using generating functions. Finally a
new statistical randomness test is proposed.

In this work, we propose a new approach to calcu-
late the probabilities for overlapping templates using
a graph theoretical method. Using the obtained
values a randomness test can be defined following
the steps described in [1].

The organization of the paper is as follows. In
section 2, we propose the problem, and then define
reversed graph with its transition matrix, and we
state and prove two theorems. In section 3, we give
probability values for the pattern 010, and in section
4, we give recursions with initial values for the
other patterns of length 3. In section 5, we listed
characteristic polynomials for all patterns of length
4, from which recursions and then probability values
can be derived. In section 6, we derived an explicit

Table 1.
A binary sequence example

index j 1 2 3 4 5 6 7 8 9 10 · · ·
rj 1 0 0 1 1 0 0 1 0 1 · · ·

formula for the generating function of the probabil-
ity sequence of the pattern 010, and computing its
derivative at 1, we obtain the expected value of the
first occurrence of the pattern in a random sequence.
We finish the paper with a conclusion.

2. Overlapping Blocks

Let {ri} = r1, r2, r3, . . . be a binary sequence and
P = b1b2 · · · bl be a fixed pattern. In this paper the
formulas for the followings are given:

• For each k, the probability Pk, corresponding
to the first occurrence of the pattern P to be at
the position k, is calculated.

• Let j be the first observed position of P in the
sequence. The expected value of j is calculated.

For example, considering the binary patterns of
length three, for the case P = 010, corresponding
to the integer 2, consider the sequence {ri} given
in the binary sequence example given in Table 1.

The first occurrence of the pattern P = 010 is
at the seventh position. Using the integers aj corre-
sponding to (rj, rj+1, rj+2)2 ∈ {0, 1, 2, 3, 4, 5, 6, 7},
one can express the same binary sequence {rj}nj=1

in the form {aj}n−2
j=1 as in the Corresponding In-

teger Sequence example given in Table 2. From
this equivalent point of view, the problem we are
interested is to determine the index at which a
pattern, 2 = (010)2 as an example, is expected to
be observed for the first time.

This way, any binary sequence {ri}li=1 can be
identified with the corresponding integer sequence
{ai}l−2

i=1.
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Table 2.
Corresponding Integer Sequence

index j 1 2 3 4 5 6 7 8 · · ·
aj 4 1 3 6 4 1 2 5 · · ·

Table 3.
Examples of paths and the corresponding

sequence

Path 1 Sequence
2 010

3, 7, 6, 5, 2 0111010
3, 7, 7, 6, 4, 1, 2 011110010

Notice that even if the sequence {ri} is a random
binary sequence on the set Z2, the corresponding
sequence {ai} will not be a random sequence on
the set Z8. If ai = 0, as an example, ai+1 can have
only two values, namely 0 or 1. In fact there are
only two possible values for ai+1 depending on ai
and ri+2. More clearly, modulo 8, ai is either 2ai−1

or 2ai−1 + 1 depending on whether ri+2 is 0 or 1.

Consider the directed graph, called adjacent
graph with eighth vertices corresponding to binary
patterns aj = (rj, rj+1, rj+2), given below. Each
vertex of this directed graph has two successor
vertices and two predecessor vertices.

Consider a path on this graph starting from a
vertex and terminating as soon as it reaches to the
vertex 2. Any such path corresponds to a binary
sequence whose first three terms are determined by
the initial vertex. Table 3 lists three of such binary
sequences and their corresponding paths.

Using this graph theoretic terminology, one can
list all of the paths starting from the vertex 0, from
the vertex 1, ... , and finally from the vertex 7 and
terminating as soon as they reach to vertex 2 and
listing their length, one can compute the probability
of this length to be k. An easier method is to make

0
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6 3
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Figure 1. Adjacent Graph

Table 4.
Examples of paths starting from 2 and the

corresponding sequences

Path 1 Path 2 (reversed) Sequence
2 2 010

3, 7, 6, 5, 2 2, 5, 6, 7, 3 0111010
3, 7, 7, 6, 4, 1, 2 2, 1, 4, 6, 7, 7, 3 011110010

use of the reverse graph obtained by reversing the
orientations of the paths. Considering all paths of
length k, starting from the vertex 2 and not coming
back to it, the desired probability can be calculated.
For this purpose, both of the two edges that direct
to the vertex 2 are deleted in the graph Reverse
Graph with Edges to Vertex 2 Deleted below.

