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Abstract: This research aims to compare the ability and item parameter 

estimations of Item Response Theory according to Maximum likelihood and 

Bayesian approaches in different Monte Carlo simulation conditions. For this 

purpose, depending on the changes in the priori distribution type, sample size, test 

length, and logistics model, the ability and item parameters estimated according to 

the maximum likelihood and Bayesian method and the differences in the RMSE of 

these parameters were examined. The priori distribution (normal, left-skewed, 

right-skewed, leptokurtic, and platykurtic), test length (10, 20, 40), sample size 

(100, 500, 1000), logistics model (2PL, 3PL). The simulation conditions were 

performed with 100 replications. Mixed model ANOVA was performed to 

determine RMSE differentiations. The prior distribution type, test length, and 

estimation method in the differentiation of ability parameter and RMSE were 

estimated in 2PL models; the priori distribution type and test length were 

significant in the differences in the ability parameter and RMSE estimated in the 

3PL model. While prior distribution type, sample size, and estimation method 

created a significant difference in the RMSE of the item discrimination parameter 

estimated in the 2PL model, none of the conditions created a significant difference 

in the RMSE of the item difficulty parameter. The priori distribution type, sample 

size, and estimation method in the item discrimination RMSE were estimated in 

the 3PL model; the a priori distribution and estimation method created significant 

differentiation in the RMSE of the lower asymptote parameter. However, none of 

the conditions significantly changed the RMSE of item difficulty parameters. 

1. INTRODUCTION 

Test development consists of sequential activities (Thorndike, 1982). Test development 

processes are carried out within the framework of various theories aimed at minimizing error. 

In this context, test theories use various methods and models to ensure the reliability and 

validity of the measurement process. Test theories are an overview that connects observed 

variables to latent variables. The general purpose of test theories is to estimate the true score. 

While making this estimation, it is also to determine how much the measurement scores of the 

defined construct are affected by measurement errors and to find methods to minimize these 
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errors. Another purpose of test theory is to help experts become aware of the logical and 

mathematical models underlying standard practices in test use and construction (Crocker & 

Algina, 1986). 

Two common measurement theories are used in the historical process of the science of 

psychometrics, which deals with the test development processes and the problems related to 

their psychometric properties. These are the Classical Test Theory (CTT), which was first 

developed, and the Item Response Theory (IRT), also called the Latent Trait Theory (LTT), 

which is increasingly used. 

According to IRT, ability or latent trait is performance on test items. IRT is defined as a model 

that shows the procedure to be followed to establish the consistency between the latent variables 

and the findings obtained from these variables. IRT should not be seen as a hypothetical theory 

because this theory does not explain why a person gives an answer to an item or how he/she 

decides to answer an item. IRT is more of a model based on statistical estimations. IRT uses 

latent traits of individuals and items to estimate observed responses (Hambleton et al., 1991). 

In other words, IRT is a statistical theory about how the item under investigation and test 

performance relates to the abilities measured by the items in the test (Hambleton & Jones, 

1993). 

The advantages of IRT models can be achieved only when the fit between the model and test 

data is satisfactory (De Mars, 2010). The most important conditions for ensuring this harmony 

are appropriate sample size, adequate test length, and a normal priori distribution type. These 

conditions significantly affect the amount of error, especially in parameter estimation. In 

addition, although the number of standard error rates of parameter estimations depends on 

sample size and test length, estimation methods also affect this amount of standard error. In 

addition, there are some assumptions that estimation methods can work effectively. In terms of 

data, if these assumptions are ignored and neglected, the error rates in the estimations increase 

(Hambleton & Swaminathan, 1985). 

There are different methods for estimating item and ability (person) parameters within the 

framework of IRT. Most of these methods are based on calculating the maximum likelihood 

(ML) function. The ML function is calculated by estimating the probabilities of the values, 

maximizing the item and ability parameters over the observed data. These estimation methods 

perform a solution with an iterative process. The most critical limitation of ML functions, in 

general, is that it is not possible to estimate the ability parameters of individuals with a full or 

zero score on a test or to estimate the parameters of the items that are correctly or incorrectly 

made by everyone (Lord, 1983; Samejima, 1993a, 1993b). In addition, the priori distribution 

type (normal, skewed left, skewed right, leptokurtic, and platykurtic) effectively estimates item 

and ability parameters and determines the standard errors of these estimations. In cases where 

the distribution becomes skewed or when the aforementioned general problems of the ML 

methods are encountered, “Bayesian Estimation Methods" are recommended to make 

estimations meticulously (with a lower standard error rate) (Bock & Mislevy, 1982; De Ayala, 

2009; Hambleton & Swaminathan, 1985; Hambleton et al., 1991). 

ML methods cannot accurately estimate item and ability parameters in generally small samples, 

short tests, and especially in skewed data. Likewise, the increase in the number of parameters 

in the IRT model (as in the 2 PL and 3 PL models) also increases the error in these estimations. 

The literature recommends parameter estimation with the Bayesian approach for such 

problems. 

Most likelihood methods used in IRT are based on the frequency approach. However, the 

frequency approach has shortcomings because it depends on a fixed value and does not provide 

distribution information. The Bayesian approach allows estimations by including a priori 

distribution information. In the Bayesian approach, the variance of the prior distribution 
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represents the uncertainties of the parameter estimates. If the variance of the prior distribution 

is low, the error rates of the parameter estimates will be lower (van de Schoot & Depaoli, 2014). 

Using a Bayesian approach will solve some of the difficulties encountered with the ML 

approach. Bayesian estimates for the level of ability (Ө) can be obtained for zero correct 

response item patterns, fully correct response item patterns, and anomaly response patterns 

(Hambleton et al., 1991). 

Bayesian IRT estimation methods can provide advantages over ML IRT estimation methods 

(Bock & Mislevy, 1982; De Ayala, 2009; Hambleton & Swaminathan, 1985; Hambleton et al., 

1991). The essence of the Bayesian approach is to know the individual's point in the distribution 

in terms of a trait before obtaining any data. This distribution is called a priori distribution. 

Therefore, restricting parameter estimations to specific ranges using a priori distribution is 

essential for Bayesian estimations of IRT (Gao & Chen, 2005). 

Gao and Chen (2005) conducted a large-scale simulation study on 3 PL models. In their study, 

authors used uniform distribution data sets with test lengths of 10, 20, and 60 items and sample 

sizes of 100, 200, and 500. The authors compared the marginal maximum likelihood (MML) 

estimation method and Bayesian estimation methods on these data. As a result of the research, 

the authors concluded that the marginal maximum likelihood method tends to estimate out of 

the true item parameter values in small samples. Moreover, the authors stated that Bayesian 

estimation yielded more accurate estimates than marginal maximum likelihood estimation 

when the sample size was as low as 100. The authors emphasized that the results of Bayesian 

estimation are more satisfactory regarding the root mean standard error of the estimates 

(RMSE). However, the error amounts of the marginal maximum likelihood estimation methods 

also tend to decrease when the test length and sample size increase.  

Sass et al. (2005) compared the estimation errors of the latent trait distribution under normal 

and non-normal distributions. The authors simulatively generated data for 1000 samples, 30 

items, and 2 PL models. They used maximum likelihood (ML), Bayesian MAP, and EAP as 

parameter estimation methods. They also examined true and estimated item parameters to 

distinguish item parameter estimation from latent trait estimation errors. They stated that non-

normal latent trait distributions produce higher estimation errors than normal distributions. 

Accordingly, while estimating the parameters based on IRT, the data are the problem of this 

research is whether there will be a difference between the RMSE of the estimations when the 

priori distribution type is manipulated in terms of sample size, test length, and logistics model 

compared to ML and Bayesian IRT. For this purpose, answers to the following research 

problems were sought through the data generating according to simulation conditions: 

1. Is there a significant difference between the RMSE of the ability parameters (ϴRMSE) 

estimated by ML and Bayesian methods in the generated datasets in 2 PL models according 

to simulation conditions? 

2. Is there a significant difference between the RMSE of the ability parameters (ϴRMSE) 

estimated by ML and Bayesian methods in the generated datasets in 3 PL models according 

to simulation conditions? 

3. Is there a significant difference between the RMSE of item discrimination (aRMSE), RMSE of 

item difficulty (bRMSE) and RMSE of lower asymptote (cRMSE) estimated by ML and Bayesian 

methods in the generated datasets in 2 PL models according to simulation conditions? 

4. Is there a significant difference between the RMSE of item discrimination (aRMSE), RMSE of 

item difficulty (bRMSE) and RMSE of lower asymptote (cRMSE) estimated by ML and Bayesian 

methods in the generated datasets in 3 PL models according to simulation conditions? 

Estimation methods are affected by the distributional types of persons' abilities and item 

parameters. It is also assumed that most traits (Ө) are normally distributed in the universe. This 

assumption reveals the strengths of IRT and affects the estimation of parameters. Therefore, 

skewed distributions cause some issues in parameter estimation. This is because the accurate 
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estimation of parameters depends on the variance not being sufficiently large at some levels of 

Ө. If such distributional assumptions are not satisfied, the accuracy of parameter estimation 

based on maximum likelihood methods of IRT is questionable. In conclusion, this research is 

essential in the sense that it acknowledges that parameters estimated with different a priori 

ability distributions other than the normal distribution (left and right skewed, leptokurtic and 

platykurtic) have high RMSE and proposes an alternative estimation method to reduce this error 

and Bayesian approach provides advantages in parameter estimation compared to the ML 

approach. 

1.1. Significance of the Research 

The studies by Swaminathan and Gifford (1986), Harwell and Janosky (1991), Gao and Chen 

(2005), Sass et al. (2005), Finch and Edwards (2015), Çelikten and Çakan (2019) and 

Kıbrıslıoğlu Uysal (2020) compared different estimation methods on IRT parameter estimation 

under different conditions. It is seen that most comparisons were made under the conditions of 

sample size and test length, and the most used estimation methods were likelihood (ML), MAP, 

and EAP. Studies also investigate the effect of latent trait or item parameter distributions. These 

studies were generally conducted on simulative data. 

