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Abstract

In this paper, the Lakshmanan-Porsezian-Daniel (LPD) equation is studied. New analytical
rational solitons to the LPD equation are presented by an ansatz method. Wave solutions of
three types, such as parabolic, trigonometric and hyperbolic function solutions have been
retrieved. All solutions are plotted in 3D to enhance the understanding of their physical
characteristics. These simulations, which represent the behavior of the resulting hyperbolic,
parabolic and trigonometric solitons, are provided by choosing different appropriate values
of the parameters.

1. Introduction

Many researchers in fields such as mathematics, physics, engineering and more are very interested in nonlinear partial equations, since most
physical systems are not linear in nature. The Lakshmanan-Porsezian-Daniel (LPD) equation is a widely known nonlinear partial differential
equation. It is a generalization of the nonlinear Schrödinger equation that includes higher order nonlinear and dispersed terms. In recent
years, it has attracted great attention from mathematicians and physicists. The LPD equation has also been generalized and extended in many
ways, including the addition of external forcing, the inclusion of damping effects, and the consideration of higher-dimensional versions of the
equation. The LPD equation and its variants have been used to model a variety of physical systems in many areas of physics and engineering,
including plasma physics, fluid dynamics, and nonlinear optics, and has been studied extensively from different perspectives such as
integrability, symmetry analysis, solution methods and applications: Ricatti equation [1], tan(ψ(η)

2 )-expansion technique [2], collective
variable [3], modified simple equation method [4], method of undetermined coefficients [5], Darboux transformations [6, 7], Rogue wave
equation [8], the modified auxiliary equation method [9] etc.

This paper investigates the Lakshmanan–Porsezian–Daniel equation [10, 11], a well known partial differential equation that describes the
pulse propagation in an optical fiber which is in the form

iqt +aqxx +bqxt +ζ |q2|q = σqxxxx +β |qx|2q+ γ|q|2qxx +δ |q|4q (1.1)

where the complex valued function q(x, t) depends on space x and time t. The term iqt denotes the temporal evolution of pulse. The group
velocity dispersion and spatio-temporal dispersion are given by a and b, respectively. The fourth-order dispersion and two-photon absorption
are represented by constants σ and δ , respectively. The parameters β and γ indicate the non-linear forms of dispersion.

In this paper, our aim is finding solutions in the form of parabolic, trigonometric and hyperbolic solitons of the LPD equation. First we start
by using traveling wave variables to find a solution for Eq. (1.1). After analyzing the resulting system of equations to find the condition of
its compatibility, it turned out that the structure for the system of equations. At the second stage, a special logarithmic transformation is
applied. At the last stage, three different methods are applied to retrieved equation. The solutions obtained by appropriate selection of some
parameters affecting the shape and velocity of the solitons are observed with three-dimensional plots.
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2. System of Differential Equations Corresponding to Eq. (1.1)

In order to find soliton solutions of Eq. (1.1), we use the traveling wave reduction in the form

q(x, t) = y(z)eiθ , z = x− ct, θ = kx−wt (2.1)

where y(z) is a complex-valued function that represents the structure of the pulse, k, w, c, θ are parameters of solution. The phase component
of the soliton is θ , k is represents the frequency of the soliton, c is the velocity of the soliton, while w is the wave number.
Substituting solution (2.1) into Eq. (1.1) and equating the real and imaginary parts of expression to zero, respectively the following equations
are obtained

σyzzzz +(−a+bc−6σk2)yzz + γy2yzz +βyyz
2 +(βk2− γk2−ζ )y3 +δy5 +(σk4−w+ak2−bwk)y = 0 (2.2)

and

4σkyzzz +
(
−4σk3 + c−2ak+b(ck+w)

)
yz +2γky2yz = 0. (2.3)

The y(z) function must satify both of the above third and fourth order differential equations obtained, respectively (2.2) and (2.3).
For the purpose of evaluating the solution of the Eq. (1.1), we implement the following logaritmic transformation from [12] on y,

y = 2(ln f )z. (2.4)