Table 4 lists three of such binary sequences and
their corresponding paths.
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Figure 2. Reverse Graph with Edges to Vertex
2 Deleted

Let lk denote the number of all paths, starting
from the vertex 2 of the reversed graph with edges
to 2 deleted, of length (after the initial 2) equal to k.
Note that the pattern 2 is not considered when the
length is determined. For k = 1 and k = 2 complete
list of all paths are as follows:

• There are two paths of length k = 1, namely
2, 1 and 2, 5 and hence

l1 = 2.

• There are three paths of length k = 2, namely
2, 1, 0; 2, 1, 4 and 2, 5, 6 and hence

l2 = 3.

Definition 1 The transition matrix A of a directed
graph is defined as the square matrix with entries

Aij equal to the number of edges in the graph from
the vertex i to the vertex j

Let T denote the matrix obtained from the transition
matrix R of the reversed graph by deleting the
edges between 2 and its predecessor vertices.

T =



1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1



Notice that, since both of the edges to the vertex
2 are deleted, the third column of T is all zero, that
is there is no edge pointing to 2. The third row,
namely 0 1 0 0 0 1 0 0 indicates that the only paths
from 2 are to 1 and to 5. Moreover the rank of T

which can be computed as the number of linearly
independent columns of T is 4. Consider T , T 2 and
T 3

T =



1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1


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T 2 =



1 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1



T 3 =



1 0 0 1 1 0 1 1

1 0 0 1 1 0 1 1

1 0 0 1 1 0 1 1

1 0 0 1 1 0 1 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 1 0 1 0 1 1 1

1 1 0 1 0 1 1 1


Each entry 1 in the third rows that corresponds to

2, of all of these three matrices above is in one to
one correspondence with a path having the vertex 2
as a starting point. More clearly,

• Two paths 2, 1 and 2, 5 of length 1 are repre-
sented by the two 1’s in the third row of matrix
T .

• Three paths 2, 1, 0 , 2, 1, 4 and 2, 5, 6 of length
2 are represented by the three 1’s in the third
row of matrix T 2.

• Five paths 2, 1, 0, 0 ; 2, 1, 0, 4 ; 2, 1, 4, 6 ;
2, 5, 6, 3 and 2, 5, 6, 7 of length 3 are represented
by the five 1’s in the third row of matrix T 3.

We claim that this is not a coincidence. In fact,

Theorem 2 Consider the reversed graph with edges
to 2 deleted. Then (T k)ij = T k

ij , that is the (i, j)th

entry of the matrix T k, is equal to the number of
all paths in this graph starting from the vertex i to
vertex j of length k.

Proof: We will use mathematical induction. For
k = 1, it is true by the definition of matrix T .
Assume the statement is true for k, and consider
T k+1. Recall the matrix multiplication: To obtain
T k+1
ij we multiply the ith row of T with jth column

of T k. That is;

T k+1
ij =

∑
r=0

Tir · T k
rj

Here Tir is the number of paths from vertex i to
vertex r of length 1, and T k

rj is, by the induction
hypothesis, the number of paths from vertex r to
vertex j of length k and hence the product Tir · T k

rj

summed over the index r gives the total number of
paths of length k + 1 from vertex i to vertex j.

Recall that aim of this paper is to count the
number of all paths of length k, starting from a
fixed vertex, as an example from vertex 2. In other
words, to find the sum of all entries in the 3rd row
of T k. For this reason we want to find T k, or sum
of all its entries in a row, in a practical way; for
example in a recursive manner. We first illustrate
this idea of computing sum of all elements in a row
of a matrix using recursion, by an example. First of
all we need to obtain a polynomial satisfied by the
matrix.

Recall that eigen values of a square matrix n× n

matrix A are roots of the characteristic polynomial
of the matrix, defined by det(A − λI) where I

denote the n× n identity matrix. Trace of a square
matrix is defined as the sum of diagonal elements.
Equivalently, it is equal to sum of the eigenvalues
of the matrix. Similarly determinant is equal to the
product of eigenvalues.