This research aims to compare different sample sizes, test lengths, latent trait distributions, and 

parameter estimation methods with the effect of manipulating conditions as in the previous 

studies. The research is similar to other studies in this respect. However, the distinguishing 

feature of this research is that five different types of a priori ability distributions were generated; 

accordingly, the total test scores also had this distribution type. However, there are some studies 

in which the latent distribution is skewed. This study analyzed skewness as bidirectional (left-

skewed and right-skewed), and leptokurtic and platykurtic distributions were also examined. In 

addition, in some previous studies, Bayesian estimation has usually been analyzed in Rasch or 

2 PL models. This research also examined the results of Bayesian MCMC parameter estimation 

in the 3 PL model. 

As a result of the research, it is foreseen that using Bayesian estimation methods in situations 

where sample size and test length are not enough for a priori distributions of ability in different 

patterns will lead to low RMSE in parameter (ability and item) estimations. From this point of 

view, this research is thought to provide a different viewpoint on the parameter estimation 

methods used in IRT and contribute to the literature. 

2. METHOD 

2.1. Research Design 

This research created data sets with different the priori distribution types following the 

simulation conditions. Estimations of ability and item parameters were made using ML and 

Bayesian (MCMC) methods on these data sets. Simulation studies can use data generated in 

simulative conditions to investigate certain variables. The simulation approach creates an 

artificial condition where relevant information and data can be generated. This enables us to 

observe the dynamic behavior of a system (or sub-system) under controlled conditions 

(Fraenkel & Wallen, 2009; Kothari, 2004). The literature argues that simulation studies are 

empirical experiments (Morris et al., 2017) and should be considered statistical sampling, 

depending on the research design and data analysis principles determined (Hoaglin & Andrews, 

1975). Accordingly, this research uses a statistically experimental method to compare 

estimation methods by manipulating various conditions through simulatively generated data. In 

this respect, this research is a simulation-based experimental study. 

2.2. Generating Data 

Monte Carlo (MC) simulation generates the data within the scope of this study following the 

conditions manipulated in different ways according to the prior distribution types, sample size, 

test length, logistics model and parameter estimation method specified in the research problem. 
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Monte Carlo (MC) simulation is used in many applications, such as evaluating new methods in 

IRT parameter estimation, performance comparison of different item analysis programs, and 

parameter estimation in multidimensional data. Accordingly, IRT applications using the MC 

simulation technique should include at least one of the following (Harwell et al., 1996): 

1. Evaluation of parameter recovery or parameter estimation methods,  

2. Evaluation of the properties of IRT-based statistics,  

3. Methodological comparison by combining different IRT applications. 

The R programming language generated the data depending on the simulation conditions. In R, 

mirt (Chalmers, 2012), e1071 (Meyer, 2022), psych (Revelle, 2022) and lattice (Sarkar, 2022) 

packages were run. The simdata function in the mirt package generated binary (1-0) score 

matrices with the "Önsel (Prior)" script block written by the researchers, according to the 

simulation conditions. The "Önsel (Prior)" script block is given in Appendix. While generating 

the binary score matrices, the priori ability scores produced by the distribution types were 

placed in the latent distribution argument within the simdata function. 

In generating the data in the "Önsel (Prior)" script block, previous research in the literature was 

referred to for the initial item parameters. Accordingly, log-normal distribution [a~lnN(0.3, 

0.2)] was used to generate the item discrimination parameter, standard normal distribution 

[b~N(0, 1)] was used to generate the item difficulty parameter, and uniform distribution 

[c~U(0.01, 0.25)] was used to generate the item chance parameter (lower asymptote) (Baker, 

2001; Feinberg & Rubright, 2016; Bulut & Sünbül, 2017; Soysal, 2017; Pekmezci, 2018). In 

generating the a priori ability parameter, more than one and different (normal and uniform) 

distribution types were combined. In the generation of skewed, leptokurtic, and platykurtic 

distributions other than the normal distribution, outliers were generated at Z scores above ±4. 

Accordingly, ϴ~N(0, 1) if the distribution is normal; ϴ~N(2, 1), ϴ~U(-5.0, -4.0) and ϴ~U(-

4.0, -3.0) if the distribution is left skewed; ϴ~N(-2, 1), ϴ~U(3.0, 4.0) and ϴ~U(4. 0, 5.0); 

ϴ~N(-1, 100), ϴ~N(1, 100) and ϴ~N(0, 0.00001) if leptokurtic; ϴ~N(0, 1), ϴ~U(-3.0, -1.0) 

and ϴ~U(1.0, 3.0) if platykurtic. 

Considering skewed distributions with normal distribution assumptions leads to incorrect 

results (Kolen, 1985). Deviations from the normal distribution cause various problems when 

estimating parameters with ML estimation methods (Hambleton & Swaminathan, 1985). For 

this reason, the problem of this research is how different a priori ability distribution types will 

affect parameter estimation methods. 

2.3. Simulation Conditions 

In the simulation model created to solve the problems in this research, some conditions were 

fixed while others were manipulated. According to the literature, the selection of each condition 

in the research was determined by examining similar previous studies. The conditions that were 

fixed and manipulated are given in Table 1. 

Table 1. Conditions of simulation. 

Conditions of Simulation 

Fixed conditions Manipulated conditions 

Model Parameters 
Parameter estimation 

methods (x2) 

Sample 

size 

(x3) 

Test 

length 

(x3) 

Logistics 

model 

(x2) 

Prior 

distribution 

type (x5) 

Initial of 

ability 

parameters 

(ϴi) 

Initial of 

item 

parameters 

(ai, bi, ci) 

Maximum 

likelihood 

(ML) 

Bayesian 

(MCMC) 

100 

500 

1000 

10 

20 

40 

2 PL 

3 PL 

Normal 

Left-skewed 

Right-skewed 

Leptokurtic 

Platykurtic 
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Table 1 shows that the research conditions consist of fixed and manipulated conditions. Fixed 

conditions, initial of model parameters, and manipulated conditions were determined as 

estimation method, sample size, test length, logistics model, and priori distribution type. 

Accordingly, parameter estimation methods (ML x Bayesian), sample size (100 x 500 x 1000), 

test length (10 x 20 x 40), logistics model (2 PL x 3 PL), and priori distribution type (normal x 

left-skewed x right-skewed x leptokurtic x platykurtic) 180 simulation conditions were carried 

out with 100 replications. Accordingly, 18000 data sets were used in the research process. 

Determining the simulation conditions is essential in reviewing previous research in the 

literature and determining which factors should be selected to contribute to the literature. In the 

simulation model developed to solve the research problems in this study, some conditions were 

kept fixed while others were manipulated. 

2.3.1. Fixed conditions 

Model parameters (ability and item parameters): The initial parameters used to generate ability 

and item parameters are given in the data generation section. 

2.3.2. Manipulated conditions 

Parameter estimation method: Maximum likelihood (ML) and Bayesian MCMC methods were 

used to estimate the ability and item parameters. These estimation methods were used for each 

simulation condition and replications separately. Moreover, this condition is one of the most 

critical problems the research aims to address. 

Sample size: For each simulation condition, three different sample sizes of 100, 500, and 1000 

participants were selected. Sample size is considered an essential variable for IRT estimation 

(Hambleton, 1989; Orlando, 2004). The strengths of IRT depend on the sample size, and it is 

suggested that it should be applied in large samples (DeMars, 2010). Linacre (1994) stated that 

small samples are needed when the number of parameters in the model is less, while more 

complicated models need larger samples. In the literature, there are some studies indicating that 

sample sizes of 200 (Wright & Stone, 1979) or 500 (Hulin et al., 1982) for 1 PL model, 1000 

(Ree & Jensen, 1980) for 2 PL model, and 1000 (Lord, 1968) or 10000 or more (Thissen & 

Wainer, 1983) for 3 PL model are adequate. In addition, De Ayala (2009) stated that sample 

sizes of 250 or 500 are adequate for parameter estimation, whereas Hulin et al. (1982) 

concluded that a sample size of more than 2000 is unnecessary for parameter estimation using 

ML methods in general. Mislevy (1986) used a sample of 1000 in his study on parameter 

estimation using Bayesian approach. In this study, we want to utilize the advantages of Bayesian 

approach by using different sample sizes. Therefore, data sets of 100 for a small sample size, 

500 for a medium sample size, and 1000 for a large sample size were used. 

Test Length: Three different test lengths were selected for each simulation condition: 10, 20, 

and 40 items. Using different test lengths leads to a variation in the item response patterns. This 

variation is especially crucial for the accuracy of item parameter estimates (Hulin et al., 1982). 

As the test length increases, the accuracy of Ө estimations increases. Accordingly, increasing 

the sample size and test length will increase the accuracy of the estimation item parameters (ai, 

bi, and ci) and thus increase the accuracy of the ability parameter (Ө) estimates (Reise & Yu, 

1990). DeMars (2010) stated that for 2 PL and 3 PL models, the test length should be 20 when 

using a sample of 500, 40 items when using a sample of 1000, and 50 to 80 items when using 

a sample of 2000-3000. Hulin et al. (1982) suggest that using a 30-item test in a sample of 500 

in 2 PL models and a 60-item test in a sample of 1000 in 3 PL models would be adequate in 

terms of the accuracy of parameter estimations. Hambleton and Cook (1983) stated that a 20-

item test in a sample of 500 in the 3 PL model is adequate for parameter estimation. However, 

Hambleton and Cook (1983) stated that the estimation error was negatively affected when the 

test length increased to 40. Akour and Al-Omari (2013) stated that a test length of 15 items in 

a sample of 200 is sufficient for parameter estimation in the 3 PL model. Mislevy (1986) used 

20 and 40 items as test lengths in his study on parameter estimation with the Bayesian approach. 
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This study generated data sets of 10 items for short tests, 20 for medium length tests, and 40 for 

longer tests. Although short tests are mostly teacher-made tests in classroom assessments, these 

tests are now also used in secondary education entrance examinations in Turkey. In these 

examinations, the number of items in the Turkish History of Turkish Revolution and Kemalism 

subtests, Religious Culture and Ethics, and Foreign Language, is 10 (MoNE LGS Guide, 2022). 