If transformation (2.4) is substituted into in (2.2) and (2.3), then the resulting expressions obtained as:
−4ζ f 2 f 3

z −60σ f fzz f 3
z −12γ f fzz f 3

z −8β f fzz f 3
z +4γ f 2 f 2

z fzzz +20σ f 2 f 2
z fzzz +30σ f 2 f 2

zzz fz +4β f 2 f 2
zz fz

−10σ f 3 fzz fzzz +3a f 3 fzz fz +bc f 4 fzzz−5σ f 3 fz fzzzz−6σk2 f 4 fzzz +8γ f 5
z +4β f 5

z +16δ f 5
z +24σ f 5

z −w f 4 fz
−2a f 2 f 3

z −bkw f 4 fz + k4σ f 4 fz +ak2 f 4 fz−4γk2 f 2 f 3
z +4βk2 f 2 f 3

z −12σk2 f 2 f 3
z +2bc f 2 f 3

z
−a f 4 fzzz +σ fzzzzz f 4−3bc f 3 fzz fz +18σk2 f 3 fzz fz

= 0,

(2.5)(
−4σk3 f 3 fzz +4σk3 f 2 f 2

z +bck f 3 fzz−bxk f 2 f 2
z −2ak f 3 fzz +bw f 3 fzz +2ak f 2 f 2

z −bw f 2 f 2
z +8γk f f 2

z fzz
−8γk f 4

z +4σ fzzz f 3 + c f 3 fzz−16σ f 2 fzzz fz− c f 2 f 2
z −12σ f 2 f 2

zz +48σ f f 2
z fzz−24σ f 4

z

)
= 0.

Now, we use this form to evaluate various rational solitons.

3. Hyperbolic Solitons of Differential Equations Corresponding to Eq. (1.1)

To get hyperbolic solitons of (2.5), we use the following transformation:

f = b0 coshz+b1 sinhz (3.1)

where b0, b1 are any constants to be determined. Substituting (3.1) into (2.5) and equating the coefficient terms that are containing
independent combinations of cosh and sinh functions to zero, we obtain a system of algebraic equations:

−b1(5b4
0 +10b2

0b2
1 +b4

1)(−k4
σ −ak2 +bkw−4βk2 +4γk2 +4ζ −16δ +w) = 0,

−b0(b4
0 +10b2

0b2
1 +5b4

1)(−k4
σ −ak2 +bkw−4βk2 +4γk2 +4ζ −16δ +w) = 0,

2b1

 (
−2k4σ −2ak2 +2bkw−14βk2 +14γk2 +18k2σ −3bc+14ζ +3a−80δ −12γ−12σ +2w

)
b4

0
+
(
−7k4σ −7ak2 +7bkw−24βk2 +24γk2−12k2σ +2bc+24ζ −2a−80δ +8γ +8σ +7w

)
b2

1b2
0

+
(
−k4σ −ak2 +bkw−2βk2 +2γk2−6k2σ +bc+2ζ −a+4γ +4σ +w

)
b4

1

= 0,

2b0

 (
−2βk2 +2γk2 +6k2σ −bc+2ζ +a−16δ −4γ−4σ

)
b4

0
+
(
−3k4σ −3ak2 +3bkw−16βk2 +16γk2 +12k2σ −2bc+16ζ +2a−80δ −8γ−8σ +3w

)
b2

0b2
1

+
(
−3k4σ −3ak2 +3bkw−6βk2 +6γk2−18k2σ +3bc+6ζ −3a+12γ +12σ +3w

)
b4

1

= 0,

−b1

 (
−8βk2 +8γk2 +24k2σ −4bc+8ζ +4a−4β −80δ −24γ−40σ

)
b4

0
+
(
−4k4σ −4ak2 +4bkw−12βk2 +12γk2−12k2σ +2bc+12ζ −2a+8β +24γ +56σ +4w

)
b2

0b2
1

+
(
−k4σ −ak2 +bkw−12k2σ +2bc−2a−4β −16σ +w

)
b4

1

= 0,

b0

 (8γ +4β +16δ +24σ)b4
0

+
(
4βk2−4γk2−12k2σ +2bc−4ζ −2a−8β −8γ−40σ

)
b2

0b2
1

+
(
k4σ +ak2−bkw+12k2σ −2bc+2a+4β +16σ −w

)
b4

1

= 0, (3.2)