Example 1 Consider two bit patterns 0 = 00,

1 = 01, 2 = 10, and 3 = 11. The two possible
successors of each of these four patterns are;
0 → 0, 1 1 → 2, 3 2 → 0, 1 3 → 2, 3

and hence, data for the reversed graph is;
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0 → 0, 2 1 → 0, 2 2 → 1, 3 3 → 1, 3.

In other words, the transition matrix T of the
corresponding reversed graph is

T =


1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1

 .

Recall that trace of a square matrix is defined
as the sum of diagonal elements. Equivalently, it
is equal to sum of the eigenvalues of the matrix.
Similarly determinant is equal to the product of
eigenvalues. Eigen values of a square matrix n× n

matrix A are roots of the characteristic polynomial
of the matrix, defined by det(A−λI) where I denote
the n× n identity matrix.

Notice that this matrix has trace equal to 2 and
determinant equal to 0. We can compute powers of
this matrix easily and get

T 2 =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 = J, T 3 = 2J,

T 4 = 4J, T 5 = 8J

and hence for k ≥ 4, by induction we have, T k =

2T k−1. From this observation we see that matrix T

satisfies the equation

x3(x− 2) = 0.

Therefore for k ≥ 4, the minimal polynomial of T k

is (x− 2).

In the general case, T satisfies the polynomial

xn+1 = trace(T )xn − det(T )xn−1.

This polynomial equation defines a recursion that
that can be used to compute powers of the matrix T

easily: a linear combination of 1 and 2 less powers
of the same matrix gives the power of the matrix.
Moreover, the sum of entries in the ith row of T k

can be computed easily by means of this recursion,
and hence the total number of paths from vertex i

can be obtained. As an example, if A is a 2 × 2

matrix, using the notation

An =

[
an bn
cn dn

]
,

and the recursion xn+1 = trace(T )xn−det(T )xn−1,
the following equations can be written

cn+1 = trace(T )cn − det(T )cn−1

dn+1 = trace(T )dn − det(T )dn−1

Notice that the same linear recurrence relation is
also satisfied by a sum of entries of the matrix in any
fixed row or fixed column of the matrix. example if

A =

[
1 2

3 4

]
, then A2 =

[
7 9

15 22

]

and hence, to compute

A3 =

[
a3 b3
c3 d3

]
,

using the formula c3 = trace(A)c2 − det(A)c1, one
obtains c3 = 5(15)− (−2)3 = 81. Similarly we can
easily compute d3 and hence c3 + d3.

This way a recursion to compute the sum of all
entries in a fixed row of Ak is obtained. This sum,
in the case A is the reverse of transition matrix,
equal to the total number of paths of length k

starting from a certain vertex defined by the row.
The degree of the recursion is the same as the
degree of the characteristic equation of A.
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Now, turning back to the 8 × 8 matrix T with
characteristic polynomial x5(x3− 2x2+x− 1), one
can can write

ln+3 = 2ln+2 − ln+1 + ln

as a recursion satisfied by ln and hence the following
theorem can be stated:

Theorem 3 Let ln denote the number of all paths
of length n starting from the vertex 2 and never
coming back to 2. Then ln satisfies the following
recursion relation

ln+3 = 2ln+2 − ln+1 + ln.

By convention l0 = 1, and with simple counting l1 =

2, l2 = 3 and l3 = 5 (and hence l4 = 9, l5 = 16, . . .

and so on).

3. Probability Computations of Overlap-
ping Blocks

Recall that on the reverse graph, the total number
of paths that starts with 2 and the pattern 2 never
appears again, of length k, is denoted by lk and lk
satisfies certain recursion. In other words, lk is the
cardinality of the set

{(0, 1, 0, b1, b2, . . . , bk) ∈ Zk+3
2 :

(bi, bi+1, bi+2) ̸= (0, 1, 0) = 2}

This means that, lk of all 2k+3 possible sequences,
of bit length k + 3 satisfies the condition: of being
of length k and the pattern 2 does not appear. This
means that

• For sequences of bit-length 4 : (r0r1r2r3). There
are 16 of them and each contains 2 patterns of
length 3: r0r1r2 and r1r2r3. Pattern length is 2

and exactly l1 = 2 of them starts with (010),
and does not reach to (010)2 = 2 again. They
are; 0100 and 0101. Hence the probability is
P4 =

l1
24

= 2
16

= 1
8
.