For this purpose, 10 items were selected as test length, one of the simulation conditions. 

Priori Distribution of Ability (Theta): Each simulation condition used five different types of 

distributions, keeping the standard deviation values fixed. The simulation conditions were 

selected as normal and non-normal (left-skewed, right-skewed, leptokurtic, and platykurtic) 

distribution types. The skewness coefficient's absolute value means that the samples' 

distribution types are highly skewed when greater than 1.00, moderately skewed between 0.50 

and 1.00, and approximately symmetric when less than 0.50. For kurtosis, it is stated that the 

distribution is normal if the coefficient is 3, leptokurtic if it is greater than 3, and platykurtic if 

it is less than 3 (Bulmer, 1979). However, with the addition of -3 to the formula, this value 

becomes 0. This means that a kurtosis coefficient of 0 indicates that the distribution is normal, 

a coefficient greater than 0 indicates that the distribution is leptokurtic, and a coefficient less 

than 0 indicates that the distribution is platykurtic. Tabachnick and Fidell (2014) stated that 

when the skewness and kurtosis values are between -1.50 and +1.50, the distribution is assumed 

to be normal. Evaluating skewed distributions with normal distribution assumptions causes 

incorrect conclusions (Kolen, 1985). It is known that deviations from the normal distribution 

cause various problems when estimating parameters with maximum likelihood estimation 

methods (Hambleton & Swaminathan, 1985). For this reason, the issue of this study is how 

different a priori ability distribution types will affect parameter estimation methods. 

IRT Model: This research selected 2 PL and 3 PL models for parameter estimations. According 

to Hulin et al. (1982), these logistic models are robust and the most widely used models. 

Accordingly, two different references were considered when setting the simulation conditions. 

The first one is to benefit from similar studies in the literature while setting each condition, and 

the second one is to consider the advantages of the Bayesian estimation method depending on 

the purpose of the research. In the first reference, the previous research related to the literature 

is discussed in detail under the topic of each condition. In the second reference, these conditions 

were selected by considering the problems of ML estimation and the advantages of Bayesian 

estimation. Since this study aims to determine how the ML and Bayesian estimation results will 

change, especially in cases where the sample becomes smaller, the number of items decreases. 

The prior ability distribution becomes skewed; this is another significant reason for choosing 

the simulation conditions in this way. 

Harwell et al. (1996) suggested that at least 25 replications should be used in studies where the 

IRT parameters are manipulated. However, Seong (1990) used 5 replications, Stone (1992) used 

100 replications, Kirisci et al. (2001) used 10 replications, Sass et al. (2008) used 100 

replications, Finch and Edwards (2015) used 1000 replications, Bulut and Sünbül (2017) used 

100 replications, Karadavut (2019) used 25 replications, and Kıbrıslıoğlu Uysal (2020) used 

100 replications in various simulation studies given in related studies. 

A literature review shows that similar simulation studies use different numbers of replications 

when generating data. There are two factors affecting this issue. The first is that the degree of 

accuracy of the data generated because of a low number of replications is insufficient, and the 

second is that the simulation program is inadequate and time costly because of many 

replications (Bulut & Sünbül, 2017). Moreover, Feinberg and Rubright (2016) proposed a 

formulation for the number of replications in IRT simulations based on the standard deviation 

of the estimated parameters. This equation is given below: 

𝜎𝑀 =
�̂�

√𝑅−1
      (Equation 1) 
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where �̂� is the standard deviation of the estimated parameter across replications, R is the number 

of replications, and 𝜎𝑀 is the standard error of the mean. Accordingly, researchers determine 

an initial number of replications, and after computing the standard deviation of the data, they 

set a new number of replications. If the standard deviation is larger than expected Feinberg and 

Rubright (2016) recommend increasing the number of replications. However, there is no 

acceptable value for the estimated standard deviation value. Therefore, Barış-Pekmezci and 

Şengül-Avşar (2021) state that it is not practical to use this equation. Therefore, considering the 

research previously cited in the literature, it was decided to use 100 replications in this study to 

produce accurate results and not to increase the simulation time. 

2.4. Analysis of Data 

First, basic assumptions were checked to determine the fit of the generated datasets for IRT 

parameter estimation. These assumptions are unidimensionality, local independence, and 

model-data fit (Baker, 2001; Baker & Kim, 2004; De Ayala, 2009; Hambleton & Swaminathan, 

1985; Hambleton et al., 1991; Hambleton & Jones, 1993). The psych (Revelle, 2022), sirt 

(Robitzsch, 2022), and mirt (Chalmers, 2012) packages were used to test the basic assumptions. 

Second, the R programming language was used in the analysis of the data as well as in the 

generating of the data. The R software version used is R Studio, Version: 2022.12.0+353. 

Researchers generally use statistics such as correlation, covariance, bias, absolute bias, standard 

error of estimate (SE), mean square error (MSE) and root mean square error (RMSE). The 

statistics to be used and how to interpret them depend on the problems of the research. A review 

of the literature shows that bias, standard error (SE) and root mean square error of the mean 

square error (RMSE) are the most used ones (Feinberg & Rubright, 2016). RMSE was used in 

this research. 

Root means square error (RMSE) between the ability and item parameters and the initial 

parameters estimated on the data generated according to the simulation conditions were 

calculated. This is because biased values can take both positive and negative values. This 

situation affects the mean of bias. In addition, there is a relationship between RMSE and bias. 

This relationship is given in the equation below (Atar, 2007; Bilir, 2009; Feinberg & Rubright, 

2016): 

𝑅𝑀𝑆𝐸2 = 𝐵𝑖𝑎𝑠2 + 𝑆𝐸2    (Equation 2) 

In this equation, the sum of the bias's square and the standard error's square equals the square 

of the RMSE. Accordingly, the negative and positive biases created by the bias have 

disappeared. While analyzing the data, the ML estimation was first performed using the irtplay 

package (Lim & Wells, 2020) compared to ML approaches, followed by standard Bayesian 

estimations using Monte Carlo Markov Chain (MCMC) methods using the bairt (Martinez, 

2017) and sirt (Robitzsch, 2022) packages for Bayesian approaches. In Bayesian estimations, 

the burning was defined as 1000, and the iteration was defined as 3000. The number of burn-in 

and iterations are set at these values due to the procedures performed in the algorithm of the 

method. Because in the MCMC method, the first chain generated up to the burn-in value is 

subtracted from the whole chain generated later. Thus, parameter estimation is performed from 

the sample generated by the number of iterations (Martin & Quinn, 2006; SAS Institute, 2020). 

These values are determined according to the conditions of the simulation to provide unbiased 

results at the expected level. 

Third, the significance of the differences between the RMSE values of the parameters was 

tested by mixed model ANOVA according to sample size, test length, logistic model, a priori 

distribution type, and estimation method. Assumptions were checked before analyzing the 

mixed model ANOVA. Afex (Singmann, 2022) and emmeans (Lenth, 2022) packages were 

used for this analysis. For the mixed model ANOVA, the main effects (between) variables were 

the simulation conditions that were manipulated (sample size, test length, a priori ability 

distribution types, parameter estimation methods) and fixed (initial values of ability and item 
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parameters), and the number of simulation replications was assigned as the interaction (within) 

variable. According to the analysis results, the significant conditions' effect sizes (generalized 

eta-square coefficient) were computed and assessed according to Cohen's (1988) proposal. 

Accordingly, the size of the effect size was interpreted as weak if it was less than 0.0099, 

moderate if it was 0.0588, and strong if it was greater than 0.1379. At the same time, since the 

generalized eta-square coefficient takes a value between 0 and 1 when this value is multiplied 

by 100, it shows how much of the variance of the dependent variable is explained by the 

independent variables (Lakens, 2013). Statistically significant conditions were compared using 

the Bonferroni post hoc comparison method, included by default in the emmans package. 

According to the analysis results, ggplot2 (Wickham, 2016) and ggbeeswarm (Clarke, 2022) 

packages were used to visualize significant conditions. 

3. RESULTS 

Analysis was conducted to determine whether the datasets meet the assumptions of the IRT. 

Accordingly, for the unidimensionality assumption, the ratio of the explained variance, the 

averages of the first eigenvalues and the ratio of the first eigenvalue to the second eigenvalue 

were calculated according to the explanatory factor analysis results. It was accepted that this 

assumption was fulfilled if a dominant factor was found (Lord, 1980). Accordingly, it is seen 

that the data fulfills the unidimensionality assumption in all conditions. 

The Q3 statistic of Yen (1984) is used to test the local independence assumption. Accordingly, 

it is determined that the local independence assumption is mostly fulfilled for the data in all 

conditions. 

M2 values were examined to test the assumption of model-data fit. As a fit criterion, the M2 

statistic is expected to be non-significant (Maydeu-Olivares & Joe, 2006). Accordingly, it is 

seen that model-data fit is fulfilled in all the data.  

Normality and homogeneity of variances test results of the data were analyzed. In big samples, 

it is more practical to use descriptive statistics and graphical analysis to check the normality 

assumption. In big samples, normality tests with hypothesis tests risk increasing the probability 

of Type I error (Demir, 2019). Accordingly, it is seen that the skewness and kurtosis coefficients 

and histogram graphs of the data fulfill the normality assumption. Examining the hypothesis of 

homogeneity of variances test results shows that this assumption is fulfilled (F(2PL..RMSE) = 0.13; 

p>.05, F(2PL.a.RMSE) = 0.51; p>.05, F(2PL.b.RMSE) = 0.78; p>.05, F(3PL..RMSE) = 0.06; p>.05, 

F(3PL.a.RMSE) = 0.21; p> .05, F(3PL.b.RMSE) = 0.99; p>.05, F(3PL.c.RMSE) = 0.59; p>.05). Then, the 

findings related to the research problems are presented under headings. 