(b0−b1)(b0 +b1)(b2
0 +b2

1)(−4k3
σ +bck−2ak+bw+8γk+ c+16σ) = 0,

2b0b1(b0−b1)(b0 +b1)(−4k3
σ +bck−2ak+bw+8γk+ c+16σ) = 0,

−(b0−b1)(b0 +b1)(−4b2
1k3

σ +bb2
1ck−2ab2

1k+bb2
1w+8b2

0γk+24b2
0σ +b2

1c−8b2
1σ) = 0.
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After solving the system (3.2) with the help of Maple software, three cases of parametric values are obtained as follows:

Case 1:

b1 = b0, σ =
−ak2 +bkw−4βk2 +4γk2 +4ζ −16δ +w

k4 . (3.3)

Via the parametric values in (3.3), we have

f = b0(coshz+ sinhz). (3.4)

By using y = 2(ln f )z, we have

y = 2. (3.5)

By using Eq. (3.5) into Eq. (2.1), we obtain a first type of rational hyperbolic solution of Eq. (1.1):

q(x, t) = 2ei(kx−wt). (3.6)

(See Figure 3.1)

(a) (b) (c)

Figure 3.1: 3D plots of the rational solution (3.6) in Case 1 with the values of k = 2, w = 1, c = 1, (a) Real, (b) Imaginary and (c) Complex.

Case 2:

ζ =

−

 bck8 +2ak8−3bk7w+2bck6 + ck7−20ak6 +18bk5w−4k6w+8ak5 +12bck4

−8bk4w+10ck5−16ak4−28bck3 +4bk3w+8k4w+24ak3 +8bck2 +4bk2w+4ck3

−8k3w−16ak2−8bck+8bkw−12ck2 +32ak−24bw+8ck+16kw−24c


16k(k3 +2)

,

δ =

(bc+2a)k6 +(−3bw+ c)k5 +4(bc−4a−w)k4 +4(3bw+2a+3c)k3

+8(−(c+w)b+2a)k2 +8((c−w)b−4a− c−w)k+24(bw+ c)
64k(k3 +2)

,

(3.7)

γ =
−3((bc−2a)k+bw+ c)

4k(k3 +2)
,

β =

−(bc+2a)k5 +(3bw− c)k4 +4(−bc+4a+w)k3−4(3bw+2a+3c)k2

+8((−2c+w)b+4a)k+8(2(c−w)b−2(a+ c)+w)
16k3 +32

,

σ =
(bc−2a)k+bw+ c

4k3 +8
.

By using values in (3.7) into (3.1), we have

f = b0 coshz+b1 sinhz. (3.8)
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By using y = 2(ln f )z, we have

y =
2(b0 sinh(z)+b1 cosh(z))

b0 cosh(z)+b1 sinh(z)
. (3.9)

By using Eq. (3.9) into Eq. (2.1), we obtain a second type of rational hyperbolic solution of Eq. (1.1):

q(x, t) =
2(b0 sinh(z)+b1 cosh(z))ei(kx−wt)

b0 cosh(z)+b1 sinh(z)
. (3.10)

(See Figure 3.2)

(a) (b) (c)

Figure 3.2: 3D plots of the rational solution (3.10) in Case 2 with the values of k = 2, w = 1, c = 0.1, b0 =−5, b1 = 0.1, (a) Real, (b) Imaginary and (c)
Complex.

