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Abstract 

In this work, the resonant nonlinear Schrödinger equation (RNLSE) with anti-cubic 

nonlinearity is considered. The Jacobi elliptic function method (JEFM) has been 

employed on the RNLSE. The many new forms of dark, dark-bright, singular, 

combo-singular, bright-singular solitons and periodic solutions for governing model 

are reached. Furthermore, the graphics of solutions are presented. 

 
 

 
1. Introduction 

 

The main topic of many scientific studies especially 

in mathematical physics and engineering is related to 

the nonlinear equations (NLEs).The NLEs exist in all 

research fields, such as fluid mechanics, plasma 

physics, biology, chemistry, and so on. The solitons 

are obtained by dissolving nonlinear structures. 

Solitons have been theoretically predicted for more 

than 50 years. Solitons preserves their shape and 

speed and continue to maintain these properties after 

any interaction moment. The optical solitons which 

are the basis of optical fiber are the most important 

branches of study in the field of soliton [1]. Optical 

fibers are commonly used in telecommunication, 

broadcasting, medical field, defense industry have 

many commercial and scientific applications. Optical 

Soliton solutions including bright and dark solitons 

are a class of exact solutions that have diverse 

applications in the wide areas of applied sciences 

from sciences to engineering. The nonlinear 

Schrödinger equations (NLSE) are one of the basic 

equations from which optical solitons are derived [2]. 

Several approaches have been deployed on NLSE to 

'/G G expansion method [3], Fan sub-equation 

method [4], generalized projective Riccati equation 

method [5], the Sub-ODE method [6], the exp-
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function method [7], the F-expansion method [8], 

Kudryashov method [9]-[10], modified extended tanh 

expansion method [11] and so on. One of these 

analytical techniques, the JEFM with a history of 20 

years is an effective method in finding optikal soliton 

solutions of NLSE [12]-[14]. 

In this work, we consider the RNLSE having anti-

cubic nonlinearity 

4 2 4

1 2 3
( ) = 0xx

t xx
i     

 
           


    (1)  

here ),( tx  is a wave profile by complex value.   

is the coefficient of resonant term,   is the 

coefficient the group velocity dispersion (GVD). 

21,  and 3  are the coefficients of anti-cubic, cubic 

and quintic terms, respectively [15]-[16]. 

The aim of the current work is to find some 

new soliton solutions of the equation (1) by JEFM. In 

accordance with this purpose, this paper is organized 

as follows. In section 2, a detailed description of the 

JEFM is presented. Section 3 is devoted to the 

applications of the proposed method to the RNLSE 

with anti-cubic nonlinearity. Section 4 contains 

discussion and results. Also, Figures of optical 
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solitons obtained with technique are shown. 

Consequently, Section 5 contains Conclusion. 

2. Material and Method 

 

Let us take up a nonlinear partial differential equation 

(NPDE) unknown function u  and free variable 

( , );x t  

( , , , ,...) = 0x t xxN u u u u                                                 (2)                                                                                                         

and by considering the travelling wave transformation 

( , ) = ( ), =u x t U x vt                                           (3)                     

[17]. Putting (3) into (2) give in an ODE of the form  

( , , , , ...) = 0.
' '' '''

N U U U U                                               (4)                                                           

After that, we received general form of (4) as follow 

=0

( ) = ( )
n

i

i

i

U                                                              (5)                                                                     

where i  are the constans and )(  satisfies the 

following auxiliary ODE, 

4 2
( ) = ( ) ( )

'
                                         (6) 

where ,  and   are the real constans. The value of 

n  is found using the balancing principle of 

homogeneity in (4). 

Substitting (5) into (4), we get a polynomial of ).(  

Equating each coefficient of polynomial to zero. We 

derived a system of algebraic equations which can be 

solved by the aid of Mathematica program [18]. 

            It is well-known that (6) has families of Jacobi 

elliptic functions (JEFs) solutions. In this 

( , ), ( , ), ( , )sn m ns m sc m    and so on are the same 

types of JEFs. In this, m denotes the modulus of 

JEFs, where 0 < < 1m . The JEFs degenerate into 

hyperbolic function when 1m   and turn into 

trigonometric functions 0m   [19]. 