3.1. Investigation of ϴRMSE Estimated by ML and Bayesian Methods in 2 PL Model 

In the first problem of the study, the RMSE changes of ability parameters according to sample 

size, test length, and estimation method were analyzed with mixed model ANOVA in the data 

in the 2 PL model with normal and non-normal priori distribution (left-skewed, right-skewed, 

leptokurtic and platykurtic). Accordingly, the results of the mixed model ANOVA performed 

for the ability parameters according to the sample size, test length, and estimation method in 

the data in the 2 PL model with normal and non-normal priori distribution (left-skewed, right-

skewed, leptokurtic, and platykurtic) are given in Table 2. 
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Table 2. Mixed model ANOVA results for ability parameters RMSE in data in 2 PL models with normal 

and non-normal priori distribution. 

Independent variables 
Mean squares 

of error 

Degrees of 

freedom 
F p Generalized ƞ2 

Estimation method (K) 72.05 1 7.83 0.006** 0.078 

Sample size (S) 79.36 2 0.00 0.997 0.001 

Test length (M) 65.24 2 9.42 0.001** 0.171 

Prior distribution type (D) 42.74 4 1.88 0.001** 0.456 

K*S 75.46 2 0.01 0.994 0.001 

K*M 58.50 2 1.69 0.191 0.037 

K*D 31.90 4 4.05 0.005** 0.155 

Error 0.30 198    

Total 425.55     
*p< .05, **p< .01 

Table 2 shows that the main effects of the estimation method (F(1, 88) = 7.83; p<.01, ƞ2 = .078), 

test length (F(2, 84) = 9.42; p<.01, ƞ2 = .171) and priori distribution type (F(4, 80) = 1.88; p<.01, ƞ2 

= .456) seem to have a significant effect. However, the sample size (F(2, 87) = 0.00; p>.05, ƞ2 

= .001) did not have a significant effect. Significantly, the estimation method has a medium 

effect size, the test length is high, and the priori distribution type has a high effect size. When 

the interactions were examined, the interaction between the estimation method and the priori 

distribution type was significant (F(4, 80) = 4.05; p<.01, ƞ2 = .155). The effect size of the 

interaction is high. Pairwise comparisons of the ability parameter estimation method in 2 PL 

models are given in Table 3. 

Table 3. Ability parameter estimation method pair comparisons in 2 PL models. 

Estimation method Difference Standard error t p 

Bayes-ML -0.501 0.179 -2.799 0.001** 

*p< .05, **p< .01 

Table 3 shows that Bayesian estimation, the ability parameter estimation method in the 2 PL 

model, produced lower and more significant RMSE than the ML (t=-2.799; p<.01). The RMSE 

changes of the ability parameter estimation methods in the 2 PL model are given in Figure 1. 

Figure 1. The change of ability parameter RMSE in 2 PL models by estimation methods. 
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Figure 1 shows that the RMSE of the ability parameters obtained from all data sets in the 2 PL 

model, regardless of the research conditions, change. Accordingly, while the ability parameter 

was estimated in the 2 PL model, the Bayesian method produced lower and more significant 

RMSE than the ML method. Pairwise comparisons according to the number of items on the 

ability parameter in the 2 PL model are given in Table 4. 

Table 4. Pairwise comparisons of ability parameter RMSE in 2 PL models by test length. 

Test Length Difference Standard error t p 

10 – 20 0.272 

0.209 

1.304 0.397 

10 – 40 0.884 4.236 0.001** 

20 – 40 0.612 2.933 0.012* 

*p< .05, **p< .01 

Table 4 shows that there are significant differences between test lengths 10 and 40 (t=4.236; 

p<.01) and 20 and 40 (t=2.933; p<.05) on ability parameter RMSE in the 2 PL model. The 

RMSE change according to test length on the ability parameter in the 2 PL model is given in 

Figure 2. 

Figure 2. The change of ability parameter RMSE in 2 PL models by the test length. 

 

Figure 2 shows that RMSE decreases as the test length increases on the ability parameter 

estimations in the 2 PL model. As a result of the estimation made with the ML, the RMSE of 

the ability parameters decreases as the test length increases. The same situation is seen in the 

Bayesian estimation method. In the Bayesian estimation method, there is no difference in the 

test length between 10 and 20, but a lower RMSE is obtained in case the test length is 40. 

However, the RMSE of ability parameters obtained according to test length in Bayesian 

estimation was lower than in ML estimation. Pairwise comparisons according to priori 

distribution on the ability parameter in the 2 PL model are given in Table 5. 

Table 5 shows that the priori distribution type on the ability parameter RMSE in the 2 PL model 

is normal to left skewed (t=-7.292; p<.01), normal to right skewed (t=-7.321; p<.01), normal to 

leptokurtic (t=-5.434; p<.01), normal to platykurtic (t=-3.267; p<.05), left skewed to platykurtic 

(t=4.026; p<.01), right skewed to platykurtic (t=4.054; p<.01) significant differences were 

found. These differences are in favor of the Bayesian estimation method. In the 2 PL model, 

Bayesian estimation produces lower RMSE as the priori distribution type differs from the 
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normal. The RMSE change according to the priori distribution type on the ability parameter in 

the 2 PL model is given in Figure 3. 

Table 5. Pairwise comparisons of ability parameter RMSE in 2 PL models by prior distribution. 

Prior talent distribution type Difference Standard error t p 

Normal – Left skewed -1.589 

0.218 

-7.292 0.000** 

Normal – Right skewed -1.595 -7.321 0.000** 

Normal – Leptokurtic -1.184 -5.434 0.000** 

Normal – Platykurtic -0.712 -3.267 0.013* 

Left skewed – Right skewed -0.006 -0.029 0.999 

Left skewed – Leptokurtic 0.405 1.858 0.347 

Left skewed – Platykurtic 0.877 4.026 0.001** 

Right skewed – Leptokurtic 0.411 1.887 0.332 

Right skewed – Platykurtic 0.884 4.054 0.001** 

Leptokurtic – Platykurtic 0.472 2.267 0.202 
*p< .05, **p< .01 

Figure 3. The change of ability parameter RMSE in 2 PL models by prior distribution type. 

 

Figure 3 shows that the priori distribution in the 2 PL model becomes skewed from normal (left 

skewed, right skewed, leptokurtic, and platykurtic), and the RMSE of the ability parameters 

increases in the ML estimation. The lowest RMSE on the ability parameters was obtained in 

ML estimation when the prior distribution was normal. As the distribution becomes skewed, 

the error values increase. The RMSE is highest when the distribution is left skewed and right 

skewed and lower when it is leptokurtic and platykurtic. As the distribution normalizes, these 

values show a further decrease. In the 2 PL model, when the Bayesian method performs the 

ability parameters estimation, RMSE is lower than the ML estimation. 

Similarly, the lowest RMSE is in the normal, platykurtic, left and right skewed distribution and 

the leptokurtic distribution, respectively. In all the priori distribution types, except for the 

leptokurtic distribution, the RMSE decreases in Bayesian estimation. In contrast, in the 

leptokurtic distribution, they have higher values than the ML estimation. When the prior 

distribution is produced, since the leptokurtic distribution has a lower standard deviation than 

the normal distribution and remains relatively between -1 and +1 as a distribution range, it takes 

shape in a broader range as a posterior distribution compared to the prior distribution. Therefore, 

the RMSE differences between the initial and estimated ability parameters increase. 
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Accordingly, while estimating the ability parameters in the 2 PL model, using the Bayesian 

estimation method in other distribution types provides lower RMSE, except when the priori 

distribution is leptokurtic. 

3.2. Investigation of ϴRMSE Estimated by ML and Bayesian Methods in 3 PL Model 

In the second problem of the study, the RMSE changes of ability parameters according to 

sample size, test length, and estimation method were analyzed with mixed model ANOVA in 

the data in the 3 PL model with normal and non-normal priori distribution (left-skewed, right-

skewed, leptokurtic and platykurtic). Accordingly, the mixed model ANOVA results were 

performed for the ability parameters according to the sample size, test length, and estimation 

method in the data in the 3 PL model with normal and non-normal priori distribution (left-

skewed, right-skewed, leptokurtic, and platykurtic) are given in Table 6. 

Table 6. Mixed model ANOVA results for ability parameters RMSE in the data in the 3 PL model with 

normal and non-normal priori distribution. 

Independent variables 
Mean squares of 

error 

Degrees of 

freedom 
F p Generalized ƞ2 

Estimation method (K) 2769.62 1 0.27 0.607 0.003 

Sample size (S) 2747.44 2 0.99 0.376 0.022 

Test length (M) 2488.40 2 5.62 0.005** 0.111 

Priori distribution type (D) 2315.05 4 5.15 0.001** 0.189 

K*S 2836.73 2 0.00 0.999 0.001 

K*M 2568.23 2 0.00 0.996 0.001 

K*D 2441.93 4 0.07 0.991 0.003 

Error 0.96 198    

Total 18168.36     
*p< .05, **p< .01 

Table 6 shows that the test length is the main effect of the independent variables (F(2, 84) = 5.62; 

p<.01, ƞ2 = .111) according to the mixed model ANOVA results for the ability parameters 

RMSE in the data in the 3 PL model with normal and non-normal priori distribution and priori 

distribution type (F(4, 80) = 5.15; p<.01, ƞ2 = .189) were found to be significant. The estimation 

method (F(1, 88) = 0.27; p>.05, ƞ2 = .003) and sample size (F(2, 87) = 0.99; p>.05, ƞ2 = .022) do 

not have a significant difference. Significantly, the test length is medium, and the priori 

distribution type has a high effect size. When the interactions were examined, no condition was 

found to be significant. Pairwise comparisons according to the test length on the ability 

parameter in the 3 PL model are given in Table 7. 