4. Parabolic Solutions of Differential Equations Corresponding to Eq. (1.1)

To get parabolic solution of (2.5), we choose f as following:

f = b2z2 +b1z+b0 (4.1)

where b0, b1 and b2 represent any constant parameters. By substituting (4.1) into (2.5) and equating the various coefficient terms of z, we
then solve the following system of algebraic equations to find the values of the parameters:

2b4
2(4k3

σ −bck+2ak−bw− c) = 0

6b1b3
2(4k3

σ −bck+2ak−bw− c) = 0,

b2
2

(
(8k3

σ −2bck+4ak−2bw−2c)b2b0+(28k3
σ −7bck+14ak−7bw−7c)b2

1 +(−64γk−48σ)b2
2

)
= 0,

4b1b2

(
(4k3

σ −bck+2ak−bw− c)b2b0+(4k3
σ −bck+2ak−bw− c)b2

1 +(−32γk−24σ)b2
2

)
= 0,

[ (
(16k3σ −4bck+8ak−4bw−4c)b2b2

1 +(64γk+288σ)b3
2
)

b0,
+(−8k3σ +2bck−4ak+2bw+2c)b2

2b02 +(4k3σ −bck+2ak−bw− c)b4
1 +(−112γk−144σ)b2

2b2
1

]
= 0,

−2b1

(
(4k3

σ −bck+2ak−bw− c)b2b02 +((−4k3
σ +bck−2ak+bw+ c)b2

1 +(−32γk−144σ)b2
2)b0+(24γk+48σ)b2b2

1

)
= 0,

[
(4k3σ −bck+2ak−bw− c)b2

1−48b2
2σ

(−8k3σ +2bck−4ak+2bw+2c)b2b3
0 +(16γk+96σ)b2b2

1b0+(−8γk−24σ)b4
1

]
= 0, (4.2)
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2b5
2(k

4
σ +ak2−bkw−w) = 0,

9b1b4
2(k

4
σ +ak2−bkw−w) = 0,

−4b3
2

(
(−2k4

σ −2ak2 +2bkw+2w)b2b0 +(−4k4
σ −4ak2 +4bkw+4w)b2

1 +(−8βk2 +8γk2 +6k2
σ −bc+8ζ +a)b2

2

)
= 0,

−14b1b2
2

(
(−2k4

σ −2ak2 +2bkw+2w)b2b0 +(−k4
σ −ak2 +bkw+w)b2

1 +(−8βk2 +8γk2 +6k2
σ −bc+8ζ +a)b2

2

)
= 0,

−2b2

 (−18k4σ −18ak2 +18bkw+18w)b2b2
1 +(−32βk2 +32γk2−12k2σ +2bc+32ζ −2a)b3

2
(−6k4σ −6ak2 +6bkw+6w)b2

2b2
0 +(−3k4σ −3ak2 +3bkw+3w)b4

1
+(−76βk2 +76γk2 +66k2σ −11bc+76ζ +11a)b2

2b2
1 +(−16β −256δ −32γ−24σ)b4

2

= 0,

−b1

 ((−20k4σ −20ak2 +20bkw+20w)b2b2
1 +(−160βk2 +160γk2−60k2σ +10bc+160ζ −10a)b3

2)b0
+(−30k4σ −30ak2 +30bkw+30w)b2

2b2
0 +(−k4σ −ak2 +bkw+w)b4

1
(−100βk2 +100γk2 +120k2σ −20bc+100ζ +20a)b2

2b2
1 +(−80β −1280δ −160γ−120σ)b4

2

= 0,


((24k4σ +24ak2−24bkw−24w)b2b2

1 +(32βk2−32γk2 +120k2σ −20bc−32ζ +20a)b3
2)b

2
0

+(8k4σ +8ak2−8bkw−8w)b2
2b3

0 +(32βk2−32γk2−60k2σ +10bc−32ζ −10a)b2b4
1

+(96β +1280δ +208γ +240σ)b3
2b2

1
+((4k4σ +4ak2−4bkw−4w)b4

1 +(144βk2−144γk2−144ζ )b2
2b2

1 +(−64β −192γ−480σ)b4
2)b0

= 0,