 

2.1. Application of Method 

We consider the following wave transformation for 

the conservation of (1) in to the nonlinear ODE, 

ˆ( , ) = ( ) , = , =
i

x t g e x vt x t


               (7) 

where ĝ  is the functional form of the complex wave 

profile. Substituting (7) into (1), and we get the 

following forms of the imaginary and real parts as 

below 

0=ˆ2ˆ '' ggv                                                        (8)                                                                                                                                

and 
2 3 3 5

1 2 3
ˆ ˆ ˆ ˆ ˆ( ) ( ) = 0.

''
g g g g g       


        (9) 

The imaginary part of (1) yields 

.2= v  (10)                                                                                                                                        

In real part, by balancing 
''ĝ  with 

5ĝ  in (9), we come 

up = 1 / 2n . So  

.)(=)(ˆ 1/2g  (11)                                                                                                                                 

By putting (11) into (9) and multiplying by 
3/24 , we 

obtain the following ODE 

2 2 2 3 4

1 2 3
2( ) ( ) 4( ) 4 4 4 = 0.

'' '
                           

 (12) 

Now balancing 
''  with 

' , we get 1=n . So from 

(5)  

0 1
( ) = ( )       (13)                                                                                                                         

where 0  and 1  are constans and 01  . 

Substituting (13) and its necessary 

derivatives into (12) and collecting all same powers 

terms of ( )  . So we acquire the following system 

2 2 2 3 4 2 2

1 0 0 2 0 3 0 1 1
4 4 4 4 4 = 0                

2 2 3

0 1 0 1 0 1 0 1 2 0 1 3 0 1
8 2 8 2 12 16 = 0                       

2 2 2 2 2 2 2 2

1 1 1 1 2 0 1 3 0 1
4 4 12 24 = 0                 

3 3

0 1 0 1 2 1 3 0 1
4 4 4 16 = 0            

2 2 4

1 1 3 1
4 3 4 = 0.      

Solving the algebraic equations with the 

Mathematica, and so results as following 

2

0 1

2 3

3 ( )4 4
= , =

3 2

    
 

 

   
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2 2

2 3 3 3

3

1
= ( 9 8 32 8 )

32
     


       

2 2 4 2 4 2

2 3 3 2 3 2 3 2 32

3

1
= (9 96 3 27 108 16384 ).

96
         


        


 

Putting these values in (13), we have solution function 

of )( . Subsequently, considering that (11), exact 

solution form (1) as follow 

1/ 2

2 2

2 3

3 3 ( )1
( , ) = 8 2 8 ( )

6
.

i
x t e

  
    

 

 
    

   
      
   

 

(14) 

Considering the JEFs for ( )  , the optical soliton, 

trigonometric function and singular solutions of (1) 

are obtained. 

Case 1: If 
2 2

= , = (1 ), = 1m m    , then 

( ) = sn   . JEF solution  

1/2
22 2 2

2 3

3 ( )4 4
ˆ( ) = ( ) .

3 2

mm m
g sn

      
 

 

     


 
 
 
 

(15) 

We can obtain the dark optical soliton solution 1m   

1/2
2

2 3

3( )4 2 4 2
( , ) = tanh( ) .

3 2

i
x t x vt e

    

 

   
  

 
  
 

(16) 

 

Figure 1. The 3D plot and contour plot for solution 

of Eq. (16). Values chosen are 0.1=1  , 2 = 2,

1=3 , 1=  and 1=  . 

Case 2: If 
2 2

= 1, = (1 ), =m m   , then 

( ) = ns   . So, we get the following Jacobi elliptic 

function solution  

1/2

2 2 2 2

2 3

3 3 ( )1
ˆ( ) = 8 2 2 8 2 2 ( ) .

6
g m m ns

  
       

 

 
     

  
    

  

  

(17) 

We can obtain the singular solution 1m   

1/2
2

2 3

3( )4 2 4 2
( , ) = coth( ) .

3 2

i
x t x vt e

    

 

   
  

 
  
 

  

(18) 

 

Figure 2. The 3D plot and contour plot for solution 

of Eq. (18). Values chosen are 0.1=1  , 2 = 5,

1=3 , 1=  and 1=  . 

Case 3: If 
2 2

= 1 , = 2 , = 1m m    , then 

( ) = sc   . So, we get  

1/2
2

2 2 2 2

2 3

3 3 ( 1)( )1
ˆ( ) = (8 2 )( 2 4 ) 2 ( 2 ) ( ) .

6

m
g m m sc

  
     

 

 
       

  
  

  
  

(19) 

We obtain the travelling wave solution including of a 

trigonometric function when 0m 
1/2

2 2

2 3

3 31
( , ) = 2(4 ( 1 4 ) 2 ) tan( ) .