Table 7. Pairwise comparisons of ability parameter RMSE in 3 PL models by test length. 

Test length Difference Standard error t p 

10 – 20 3.429 

1.288 

2.663 0.025* 

10 – 40 3.988 3.096 0.007** 

20 – 40 0.558 0.434 0.902 
*p< .05, **p< .01 

Table 7 shows that there are significant differences between test lengths 10 and 20 (t=2.663; 

p<.05) and 10 and 40 (t=3.096; p<.01) on ability parameter RMSE in the 3 PL model. The 

RMSE change according to test length on the ability parameter in the 3 PL model is given in 

Figure 4. 

 

 

 



Selçuk & Demir                                                                 Int. J. Assess. Tools Educ., Vol. 11, No. 2, (2024) pp. 213–248 

 226 

Figure 4. The change of ability parameter RMSE in 3 PL model by estimation methods. 

 

Figure 4 shows that the RMSE decreases as the test length increases on the ability parameter 

estimations in the 3 PL model. At the same time, the Bayesian estimation method took lower 

values than ML estimation in cases where test length decreased. However, this situation was 

not found to be significant. Therefore, using ML or Bayesian methods does not make a 

difference when estimating ability parameters in the 3 PL model. However, regardless of the 

estimation method used, the increase in test length causes a decrease in the RMSE of the ability 

parameters. For example, when the test length decreased to 10, RMSE in the ability parameters 

increased significantly. Accordingly, lower RMSE for ability parameters in the 3 PL model was 

observed when the test length was 20 and 40. Pairwise comparisons according to priori 

distribution type on the ability parameter in the 3 PL model are given in Table 8. 

Table 8. Pairwise comparison of ability parameter RMSE in 3 PL models by prior distribution type.  

Prior distribution type Difference Standard error t p 

Normal – Left skewed -1.376 

1.604 

-0.858 0.911 

Normal – Right skewed -1.300 -0.811 0.926 

Normal – Leptokurtic -6.463 -4.030 0.001** 

Normal – Platykurtic -0.697 -0.434 0.992 

Left skewed – Right skewed 0.076 0.047 0.999 

Left skewed – Leptokurtic -5.088 -3.172 0.017* 

Left skewed – Platykurtic 0.679 0.424 0.993 

Right skewed – Leptokurtic -5.163 -3.219 0.015* 

Right skewed – Platykurtic 0.604 -0.376 0.996 

Leptokurtic – Platykurtic 5.767 3.595 0.004** 

*p< .05, **p< .01 

Table 8 shows that the priori distribution type on the ability parameter RMSE in the 3 PL model 

is normal to leptokurtic (t=-4.030; p<.01), left skewed to leptokurtic (t=-3.172; p<.05), right 

skewed to leptokurtic (t=-3.219; p<.05), significant differences were found between leptokurtic 

and platykurtic (t=3.595; p<.01). In the 3 PL model, RMSE increase as the priori distribution 

becomes leptokurtic on the ability parameters. The RMSE change according to the priori 

distribution type on the ability parameter in the 3 PL model is given in Figure 5. 
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Figure 5. The change of ability parameter RMSE in the 3 PL model by prior distribution type. 

 

Figure 5 shows that the priori distribution type becomes leptokurtic in the 3 PL model, and the 

RMSE of ability parameters takes higher values. However, according to the ability parameters 

estimation method, other distribution types did not differentiate on the priori distribution type, 

except for the leptokurtic distribution. Therefore, as in the 2 PL model, the leptokurtic priori 

distribution on the estimations of the ability parameters significantly affects the RMSE. This is 

seen in both ML and Bayesian estimation methods. Accordingly, the leptokurtic of the priori 

distribution harms the RMSE of the ability parameters, regardless of the model (2 PL or 3 PL). 

This situation is likely caused by the leptokurtic distribution (lower standard deviation and 

narrow ranges) and the data structure generated while performing the simulation. For this 

reason, cases where priori is leptokurtic should be examined in more detail within the 

framework of IRT parameter estimations. 

3.3. Investigation of aRMSE, bRMSE, cRMSE Estimated by ML and Bayesian Methods in 2 PL 

Model 

RMSE changes of item parameters according to sample size, test length, and estimation method 

in 2 PL models with normal and non-normal (left skewed, right skewed, leptokurtic, and 

platykurtic) priori distribution stated in the third problem of the study were analyzed by mixed 

model ANOVA. Accordingly, the mixed model ANOVA results were performed for the item 

parameters according to sample size, test length, and estimation method in the data in 2 PL 

models with normal and non-normal priori distribution (left-skewed, right-skewed, leptokurtic, 

and platykurtic) are given in Table 9. 

Table 9 shows that according to the mixed model ANOVA results for the item discrimination 

parameter RMSE in the data in the 2 PL models with normal and non-normal priori distribution, 

the main effects of independent variables as estimation method (F(1, 88) = 8.17; p<.01, ƞ2 = .045), 

sample size (F(2, 87) = 8.97; p<.01, ƞ2 = .090) and priori distribution type (F(4, 85)  = 3.93; p<.01, 

ƞ2 = .083) have significant effects. Test length (F(2, 87) = 0.10; p>.05, ƞ2 = .001) did not have a 

significant effect. Among the independent variables found to be statistically significant, the 

estimation method has a small effect size, the sample size has a medium effect size, and the 

priori ability distribution has a medium effect size. 
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Table 9. Mixed model ANOVA results for item parameters RMSE in data in 2 PL models with normal 

and non-normal priori distribution. 

Independent variables Mean squares of 

error 

Degrees of 

freedom 
F p 

Generalized 

ƞ2 Item discrimination (aRMSE) 

Estimation method (K) 5385.60 1 8.17 0.005** 0.045 

Sample size (S) 4935.31 2 8.97 0.001** 0.090 

Test length (M) 5939.41 2 0.10 0.905 0.001 

Prior distribution type (D) 5141.71 4 3.93 0.006** 0.083 

K*S 3891.39 2 7.52 0.001** 0.070 

K*M 5621.35 2 0.05 0.952 0.001 

K*D 4210.31 4 3.34 0.014* 0.069 

Error 53.68 198    

Total 35178     

Item difficulty (bRMSE )      

Estimation method (K) 5827.21 1 1.26 0.264 0.002 

Sample size (S) 5706.21 2 2.08 0.131 0.007 

Test length (M) 5900.27 2 0.58 0.562 0.002 

Prior distribution type (D) 5606.80 4 1.94 0.111 0.014 

K*S 5597.01 2 1.69 0.191 0.006 

K*M 5931.07 2 0.65 0.523 0.003 

K*D 5244.57 4 2.37 0.060 0.017 

Error 311.54 198    

Total 40124.68     
*p< .05, **p< .01 

According to the mixed model ANOVA results, none of the independent variables created a 

significant difference for the item difficulty parameter RMSE values in the data in the 2 PL 

model with and without normal a priori ability distribution. Therefore, only significant 

conditions on the item discrimination parameter RMSE were given in the third research 

problem. 

In the 2 PL model, sample size with estimation method (F(2, 84) = 7.52; p<.01, ƞ2 = .070) and 

priori distribution type with estimation method (F(4, 80) = 3.34; p<.05, ƞ2 = .069) were significant 

differences on item discrimination parameter RMSE. However, these pairwise interactions had 

moderate effect sizes. Therefore, for the data in the 2 PL model, the pairwise comparisons of 

the estimation method having a significant effect on the item discrimination parameter are given 

in Table 10. 

Table 10. Pairwise comparisons of item discrimination parameter RMSE in 2 PL model by method of 

estimation. 

Estimation method Difference Standard error t p 

ML-Bayes 4.421 1.547 2.858 0.005** 

*p< .05, **p< .01 

Table 10 shows that the estimation method on the item discrimination parameter RMSE in the 

2 PL model data with normal and non-normal priori distribution type is in favor of the Bayesian 

estimation method and significant (t=2.858; p<.01). RMSE changes of the item discrimination 

parameter estimation methods in the 2 PL model are given in Figure 6. 
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Figure 6. The change of item discrimination parameter RMSE in 2 PL model by method of estimation 

 

Figure 6 shows that the item discrimination parameter RMSE in the 2 PL model, independent 

of all research conditions, takes lower Bayesian estimation values than ML estimation. 

Furthermore, while the item discrimination parameter RMSE (aRMSE) shows a scattering 

according to the estimation results of the ML method, these values are more linear and stable 

in Bayesian estimation. Accordingly, the Bayesian approach provides advantages over the ML 

procedure in estimating item discrimination parameters. Pairwise comparisons of the sample 

size significantly affected the item discrimination parameters for the data in the 2 PL models, 

which are given in Table 11. 

Table 11. Pairwise comparisons of item discrimination parameter RMSE in 2 PL model by sample size 

and estimation method. 

Estimation method Sample size Difference Standard error t p 

ML 
100 

500 11.958 

2.278 

5.250 0.000** 

1000 12.164 5.340 0.000** 

500 1000 0.207 0.091 0.999 

Bayes 
100 

500 1.198 0.526 0.995 

1000 1.290 0.566 0.993 

500 1000 0.092 0.040 0.999 

ML*Bayes 100 100 -11.633 -5.107 0.000** 

500 500 -0.873 -0.383 0.999 

1000 1000 -0.758 -0.333 0.999 
*p< .05, **p< .01 

Table 11 shows a significant difference between the RMSE of the item discrimination 

parameter estimated by the ML method in the 2 PL model between sample sizes of 100 and 500 

(t=5.250; p<.01) and between 100 and 1000 (t=5.340; p<.01). However, there was no difference 

between sample sizes in Bayesian estimation. Accordingly, the significant RMSE in small 

samples in ML estimation decreased in the Bayesian method. Nevertheless, the RMSE of the 

item discrimination parameter estimated by different methods at the same sample sizes showed 

a significant difference at a sample size of 100 (t=-5.107; p<.01). This difference was eliminated 

as the sample size increased. Accordingly, using the Bayesian estimation method to obtain item 

discrimination parameters with low RMSE in small samples is more suitable. RMSE change 
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according to sample size on item discrimination parameter in the 2 PL model is given in Figure 

7. 