−2b1


((−3k4σ −3ak2 +3bkw+3w)b2

1 +(−24βk2 +24γk2−90k2σ +15bc+24ζ −15a)b2
2)b

2
0

+(−6k4σ −6ak2 +6bkw+6w)b2b3
0 +(−2βk2 +2γk2 +6k2σ −bc+2ζ +a)b4

1
+(−32β −320δ −76g−120σ)b2

2b2
1

+((−28βk2 +28γk2 +30k2σ −5bc+28ζ +5a)b2b2
1 +(48β +144γ +360σ)b3

2)b0

= 0,

 (2k4σ +2ak2−2bkw−2w)b2b4
0 +((4k4σ +4ak2−4bkw−4w)b2

1 +(72k2σ −12bc+12a)b2
2)b

3
0

+((24βk2−24γk2 +36k2σ −6bc−24ζ +6a)b2b2
1 +(32β +240σ)b3

2)b
2
0

+((8βk2−8γk2−24k2σ +4bc−8ζ −4a)b4
1 +(−64β −144γ−480σ)b2

2b2
1)b0 +(24β +160δ +56γ +120σ)b2b4

1

= 0,

−b1

[
(−k4σ −ak2 +bkw+w)b4

0 +(−36k2σ +6bc−6a)b2b3
0 +(−4β −16δ −8γ−24σ)b4

1
+((−4βk2 +4γk2 +12k2σ −2bc+4ζ +2a)b2

1 +(−16β −120σ)b2
2)b

2
0 +(16β +24γ +120σ)b2b2

1b0

]
= 0.

Resolution of the system (4.2) with the help of Maple gives five cases of parametric values as follows:

Case 1:

a =
4γk5 +3bkw+3w

3k2 , b0 = b1 = 0, β =−12bγk6−24bγk5 +20γk5−24ζ bk3−24γk4−24ζ k2−3w
24k4(bk+1)

,

(4.3)

c =−8γk5−3bkw−6w
3k(bk+1)

, δ =
60bγk6−72bγk5 +68γk5−24ζ bk3−72γk4−24ζ k2−3w

384k4(bk+1)
, σ =−4γk

3
.

By using values in (4.3) into (4.1), we have

f = b2z2. (4.4)

By using y = 2(ln f )z, we have

y =
4
z
. (4.5)

By replacing Eq. (2.1) with Eq. (4.5), we obtain the first type of rational parabolic solution of Eq. (1.1):

q(x, t) =
4ei(kx−wt)

−ct + x
. (4.6)

(See Figure 4.1)
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(a) (b) (c)

Figure 4.1: 3D plots of the rational solution (4.6) in Case 1 with the values of k = 2, w = 1, b = 128, γ = −3, b1 = 0.1, (a) Real, (b) Imaginary and (c)
Complex.

Case 2:

a =
4γk3

3
, b =−1

k
, b0 = b1 = 0, β =

−20γk4 +24γk3 +24ζ k+3c
24k3 ,

(4.7)

δ =−−68γk4 +72γk3 +24ζ k+3c
384k3 , σ =−4γk

3
, w =

8γk5

3
.

By using values in (4.7) into (4.1), we have

f = b2z2. (4.8)

By using y = 2(ln f )z, we have

y =
4
z
. (4.9)

By using Eq. (4.9) into Eq. (2.1), we obtain a second type of rational parabolic solution of Eq. (1.1):

q(x, t) =
4ei(− 8

3 γk5t+kx)

−ct + x
. (4.10)

(See Figure 4.2)

(a) (b) (c)

Figure 4.2: 3D plots of the rational solution (4.10) in Case 2 with the values of k = 2, c = 1, γ = 3, (a) Real, (b) Imaginary and (c) Complex.