6

i
x t x vt e

  
   

 

 
      

  
    

  

 

(20) 
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Figure 3. The 3D plot and contour plot for solution 

of Eq. (20). Values chosen are 1=1 , 2=2 ,

2=3  , 2=  and 1=  . 

Case 4: When 
2 2

= 1, = 2 , = 1m m   , then 

( ) = cs   . So, from (14)  

1/2

2 2 2 2

2 3

3 3 ( )1
ˆ( ) = 2(4 ( 2 4 ) ( 2 )) ( ) .

6
g m m cs

  
     

 

 
       

  
    

  

(21) 

If  0,m   we can obtain the travelling wave solution 

function  

1/2

2 2

2 3

3 31
( , ) = 8 4 8 4 cot( ) .

6

i
x t x vt e

  
   

 

 
     

  
    

  

(22) 

 

Figure 4. The 3D plot and contour plot for solution 

of Eq. (22). Values chosen are 1=1 , 2=2 ,

2=3  , 2=  and 1=  . 

Case 5: When 

2 2 2
1 1 1

= , = , =
4 2 4

m m m


  
 , 

then ( ) = nc sc    . So, from (14)  

1/2
2

2 2 2 2

2 3

3 3 ( 1 )( )1
ˆ ( ) = 8 (1 ) 8 (1 ) ( ) .

6 2

m
g m m nc sc

  
      

 

  
      

  
  

  
  

(23) 

If 0, m   we can obtain the travelling wave solution 

function  

1/2

2 2

2 3

3 31
( , ) = 8 8 (sec( ) tan( )) .

6 2

i
x t v vt x vt e

  
   

 

 
       

  
    

  

(24) 

 

Figure 5. The 3D plot and contour plot for 

solution of Eq. (24). Values chosen are 2=1 ,

2=2 , 2=3  , 0.1=  and 5=  . 

Case 6: If 

2 2
1 2

= , = , =
4 2 4

m m



 , then 

( ) = ns ds    . So, from (14)  

1/2

2 2 2 2

2 3

3 3 ( )1
ˆ ( ) = 8 (2 8 ) ( 2 ) ( ) .

6 2
g m m ns ds

  
      

 

 
       

  
    

  

(25) 

So, while 1, m   we can obtain the combo singular 

soliton solution  

1/2

2 2

2 3

3 31
( , ) = 8 (1 8 ) (coth( ) csc ( )) .

6 2

i
x t v vt h x vt e

  
   

 

 
       

  
    

  

(26) 
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Figure 6. The 3D plot and contour plot for solution 

of Eq. (26). Values chosen are 2=1 , 2=2 ,

2=3  , 0.1=  and 5=  . 

Case 7: If 
2 2

2 2
> 0, < 0, =

(1 )

m

m






, and this 

conditions, 

2

2 2 2
( ) =

(1 ) 1

m
sn

m m
  

 


 

 
 
 

. So, 

from (14)  

1/2
2 2

2 2 2

2 3

3 ( )8 4
ˆ( ) = .

3 (1 ) 12

m
g sn

m m

    
 

 

    
 

 

     
        

    

(27) 

Specially, if > 0, < 0  and 1, m   we can obtain 

the dark optical soliton solution as follow  

1/2
2

2 3

3 ( )4 4
( , ) = tanh .

3 2 2 2

ix vt
x t e

    

 

    
 

  
     

(28) 

 

Figure 7. The 3D plot and contour plot for solution 

of Eq. (28). Values chosen are 2=1 , 2=2 ,

1=3  , 0.5=  and 2=  . 

Case 8: If 
2 2 4

= 1, = 2, = 1 2 4m m m    , and 

this conditions, ( ) =
dn cn

sn

 
 


. So, we get the 

following function  

1/2

2 2 2 2

2 3

3 3 ( )1
ˆ ( ) = 8 (2 2 ) 8 2 (2 ) .

6

dn cn
g m m

sn

    
    

 

 
     

   
        

(29) 

In this, if  1,m   we can obtain the bright-singular 

optical soliton solution as follow  

 

1/2

2 2

2 3

3 3 ( )1
( , ) = 8 6 8 6 sec ( ) csc ( ) .

6

i
x t h x vt h x vt e

  
   

 

 
      

  
    

  

(30) 

 

Figure 8. The 3D plot and contour plot for solution 

of Eq. (30). Values chosen are 2=1 , 3=2 ,

2=3  , 0.2=  and 2=  . 