Figure 7. The change of item discrimination parameter RMSE in 2 PL model by sample size. 

 

Figure 7 shows that the Bayesian estimation method produced lower values on item 

discrimination parameter RMSE (aRMSE) when the sample size decreased compared to ML 

estimation. When the sample size decreased to 100 in the ML estimation, the item 

discrimination parameter RMSE increased excessively and created scattering. In this case, 

when the Bayesian estimation method was used, RMSE tended to decrease and showed a linear 

distribution. When the sample size was 500 or 1000, RMSE did not show a significant 

difference according to the estimation method. As can be understood from this, when the ML 

estimation method is used in the 2 PL model, a sample of at least 500 sample size should be 

used to reduce the item discrimination parameter RMSE. When the sample size drops to 100, 

the Bayesian estimation method should be used. Pairwise comparisons on the item 

discrimination parameter in the 2 PL model according to the priori distribution form are given 

in Table 12. 

Table 12 shows that significant differences were found between the item discrimination 

parameter RMSE estimated by ML method in the 2 PL model between normal and left skewed 

(t=-4.031; p<.01), normal and right skewed (t=-3.754; p<.05), left skewed and leptokurtic 

(t=3.815; p<.01), left skewed and platykurtic (t=3.513; p<.05), right skewed and leptokurtic 

(t=3.538; p<.05) and right skewed and platykurtic (t=3.236; p<.05) according to the distribution 

types. These differences were eliminated in Bayesian estimation. The RMSE of the item 

discrimination parameter estimated by Bayesian method in the 2 PL model were not 

significantly affected by the type of prior distribution. In the same type of a priori distributions, 

item discrimination parameter RMSE estimated by ML and Bayesian methods differed 

significantly when the distribution was left skewed (t=3.569; p<.05) or right skewed (t=3.300; 

p<.05). However, according to the estimation methods, no difference was found for the other 

distribution types. In the 2 PL model, RMSE on the item discrimination parameter according 

to the priori ability distribution types are given in Figure 8. 
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Table 12. Pairwise comparisons of item discrimination parameter RMSE in 2 PL model by priori 

distribution type and estimation method. 

Estimation 

method 
Prior distribution type Difference 

Standard 

error 
t p 

ML 

Normal 

Left skewed -12.330 

3.059 

-4.031 0.004** 

Right skewed -11.482 -3.754 0.011* 

Leptokurtic -0.659 -0.216 0.999 

Platykurtic -1.584 -0.518 0.999 

Left skewed 

Right skewed 0.847 0.277 0.999 

Leptokurtic 11.670 3.815 0.009** 

Platykurtic 10.746 3.513 0.024* 

Right skewed 
Leptokurtic 10.823 3.538 0.022* 

Platykurtic 9.898 3.236 0.050* 

Leptokurtic Platykurtic -0.925 -0.302 0.999 

Bayes 

Normal 

Left skewed -1.162 -0.380 0.999 

Right skewed -1.137 -0.372 0.999 

Leptokurtic -0.329 -0.108 0.999 

Platykurtic -0.061 0.020 0.999 

Left skewed 

Right skewed 0.025 0.008 0.999 

Leptokurtic 0.833 0.272 0.999 

Platykurtic 1.101 0.360 0.999 

Right skewed 
Leptokurtic 0.808 0.264 0.999 

Platykurtic 1.076 0.352 0.999 

Leptokurtic Platykurtic 0.268 0.088 0.999 

ML*Bayes 

Normal Normal -0.252 -0.082 0.999 

Left skewed Left skewed 10.916 3.569 0.020* 

Right skewed Right skewed 10.093 3.300 0.044* 

Leptokurtic Leptokurtic 0.078 0.026 0.999 

Platykurtic Platykurtic 1.271 0.416 0.999 
*p< .05, **p< .01 

Figure 8. The change of item discrimination parameter RMSE in 2 PL model by priori distribution type. 
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Figure 8 shows that the item discrimination parameter RMSE (aRMSE) is higher as the priori 

distribution becomes skewed in the 2 PL model. In the ML estimation method, the item 

discrimination parameter RMSE (aRMSE) increases as the priori distribution becomes skewed to 

the left or right. The leptokurtic or platykurtic of the prior distribution does not have an 

increasing effect on the item discrimination parameter RMSE. However, the Bayesian 

estimation method reduced the high RMSE of the item discrimination parameter if the priori 

ability distribution was skewed to the left or right. Accordingly, in the 2 PL model, the item 

discrimination parameter RMSE (aRMSE) is affected by the differentiation of the priori 

distribution type. As a result, it shows low values when using the Bayesian estimation method. 

3.4. Investigation of aRMSE, bRMSE, cRMSE Estimated by ML and Bayesian Methods in 3 PL 

Model 

RMSE changes of item parameters according to sample size, test length, and estimation method 

in 3 PL models with normal and non-normal (left skewed, right skewed, leptokurtic, and 

platykurtic) priori distribution stated in the fourth problem of the research were analyzed by 

mixed model ANOVA. Accordingly, the mixed model ANOVA results were performed for the 

item parameters according to sample size, test length, and estimation method in the data in 3 

PL models with normal and non-normal priori distribution (left skewed, right skewed, 

leptokurtic, and platykurtic) are given in Table 13. 

Table 13 shows that according to the mixed model ANOVA results for the item discrimination 

parameter RMSE in the data in the 3 PL models with normal and non-normal priori distribution, 

the main effects of independent variables as estimation method (F(1, 88) = 28.61; p<.01, ƞ2 

= .203), sample size (F(2, 87) = 4.55; p<.05, ƞ2 = .078) and priori distribution type (F(4, 85) = 6.40; 

p<.01, ƞ2 = .192) had significant effects. Test length (F(2, 87) = 0.53; p>.05, ƞ2 = .010) did not 

show a significant difference. Among the independent variables found to be statistically 

significant, the estimation method is high, the sample size is medium, and the priori ability 

distribution type has a high effect size. In the 3 PL model, sample size (F(2, 84) = 5.22; p<.01, ƞ2 

= .085) has a significant and moderate effect size and priori distribution type (F(4, 80) = 13.46; 

p<.01, ƞ2 = .295) has a significant and high effect size on item discrimination parameter RMSE. 

According to the mixed model ANOVA results for the item difficulty parameter RMSE in the 

3 PL models with normal and non-normal priori distribution, none of the independent variables 

created a significant difference. 

According to the mixed model ANOVA results for lower asymptote parameter RMSE in the 

data in 3 PL models with normal and non-normal priori distribution, estimation method (F(1, 88) 

= 9.10; p<.01, ƞ2 = .074) and priori distribution type (F(4, 80) = 13.00; p<.01, ƞ2 = .306) as the 

main effects of independent variables created significant differences. Sample size (F(2, 87) = 

2.49; p>.05, ƞ2 = .043) and test length (F(2, 87) = 0.50; p>.05, ƞ2 = .009) were not significantly 

different. The estimation method that created a significant difference had a medium effect size, 

and the priori distribution type had a high effect size. In the 3 PL model, the estimation method 

from interactions and priori distribution type (F(4, 80) = 4.11; p<.01, ƞ2 = .117) had a significant 

and medium effect size on lower asymptote parameter RMSE. Pairwise comparisons of the 

estimation method's significant difference in the item discrimination parameter for the data in 

the 3 PL model are given in Table 14. 
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Table 13. Mixed model ANOVA results for item parameters RMSE in 3 PL models with normal and 

non-normal priori distribution. 

Independent variables Mean squares 

of error 

Degrees of 

freedom 
F p Generalized ƞ 2 

Item discrimination (aRMSE) 

Estimation method (K) 98140.76 1 28.61 0.001** 0.203 

Sample size (S) 119088.76 2 4.55 0.013* 0.078 

Test length (M) 129940.17 2 0.53 0.588 0.010 

Prior distribution type (D) 103482.30 4 6.40 0.001** 0.192 

K*S 79972.48 2 5.22 0.007** 0.085 

K*M 99643.32 2 0.64 0.530 0.012 

K*D 44745.66 4 13.46 0.001** 0.295 

Error 273.87 198    

Total 675287.32     

Item difficulty (bRMSE )      

Estimation method (K) 1149170.54 1 1.82 0.180 0.001 

Sample size (S) 1132417.18 2 2.08 0.132 0.001 

Test length (M) 117180079 2 0.54 0.582 0.001 

Prior distribution type (D) 1106887.16 4 2.06 0.093 0.001 

K*S 1095077.60 2 2.03 0.138 0.001 

K*M 1173689.34 2 0.54 0.586 0.001 

K*D 1037641.31 4 2.16 0.081 0.001 

Error 797927.50 198    

Total 8664611.42     

Lower asymptote (cRMSE )      

Estimation method (K) 0.06 1 9.10 0.003** 0.074 

Sample size (S) 0.06 2 2.49 0.089 0.043 

Test length (M) 0.07 2 0.50 0.606 0.009 

Prior distribution type (D) 0.04 4 13.00 0.001** 0.306 

K*S 0.06 2 2.11 0.127 0.037 

K*M 0.06 2 0.32 0.727 0.006 

K*D 0.03 4 4.11 0.004** 0.117 

Error 0.00 198    

Total 0.38     
*p< .05, **p< .01 

Table 14. Pairwise comparisons of item discrimination parameter RMSE in 3 PL model by method of 

estimation. 