Case 3:

a =
γk5 +3bkw+3w

3k2 , b2 = 0, β =
−3bγk6 +6bγk5−5γk5 +6ζ bk3 +6γk4 +6ζ k2 +3w

6k4(bk+1)
,

(4.11)

c =
−2γk5 +3bkw+6w

3k(bk+1)
, δ =−−15bγk6 +18bγk5−17γk5 +6ζ bk3 +18γk4 +6ζ k2 +3w

24k4(bk+1)
, σ =− γk

3
.
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By using values in (4.11) into (4.1), we have

f = b1z+b0. (4.12)

By using y = 2(ln f )z, we have

y =
2b1

b1z+b0
. (4.13)

By replacing Eq. (2.1) with Eq. (4.13) , we obtain a third type of rational parabolic solution of Eq. (1.1):

q(x, t) =
2b1ei(kx−wt)

b1

(
− (−2γk5 +3bkw+6w)t

3k(bk+1)
+ x
)
+b0

. (4.14)

(See Figure 4.3)

(a) (b) (c)

Figure 4.3: 3D plots of the rational solution (4.14) in Case 3 with the values of b1 = 1, b0 = 1, k = 2, w = 1, b = −5
12 , γ = 1

64 , (a) Real, (b) Imaginary and (c)
Complex.

Case 4:

a =
k3γ

3
, b =−1

k
, b2 = 0, β =

−5γk4 +6γk3 +6ζ k+3c
6k3 ,

(4.15)

δ =−−17γk4 +18γk3 +6ζ k+3c
24k3 , σ =−kγ

3
, w =

2k5γ

3
.

By using values in (4.15) into (4.1), we have

f = b1z+b0. (4.16)

By using y = 2(ln f )z, we have

y =
2b1

b1z+b0
. (4.17)

By using Eq. (4.17) into Eq. (2.1), we obtain a fourth type of rational parabolic solution of Eq. (1.1):

q(x, t) =
2b1ei( −2

3 γk5t+kx)

b1(−ct + x)+b0
. (4.18)

(See Figure 4.4)

Case 5:

a =
4γk5 +3bkw+3w

3k2 , b2 =
b2

1
4b0

, β =
−12bγk6 +24bγk5−20γk5 +24ζ bk3 +24γk4 +24ζ k2 +3w

24k4(bk+1)
,

(4.19)

c =
−8γk5 +3bkw+6w

3k(bk+1)
, δ =−−60bγk6 +72bγk5−68γk5 +24ζ bk3 +72γk4 +24ζ k2 +3w

384k4(bk+1)
, σ =−4γk

3
.



60 Universal Journal of Mathematics and Applications

(a) (b) (c)

Figure 4.4: 3D plots of the rational solution (4.18) in Case 4 with the values of b1 = 1, b0 = 1, k = 2, w = 1, b = −5
12 , γ = 1

64 , c = 1, (a) Real, (b) Imaginary
and (c) Complex.

By using values in (4.19) into (4.1), we have

f =
b2

1
4b0

z2 +b1z+b0. (4.20)

By using y = 2(ln f )z, we have

y =
4b1

b1z+2b0
. (4.21)

By using Eq. (4.21) into Eq. (2.1), we obtain a fifth type of rational parabolic solution of Eq. (1.1):

q(x, t) =
4b1ei(kx−wt)

b1

(
− (−8γk5 +3bkw+6w)t

3k(bk+1)
+ x
)
+2b0

. (4.22)

(See Figure 4.5)

(a) (b) (c)

Figure 4.5: 3D plots of the rational solution (4.22) in Case 5 with the values of b1 = 2, b0 =−1, k = 2, w = 1, b = −1
3 , γ = 0.1, (a) Real, (b) Imaginary and

(c) Complex.

Case 6:

a =
4k3γ

3
, b =

−1
k

, b2 =
b2

1
4b0

, β =
−20γk4 +24γk3 +24ζ k+3c

24k3 ,

(4.23)

δ =−−68γk4 +72γk3 +24ζ k+3c
384k3 , σ =−4γk

3
, w =

8k5γ

3
.