• For sequences of bit-length 5 : (r0r1r2r3r4).

There are 32 of them and each contains 3

patterns of length 3: r0r1r2, r1r2r3 and r2r3r4
and hence pattern length is 3. Exactly l2 = 3 of
them starts with (010), and does not reach to
2 again. These are; 01000, 01001 and 01011.
Hence P5 =

l2
25

= 3
32
.

• Similarly, P6 = l3
26

= 5
64
, for sequences of

length 7 is P7 = l4
27

= 9
128

, for sequences of
length 8 is P8 =

l5
28

= 16
256

, and so on.

Consider random binary sequence of length i+3

and let Pi denotes the probability that this sequence
starts with 2 and never comes back to 2. We have
seen that

Pi =
li−3

2i

Defining l0 = 1 for convention, (and hence P3 =
1
8
), notice that

P3+P4+P5+· · · = 1

8
+
1

8
+

3

32
+

5

64
+

9

128
+· · · = 1.

Now we can define a randomness test, that is χ-
square goodness of fit test, by defining the five boxes
as;

• 2 appears for the first time at position 0 or 1:
Probability of this is 1

8
+ 1

8
= 1

4
= 0.25.

• 2 appears for the first time at position 2 or 3 or
4: Probability of this is 3

32
+ 5

64
+ 9

128
= 31

128
=

0.242188.

• 2 appears for the first time at position 5 or 6 or
7 or 8 or 9: Probability of this is 16

256
+ 28

512
+

49
1024

+ 86
2048

+ 151
4096

= 0.243896.

• 2 appears for the first time at position between
10 and 35: Probability of this is 265

8192
+ 465

16384
+

· · ·+ 20330163
8589934592

= 0.246972054

• 2 appears for the first time at position after 35:
Probability of this is 0.016944.

Notice that in order to be able to use this bin values
in χ square goodness of fit test, the number of
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overlapping blocks of length three should be at least
5× 1

0.016944
≈ 295, and hence length of the sequence

should be at least 297.

4. Other patterns of length 3

Notice that all definitions, explanations, theorems
to this point are valid for the pattern 2 = (101).

Now we will consider the other patterns of length
l = 3. There are eight such patterns: 0,1,2,3,4,5,6,7.
Lets denote the transition matrix of the reverse
graph with edges between i and its predecessor
vertices deleted by T(i). Then the matrix T above
in this new notation is T(2).

T(0) =



0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1


and its characteristic equation is x5(x3−x2−x−1).

T(1) =



1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1


and its characteristic equation is x5(x3 − 2x2 + 1).

T(2) =



1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1


and its characteristic equation is x5(x3−2x2+x−1).

T(3) =



1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1


and its characteristic equation is x5(x3 − 2x2 + 1).

T(4) =



1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1


and its characteristic equation is x5(x3 − 2x2 + 1).

T(5) =



1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1


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and its characteristic equation is x5(x3−2x2+x−1).

T(6) =



1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1


and its characteristic equation is x5(x3 − 2x2 + 1).

T(7) =



1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0


and its characteristic equation is x5(x3−x2−x−1).

Thus

• T(0) = T(7) : and the recursion is

ln+3 = ln+2+ln+1+ln with l0 = 1, l1 = 1, l2 = 2.

• T(1) = T(3) = T(4) = T(6) : and the recursion is

ln+3 = 2ln+2 − ln with l0 = 1, l1 = 2, l2 = 4.

• T(2) = T(5) : and the recursion is

ln+3 = 2ln+2−ln+1+ln with l0 = 1, l1 = 2, l2 = 3.

As for the pattern 010, for each of the other
patterns of length 3, using these recursions
obtained above, corresponding randomness tests
can be defined.

5. Blocks of length bigger than 3

As mentioned above, for longer fixed patterns of
length 3 or more, the same arguments work. As
an example, for the pattern 0000 of length 4, the
transition matrix and its characteristic polynomial
and similarly characteristic polynomials of all other
patterns of length 4 are given below. Using these
polynomials, one can easily obtain recursions as
above and hence compute probability and expected
values for each of these patterns.