Estimation method Difference Standard error t p 

Bayes-ML -35.323 6.604 -5.348 0.001** 

*p< .05, **p< .01 

Table 14 shows that the item discrimination parameter RMSE of the data in the 3 PL models 

with normal and non-normal priori distribution were significant in favor of the Bayesian 

estimation method (t=-5.348; p<.01). Bayesian estimation method produced lower RMSE than 

the ML estimation method. RMSE changes of the item discrimination parameter (aRMSE) 

estimation methods in the 2 PL model are given in Figure 9. 

 

 



Selçuk & Demir                                                                 Int. J. Assess. Tools Educ., Vol. 11, No. 2, (2024) pp. 213–248 

 234 

Figure 9. The change of item discrimination parameter RMSE values in 3 PL model by estimation 

methods. 

 

Figure 9 shows that the item discrimination parameter RMSE (aRMSE) in the 3 PL model, 

independent of all simulation conditions, takes lower Bayesian estimation values than ML 

estimation. For the data in the 3 PL model, the pairwise comparisons of the sample size having 

a significant effect on the item discrimination parameter RMSE are given in Table 15. 

Table 15. Pairwise comparisons of item discrimination parameter RMSE values by sample size and 

estimation method in 3 PL model. 

Estimation method Sample size Difference Standard error t p 

ML 
100 

500 40.622 

10.326 

3.934 0.002** 

1000 46.255 4.479 0.001** 

500 1000 5.633 0.546 0.994 

Bayes 
100 

500 2.711 0.263 0.999 

1000 2.941 0.285 0.999 

500 1000 0.231 0.022 0.999 

ML*Bayes 100 100 62.398 6.043 0.001** 

500 500 24.487 2.371 0.178 

1000 1000 19.085 1.848 0.441 
*p< .05, **p< .01 

Table 15 shows that there is a significant difference between the item discrimination parameter 

RMSE estimated by ML method in the 3 PL model between sample sizes 100 and 500 (t=3.934; 

p<.01) and 100 and 1000 (t=4.479; p<.01), but no significant difference between 500 and 1000 

(t=0.546; p>.05). However, using Bayes as the estimation method eliminated the significant 

differences between the sample sizes. Accordingly, using the Bayesian estimation method to 

estimate the item discrimination parameter more accurately in 3 PL models and small samples 

is more appropriate. Supporting this, when the sample size was 100 (t=6.043; p<.01), a 

significant difference was found between the RMSE of the item discrimination parameter 

according to the ML and Bayesian estimation method analyses. However, this significant 

difference is not observed as the sample size increases. RMSE change according to sample size 

on item discrimination parameter in the 3 PL model is given in Figure 10. 
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Figure 10. The change of item discrimination parameter RMSE by sample size in the 3 PL model. 

 

Figure 10 shows that when the sample size decreased, the Bayesian estimation method produced 

lower RMSE on item discrimination parameters than ML estimation. In ML estimation, item 

discrimination RMSE increases as the sample size decreases. In addition, these values show 

scattering. This situation is similar to the results obtained in the 2 PL model. These values 

decrease as the sample size increases. However, the Bayesian method tends to reduce the item 

discrimination parameter RMSE compared to the ML method. In Bayesian estimation, the 

increase in sample size did not make a difference in the item discrimination parameter RMSE 

(aRMSE). RMSE obtained according to sample size is linear. In other words, the Bayesian method 

reduced and stabilized the item discrimination parameter RMSE (aRMSE) compared to the ML 

estimation. Pairwise comparisons on the item discrimination parameter in the 3 PL model 

according to the priori distribution type are given in Table 16. 

Table 16 shows that significant differences were found between the RMSE of the item 

discrimination parameter estimated by the ML method in the 3 PL model between normal and 

right-skewed (t=-8.852; p<.01), normal and leptokurtic (t=-4.516; p<.01), left-skewed and 

right-skewed (t=-7.960; p<.01), left-skewed and leptokurtic (t=-3.624; p<.05), right-skewed 

and leptokurtic (t=4.337; p<.01), right-skewed and platykurtic (t=8.400; p<.01), leptokurtic and 

platykurtic (t=4.063; p<.01) according to the distribution types. However, no significant 

difference was found between the a priori distribution types when the same parameter was 

estimated with the Bayesian method. Bayesian estimation method eliminated the significant 

difference depending on the a priori distribution type. Confirming this, the item discrimination 

parameter RMSE estimated by ML and Bayesian methods in the same a priori distribution types 

show a significant difference when the distribution is right skewed (t=9.274; p<.01) or 

leptokurtic (t=5.162; p<.01). Here, unlike in the 2 PL model, a distribution of a priori leptokurtic 

in the 3 PL model was found to cause differentiation. No differentiation was observed for the 

other distribution types. RMSE on item discrimination parameters in the 3 PL model according 

to priori distribution type is given in Figure 11. 
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Table 16. Pairwise comparisons of item discrimination parameter RMSE in 3 PL model by priori 

distribution type and estimation method. 

Estimation 

method 
Prior distribution type Difference 

Standard 

error 
t p 

ML 

Normal 

Left skewed -8.894 

9.972 

-0.892 0.996 

Right skewed -88.270 -8.852 0.001** 

Leptokurtic -45.027 -4.516 0.001** 

Platykurtic -4.508 0.452 0.999 

Left skewed 

Right skewed -79.377 -7.960 0.001** 

Leptokurtic -36.134 -3.624 0.016* 

Platykurtic 4.386 0.440 0.999 

Right skewed 
Leptokurtic 43.243 4.337 0.001** 

Platykurtic 83.763 8.400 0.001** 

Leptokurtic Platykurtic 40.520 4.063 0.004** 

Bayes 

Normal 

Left skewed -0.536 -0.054 0.999 

Right skewed -2.614 -0.262 0.999 

Leptokurtic -0.374 -0.038 0.999 

Platykurtic -0.653 -0.065 0.999 

Left skewed 

Right skewed -2.077 -0.208 0.999 

Leptokurtic 0.162 0.016 0.999 

Platykurtic -0.117 -0.012 0.999 

Right skewed 
Leptokurtic 2.239 0.225 0.999 

Platykurtic 1.961 0.197 0.999 

Leptokurtic Platykurtic -0.279 -0.028 0.999 

ML*Bayes 

Normal Normal 6.819 0.684 0.999 

Left skewed Left skewed 15.176 1.522 0.879 

Right skewed Right skewed 92.476 9.274 0.001** 

Leptokurtic Leptokurtic 51.472 5.162 0.001** 

Platykurtic Platykurtic 10.673 1.070 0.986 
*p< .05, **p< .01 

Figure 11. The change of item discrimination parameter RMSE in the 3 PL model by priori distribution 

types. 
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Figure 11 shows that the priori distribution becomes skewed in the 3 PL model, and the item 

discrimination parameter RMSE takes higher values. These high RMSE were reduced by the 

Bayesian estimation method. In the ML estimation in the 3 PL model, the item discrimination 

parameter RMSE gave the highest results when the priori distribution was skewed to the right. 

This was followed by leptokurtic, left skewed, platykurtic, and normal distributions. The fact 

that the model is 3 PL is an essential factor for the item discrimination parameter RMSE (aRMSE) 

to be the highest when the priori distribution is skewed to the right. Unlike the 2 PL model, by 

adding a third parameter, the lower asymptote parameter (ci) in this model changes the starting 

point of the priori distributions. Therefore, the most affected by this situation are the right-

skewed priori parameters. When Bayesian estimation was used, the item discrimination 

parameter RMSE (aRMSE) produced lower RMSE in all a priori distributions compared to ML 

estimation, which was stably distributed. Pairwise comparisons of the estimation method's 

significant effect on the lower asymptote parameter for the data in the 3 PL model are given in 

Table 17. 

Table 17. Pairwise comparisons of lower asymptote parameter RMSE in 3 PL model by estimation 

method. 

Estimation method Difference Standard error t p 

Bayes-ML 0.016 0.005 3.016 0.003** 

*p< .05, **p< .01 

Table 17 shows that the lower asymptote parameter is significant and in favor of the Bayesian 

estimation method on RMSE in 3 PL models with normal and non-normal priori distribution 

(t=3.016; p<.01). Bayesian estimation method produced lower RMSE than the ML estimation 

method. RMSE changes of the lower asymptote parameter estimation methods in the 3 PL 

model are given in Figure 12. 

Figure 12. The change of the lower asymptote parameter RMSE in the 3 PL model by estimation 

methods. 

 

Figure 12 shows that the RMSE of the lower asymptote parameter in the 3 PL model takes 

higher values in Bayesian estimation regardless of the research conditions. Unlike other 

parameters, ML estimation was more effective than Bayesian estimation in decreasing the 

RMSE of the lower asymptote parameters. There are few studies on the lower asymptote 

parameter in the literature. This result is likely due to the distribution type defined for the lower 

asymptote parameter while creating the function for the priori distribution. The data in the 3 PL 
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model's pairwise comparisons of the priori distribution type that significantly affect the lower 

asymptote parameter is given in Table 18. 

Table 18. Pairwise comparisons of the lower asymptote parameter RMSE in the 3 PL model by priori 

distribution type and estimation method. 