By using values in (4.23) into (4.1), we have

f =
b2

1
4b0

z2 +b1z+b0. (4.24)
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By using y = 2(ln f )z, we have

y =
4b1

b1z+2b0
. (4.25)

By using Eq. (4.25) into Eq. (2.1), we obtain a sixth type of rational parabolic solution of Eq. (1.1):

q(x, t) =
4b1e

i

kx−
8k5γ

3
t


b1 (x− ct)+2b0

. (4.26)

(See Figure 4.6)

(a) (b) (c)

Figure 4.6: 3D plots of the rational solution (4.26) in Case 5 with the values of b1 = 2, b0 =−1, k = 2, c = 1, γ = 3, (a) Real, (b) Imaginary and (c) Complex.

5. Trigonometric Solutions of Differential Equations Corresponding to Eq. (1.1)

To get trigonometric solution, we suppose a solution of (2.5) in the following form:

f = b0 cosz+b1 sinz (5.1)

where b0, b1 are all constants. Inserting (5.1) into (2.5) and setting the coefficient terms that are containing independent combinations of cos
and sin functions to zero, we get a system of algebraic equations:

4b4
1(4k3

σ −bck+2ak−bw+8γk− c+16σ) = 0,

2b4
1(4k3

σ −bck+2ak−bw−8γk− c−32σ) = 0,

4b5
1(k

4
σ +ak2−bkw−4βk2 +4γk2 +4ζ +16δ −w) = 0,

8b5
1(k

4
σ +ak2−bkw−2βk2 +2γk2−6k2

σ +bc+2ζ −a−4γ−4σ −w) = 0, (5.2)

−8b5
1(−2βk2 +2γk2 +6k2

σ −bc+2ζ +a+16δ +4γ +4σ) = 0,

−b5
1(3k4

σ +3ak2−3bkw−4βk2 +4γk2−24k2
σ +4bc+4ζ −4a−16β −80δ −48γ−112σ −3w) = 0,

b5
1(−k4

σ −ak2 +bkw−4βk2 +4γk2 +24k2
σ −4bc+4ζ +4a−16β −16δ −16γ−80σ +w) = 0.

After solving the system (5.2) with the help of Maple, we obtain three cases of parametric values as follows:
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Case 1:

a =

 3bγk7 +3b2ck4 +18bγk5 +4γk6−8bγk4 +12b2ck2

+6bck3−4bγk3 +8γk4−4bγk2−8γk3 +6b2c
+12bck+8bγk+3ck2 +12ζ b−24bγ−16γk+6c


3(bk4 +4bk2 +2k3 +2b+4k)

,

β =−

 3bγk5−6bγk4−20bγk3 +8γk4−6ζ bk2

+8bγk2−12γk3−24bγk−40γk2−12ζ b
−12ζ k+24bγ +32γk−3c


6(bk4 +4bk2 +2k3 +2b+4k)

,

(5.3)

δ =

 15bγk5−18bγk4 +28bγk3 +32γk4

−6ζ bk2−40γk2−36γk3 +8bγk2

−12ζ b−12ζ k−16γk−3c


24(bk4 +4bk2 +2k3 +2b+4k)

,

w =

 2γk8 +3bck5 +20γk6−8γk5 +12bck3

+3ck4−16γk4 +24γk3 +6bck+16γk2

+24ζ k−32γk−6c


3(bk4 +4bk2 +2k3 +2b+4k)

,

σ =−1
3

γk.

By utilizing values in (5.3) into (5.1), we have

f = b1 cosz+b1 sinz. (5.4)

Inserting Eq. (5.4) into (2.4) yields

y =−2(sin(z)− cos(z))
sin(z)+ cos(z)

. (5.5)

By using Eq. (5.5) into Eq. (2.1), we obtain a first type of trigonometric solution of Eq. (1.1):

q(x, t) =−2(sin(x− ct)− cos(x− ct))ei(kx−wt)

sin(x− ct)+ cos(x− ct)
. (5.6)

(See Figure 5.1)

(a) (b) (c)

Figure 5.1: 3D plots of the rational solution (5.6) in Case 1 with the values of k = 2, c = 1, γ = 3, b = 1, ζ =−1 (a) Real, (b) Imaginary and (c) Complex.