T(0) =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1


and its characteristic equation is x16 − x15 − x14 −
x13 − x12 = x12(x4 − x3 − x2 − x− 1)

Similarly we obtain the following characteristic
polynomials:

CP (T(0)) = x12(x4 − x3 − x2 − x− 1)

= CP (T(15))

CP (T(1)) = CP (T(14)) = CP (T(7)) = CP (T(8))

= (x4 − 2x3 + 1)x12

CP (T(2)) = CP (T(13)) = CP (T(4)) = CP (T(11))

= x12(x4 − 2x3 + x− 1)

CP (T(3)) = CP (T(12)) = x12(x4 − 2x3 + 1)

CP (T(5)) = (x4 − 2x3 + x2 − 2x+ 1)x12

= CP (T(10))

CP (T(6)) = CP (T(9)) = x12(x4 − 2x3 + x− 1)
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6. Expected Values

Here we will derive the expected value formula
for the pattern 101. Using the recursions obtained
above, it is straightforward to derive corresponding
formulas for the other patterns.

Recall that if a random binary sequence generator
stops the generation as soon as 2 = (010) appears
and if Pi denotes the probability that length of this
sequence is i, we have

Pi =
li−3

2i
.

Let E denotes the expected value of the length of

such a sequence. Then E =
∞∑
i=3

i · Pi.

Consider the generating function of the sequence
{Pi}, say F (x) =

∑
Pix

i. Then F (1) is the sum
of all probabilities and hence F (1) = 1. Moreover,

since F ′(x) =
∞∑
i=1

i · Pi · xi−1, we have F ′(1) = E.

Now recall that for the pattern 101, the sequence
{li} satisfies the recursion ln+3 = 2ln+2 − ln+1 + ln
where l0 = 1, l1 = 2, l2 = 3, l3 = 5, . . . . Moreover
P0 = 0, P1 = l0

23
, P2 = l1

24
, . . .. Thus, using this

recursion, we can write

F (x) = P1x+ P2x
2 + P3x

3 + · · ·+ Pnx
n + · · ·

=
l0
23
x+

l1
24
x2 +

l2
25
x3

+
2l2 − l1 + l0

26
x4 +

2l3 − l2 + l1
27

x5 + · · ·

Hence, F (x) can be expressed as rational function:

F (x) =
1

8
x+

2

16
x2 +

3

32
x3

+

(
l2
25
x3 +

l3
26
x4 + . . .

)
x

−
(
l1
24
x2 +

l2
25
x3 + . . .

)
x2

+

(
l0
23
x+

l1
24
x2 + . . .

)
x3

Substituting l0 = 1, l1 = 2, l2 = 3, we obtain,

F (x) =
x

8
+

x2

8
+

3

32
x3 +

[
F (x)− 1

8
x2 − 1

8
x

]
x

− 1

4

[
F (x)− 1

8
x

]
x2

+
1

8
[F (x)]x3

Rearrangement of the terms leads to(
1− x+

x2

4
− x3

8

)
F (x)

=
x

8
+

x2

8
+

3x3

32
− x3

8
− x2

8
+

x3

32
=

4x

32
and, finally we obtain

F (x) =
x

8− 8x+ 2x2 − x3
.

Taking derivative, we obtain

F ′(x) =
(8− 8x+ 2x2 − x3)− x(−8 + 4x− 3x2)

(8− 8x+ 2x2 − x3)2
.

Thus the expected value of the index at which the
pattern 2 appears for the first time is

F ′(1) = 8.

Using this expected value, a statistical test can be
defined to judge whether the first appearance of the
pattern, say 101 in the sequence under consideration
is too late or too early or as expected.

7. Conclusion

In this work we introduced a new approach to
randomness test based on the overlapping blocks,
using graph theory. We give all details, including
box bounds for χ-square goodness of fit test, for the
pattern 010 and for the other patters, explained how
to generalize. Finally we computed the expected
value again for the pattern 010, and explained how
to generalize to other patterns. As the theorems
proven in this paper can easily be generalized to
patterns of longer size, as a future work, we plan
to extent this study and define randomness tests for
longer patters.
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