Case 9: When 

2
1 1 2 1

= , = , =
4 2 4

m



 , and 

( ) =
1

sn

cn


 


. So, we get the following function  

1/2
2 2 2

2 3

3 ( )8 ( 1 2 8 ) (2 1)
ˆ ( ) = .

6 14

m m sn
g

cn

     


 

      




   
        

(31) 

If  1,m   we can obtain the dark-bright optical 

soliton solution as follow  

1/2

2 2

2 3

3 3 ( )1 tanh( )
( , ) = 8 8 .

6 1 sec ( )2

ix vt
x t e

h x vt

  
   

 

  
    

 

   
        

(32) 
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Also here, while 0m  , we get travelling wave 

solution with the including of trigonometric function 

1/ 2

2 2

2 3

3 3 ( )1
( , ) = 8 8 tan .

6 22

ix vt
x t e

  
   

 

  
      

   
        

(33) 

 

Figure 9. The 3D plot and contour plot for solution 

of Eq. (33). Values chosen are 2=1 , 1=2 ,

2=3  , 1=  and 1=  . 

Case 10: When 

2 2 2

22 2 1
= , = 1 3 1 ,

4 2

m m m
m

  
     

2 2
2 2 1

=
4

m m


  
, and 

2

2 2 2

( ) =

(1 1 1 1 )

m sn cn

sn m dn m

 
 

     

. So, we get 

the following function  

 
1/ 2

2 2 2 2

2 3

1 3 ( )
ˆ ( ) = 16 2 (2 6 1 8 ) (2 1) .

12 14

sn
g m m m

cn

  
    

 

 
       



   
   
   

    

    (34) 

If  1,m   we can obtain the dark-bright optical 

soliton solution as follow  

1/2

2 2

2 3

3 3 ( )1 tanh( )
( , ) = 8 8 .

6 1 sec ( )

ix vt
x t e

h x vt

  
   

 

  
    

 

   
        

(35) 

Also here, while 0m  , we get travelling wave 

solution with the including of trigonometric function 

1/2

2 2

2 3

3 3 ( )1
( , ) = 8 8 tan .

6 2

ix vt
x t e

  
   

 

  
      

   
        

(36) 

3. Results and Discussion 

 

This section contain the graphical representation of 

some new exact traveling wave solutions of the 

equation (1). The software Mathematica is used to 

describe the behavior of wave solutions. These 

solutions include dark solitons, singular soliton, 

trigonometric function solutions, combo singular 

soliton, bright-singular soliton and dark-bright optical 

solitons. The 3D and contour plots for different wave 

solutions of (1) are demonstrated in Figs. 1-9. 
2

( , )x t received while drawing figures. Also, 

< 0  and 
1 3

< 0   are necessary conditions for all 

waves to occur. Under these basic conditions, figures 

are drawn by appropriate selection of the values of 

arbitrary parameters. 

            In Fig. 1, (16) shows dark optical soliton. Fig. 

2 represents the graph of solution given in (18), which 

is singular soliton. In Figs. 3,4 and 5, the graphs for 

(20), (22) and (24) illustrating trigonometric function 

solutions are shown. Fig.6 represents the graph of 

solution given in (26), which is a combo singular 

soliton solution. In Figs. 7 and 8, the graphs for (28) 

and (30) illustrating dark and bright- singular soliton 

solutions respectively are shown. Similarly in Fig. 9, 

the graph for (32) is presented dark-bright optical 

soliton solutions. 

 

4. Conclusion and Suggestions 

 

In this work, we investigate the optical soliton and 

wave solutions of the RNLSE with anti-cubic 

nonlinearity throughthe use of the JEFM. The 

approach is very powerful scheme that first 

transforms the NLSE to an ODE through a complex 

wave transformation. So the coefficients of equal 

power and compared in the obtained ODE’s. Finally, 

the obtained algebraic equation system is solved in 

Mathematica. The 3D and contour plots of dark 

solitons, singular soliton solutions, periodic solutions, 

combo singular solutions, bright-singular soliton and 

dark-bright soliton solutions are also provided along 

with suitable choice of values of arbitrary parameters. 

As a result of the calculations, it has been seen that 

0<  and 0<31  are necessary conditions for 

the formation of soliton and periodic waves. The 

results presented in this research are novel and can be 

a valuable addition in the literature. 
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