Case 2:

a =−b2w+2ζ −4γ−w, β = ζ −2γ− 1
4

w, c =−bw, δ =−1
4

ζ +
1

16
w, k = 0, σ = 0, (5.7)

Using the obtained values in (5.1) gives

f = b1 cosz+b1 sinz. (5.8)

Inserting Eq. (5.8) into (2.4) yields

y =−2(sin(z)− cos(z))
sin(z)+ cos(z)

. (5.9)
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By using Eq. (5.9) into Eq. (2.1), we obtain a second type of trigonometric solution of Eq. (1.1):

q(x, t) =−2(sin(x− ct)− cos(x− ct))ei(kx−wt)

sin(x− ct)+ cos(x− ct)
. (5.10)

(See Figure 5.2)

(a) (b) (c)

Figure 5.2: 3D plots of the rational solution (5.10) in Case 2 with the values of b = 10, w = 1 (a) Real, (b) Imaginary and (c) Complex.

Case 3:

a =−

(
−γk11−6γk9−50γk7 +44γk6 +3k6w−44γk5 +12ζ k4 +72γk4

+18k4w+8γk3 +40γk2 +30k2w−16γk+48γ +12w−24ζ

)
3(k4 +4k2 +2)2 ,

β =

(
−γk9 +6γk8 +28γk7 +8γk6 +6k6ζ +82γk5−20γk4−3k4w+36k4ζ

+152γk3−144γk2−12k2w+84k2ζ +48γk−48γ−6w+24ζ

)
6(k4 +4k2 +2)2 ,

(5.11)

δ =−

(
−13γk9 +18γk8−68γk7 +104γk6 +6k6ζ −158γk5 +220γk4

−3k4w+36k4ζ −40γk3 +48γk2−12k2w+84k2ζ +24ζ −6w

)
24(k4 +4k2 +2)2 ,

c =
2k
(
γk7 +10γk5−4γk4−8γk3 +12γk2 +8γk−16γ +12ζ

)
3(k4 +4k2 +2)

, b =− 2(k2 +2)k
k4 +4k2 +2

, σ =−1
3

γk.

By utilizing values in (5.11) into (5.1), we have

f = b1 cosz+b1 sinz. (5.12)

Inserting Eq. (5.12) into (2.4) yields

y =−2(sin(z)− cos(z))
sin(z)+ cos(z)

. (5.13)

By using Eq. (5.13) into Eq. (2.1), we obtain a first type of trigonometric solution of Eq. (1.1):

q(x, t) =−2(sin(x− ct)− cos(x− ct))ei(kx−wt)

sin(x− ct)+ cos(x− ct)
. (5.14)

(See Figure 5.3)
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(a) (b) (c)

Figure 5.3: 3D plots of the rational solution (5.14) in Case 3 with the values of k = 5, b = 10, γ = 0.5, w = 1, ζ =−1 (a) Real, (b) Imaginary and
(c) Complex.

6. Conclusion

New soliton solutions of the LPD equation were obtained with three different current, systematic and powerful methods. In order to
understand how the obtained solutions change under different conditions, the solutions obtained by appropriate selection of some parameters
affecting the shape and velocity of the solitons are observed. In this context, to understand the mechanism of the original equation (1.1) real,
imaginary and complex three-dimensional plots have been drawn for each case of solitons. This paper presents novel solutions of LPD
equation that have not been reported in the literature before. Also, comparing with the existing literature, our result is complete and our
method is simple and direct. By providing novel solutions, this study contributes to the knowledge of the dynamical aspects of various
physical phenomena that are modeled by the LPD equation.
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