Estimation 

method 
Prior distribution type Difference 

Standard 

error 
t p 

ML 

Normal 

Left skewed 0.017 

0.009 

2.012 0.593 

Right skewed -0.007 -0.765 0.998 

Leptokurtic -0.015 -1.742 0.768 

Platykurtic -0.003 -0.333 0.999 

Left skewed 

Right skewed -0.024 -2.777 0.163 

Leptokurtic -0.032 -3.754 0.011* 

Platykurtic -0.020 -2.346 0.372 

Right skewed 
Leptokurtic -0.008 -0.977 0.993 

Platykurtic 0.004 0.431 0.999 

Leptokurtic Platykurtic 0.012 1.409 0.921 

Bayes 

Normal 

Left skewed 0.043 5.102 0.001** 

Right skewed 0.024 2.816 0.149 

Leptokurtic -0.023 -2.693 0.194 

Platykurtic 0.020 2.402 0.339 

Left skewed 

Right skewed -0.019 -2.286 0.509 

Leptokurtic -0.066 -7.795 0.001** 

Platykurtic 0.043 5.094 0.001** 

Right skewed 
Leptokurtic -0.047 -5.509 0.001** 

Platykurtic -0.004 -0.414 0.999 

Leptokurtic Platykurtic 0.043 5.094 0.001** 

ML*Bayes 

Normal Normal -0.030 -3.544 0.022* 

Left skewed Left skewed -0.004 -0.454 0.999 

Right skewed Right skewed 0.000 0.037 0.999 

Leptokurtic Leptokurtic -0.038 -4.494 0.001** 

Platykurtic Platykurtic -0.007 -0.809 0.998 
*p< .05, **p< .01 

Table 18 shows a significant difference between the lower asymptote parameter RMSE values 

estimated by ML method in 3 PL models between left skewed and leptokurtic (t=-3.754; p<.05) 

according to distribution types. In Bayesian estimation, there is a significant difference between 

normal and left skewed (t=5.102; p<.01), left skewed and leptokurtic (t=-7.795; p<.01), left 

skewed and platykurtic (t=5.094; p<.01), right skewed and leptokurtic (t=-5.509; p<.01), 

leptokurtic and platykurtic (t=5.094; p<.01) according to distribution types. As with the other 

parameters, no significance is expected for this parameter. However, the advantages of 

Bayesian estimation over ML estimation were not observed at lower asymptote parameters. The 

lower asymptote parameter RMSE estimated by ML and Bayesian methods in the same priori 

distribution types showed a significant difference in the normal (t=-3.544; p<.05) and 

leptokurtic (t=-4.494; p<.01) distributions. No difference was observed in other distribution 

types. Lower asymptote parameter RMSE according to the priori ability distribution type in the 

3 PL model are given in Figure 13. 
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Figure 13. The change of the lower asymptote parameter RMSE in the 3 PL model by priori distribution 

types. 

 

Figure 13 shows that the priori distribution becomes skewed in the 3 PL model; the lower 

asymptote parameter RMSE takes higher values. However, as the type of priori distribution 

becomes leptokurtic, the lower asymptote parameter RMSE increases in Bayesian estimation, 

unlike the other item parameters. Accordingly, the ML estimation method produced lower 

RMSE as the priori distribution became leptokurtic in the 3 PL model. In addition, the RMSE 

obtained in the ML estimation for all priori distribution types was distributed in a narrower area 

than Bayesian estimation. The lower asymptote parameter RMSE (cRMSE) obtained from 

Bayesian estimation is spread over a wider area because the initial parameter values are 

generated with a distribution other than the normal distribution. Standard Bayesian estimations 

tend to normalize the posterior distribution because the priori distribution is normal. 

4. DISCUSSION and CONCLUSION 

Considering the conditions in all the problems of the research, in the first research problem in 

which the RMSE of the ability parameters were examined, In the data in the 2 PL model, the 

estimation method on the RMSE of the ability parameters, test length, the type of priori 

distribution, and the interaction between estimation method and the priori distribution type 

created significant differentiation. These results are like the results of Finch and Edwards (2015) 

when examined in general terms. Likewise, Bayesian estimations give more accurate results in 

cases where the latent feature is non-normally distributed in the 2 PL model. A similar situation 

in terms of test length is also seen in Köse (2010)'s study. The change in test length affects the 

estimation results in ability parameters. An increase in test length decreases the RMSE of ability 

parameters. 

In the second research problem, test length and priori distribution type created significant 

differences in the RMSE of the ability parameters in the data in the 3 PL model. The general 

results for this problem are like the results of Swaminathan and Gifford (1986). They suggested 

that their study use Bayesian estimation instead of ML for the 3 PL model. In addition, 

Karadavut (2019) stated in her research that when estimating the ability parameter in the 3 PL 

model, not knowing the priori distribution type would lead to erroneous estimations. A similar 

situation can be seen in this study's differentiation of the priori distribution type. 

In estimating ability parameters and RMSE, the estimation method made a significant 

difference only in 2 PL models. This significance is in favor of the Bayesian estimation method. 
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Because Bayesian estimation reduced the high error values obtained in ML to lower values. 

Similar results were obtained in studies in the literature (Swaminathan & Gifford, 1986; 

Harwell & Janosky, 1991; Gao & Chen, 2005; Finch & Edwards, 2015). 

In the third research problem, in which item parameters RMSE were examined, estimation 

method, sample size, priori distribution type, the interaction of estimation method and sample 

size, and interaction of estimation method and priori distribution type on item discrimination 

parameter RMSE in the data in the 2 PL model created significant differences. In the 2 PL 

model data, no condition caused a significant difference in the RMSE of the item difficulty 

parameter. These results are like Harwell and Janosky's (1991) results. Accordingly, Bayesian 

estimation is considered sufficient for small samples and short tests in the 2 PL model. It is 

stated in Stone's (1992) study that as the priori distribution for the item discrimination parameter 

becomes skewed, the bias in the ML estimation increases. In this study, the RMSE for the item 

discrimination parameter is also affected by the skewness of the prior distribution type. In this 

respect, these two studies showed similar results. It is also seen in the study of Sass et al. (2008) 

that item parameters are affected by priori distribution and produce high error values. 

In the fourth research problem, the estimation method, sample size, priori distribution type, 

estimation method and sample size interaction, and estimation method and priori distribution 

type interaction on the item discrimination parameter RMSE in the data in the 3 PL model 

created significant differences. In the 3 PL model data, no conditions were significant on the 

item difficulty parameter RMSE. However, in the 3 PL model data, the estimation method on 

the RMSE of the lower asymptote parameter, the priori distribution type, and the interaction of 

the estimation method and the priori distribution type created significant differences. When 

these results are examined, it is seen that the suggestion of Swaminathan and Gifford (1986) is 

correct. Accordingly, this related research proposes the Bayesian method for parameter 

estimation for the 3 PL model. In this study, using the Bayesian estimation method in estimating 

item parameters in the 3 PL model, especially in the item discrimination parameter, provides 

an advantage. Likewise, as in the study of Gao and Chen (2005), Bayesian estimation gave 

more precise results in estimating item parameters when the sample size decreased to 100. 

In estimating item parameters and RMSE, the estimation method generally showed a significant 

differentiation. This differentiation is significant for item discrimination RMSE (aRMSE) and 

lower asymptote RMSE (cRMSE) parameters regardless of the model. Bayesian estimation 

method for this significant differentiation item discrimination parameter; for the lower 

asymptote parameter, the ML estimation method is in favor. However, according to the 

estimation method for the item difficulty RMSE (bRMSE) parameter, there is no differentiation 

between 2 PL and 3 PL models. This situation in the item difficulty parameter yielded similar 

results to the study of Kıbrıslıoğlu Uysal (2020). 

While the sample size did not make a significant difference in estimating the ability parameter, 

the test length, the priori distribution type, and the estimation method (only in the 2 PL model) 

created significant differences in the RMSE. The sample size does not affect the ability of 

parameter estimation and error values because the number of estimated parameters is only one. 

This is similar to the research of Goldman and Raju (1986) and Harwell and Janosky (1991). 

The study of Goldman and Raju (1986) stated that the sample size of 250 would be sufficient 

when the estimated parameters were reduced to 1. Harwell and Janosky (1991) concluded that 

samples of 15 items and 250 people were sufficient. A similar situation is seen in the study of 

Şahin and Anıl (2017). Şahin and Anıl (2017) concluded that a sample of 150 people would be 

sufficient to make parameter estimation in 1 PL model. 

The sample size was only effective in the RMSE estimations of the item discrimination 

parameter. This applies when both the 2 PL and 3 PL models are used. The increase in sample 

size positively affected the item discrimination parameter RMSE (aRMSE), and these values 

decreased. However, as the sample size decreased, especially the RMSE of the item 

discrimination parameter showed excessive swelling. The swelling in the RMSE of the item 
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discrimination parameter (aRMSE) due to estimation with the ML method was also seen in the 

studies of Chuah et al. (2006). However, the Bayesian estimation method played an important 

role in reducing this swelling. A similar situation is seen in the study of Gao and Chen (2005). 

In this study, it has been stated that Bayesian estimations give more accurate results than 

marginal maximum likelihood estimations when the sample size drops to 100. 

Increasing the test length only decreased the ability parameter RMSE (ϴRMSE). Moreover, in 

some cases where the test length is 40, the results of the ML and Bayesian methods for 

estimating ability have taken values close to each other. Similarly, Gao and Chen (2005) 

emphasized in their study that increasing test length and sample size tends to reduce the 

standard errors of estimations. However, when the test length decreased to 10, it caused 

swelling in the RMSE of the ability parameters in the ML estimation. However, this situation 

was reduced by the Bayesian estimation method. Item discrimination (ai), item difficulty (bi), 

and lower asymptote (ci) parameters RMSE were not affected in any way by the test length 

change. 

The priori distribution type ability parameters have significant differences in RMSE. According 

to the logistic model, the priori distribution type did not significantly differ in ability 

parameters. In both 2 PL and 3 PL models, the priori distribution type, item discrimination (ai), 

and lower asymptote (ci) parameters showed a significant difference in RMSE. In 2 PL and 3 

PL models, there was no significant difference in item difficulty parameter RMSE (bRMSE) 

values according to the priori distribution type. Differentiation of item parameters according to 

priori distribution type is more significant on the left and right skewed distributions than other 

distribution types. In a similar study conducted by Doğan (2002), distribution types (skewed or 

leptokurtic and platykurtic) affected the parameter invariance of the IRT. It was stated that the 

differentiation was higher in skewed distributions. A similar situation is observed in the studies 

of Seong (1990), Stone (1992), Kirisci et al. (2001), Sass et al. (2005) and Karadavut (2019). 

The logistic model was significant on the RMSE of ability and item parameters. The 3 PL model 

produced higher prediction RMSE than the 2 PL model. The Bayesian estimation method 

decreased these values more than the ML. 

The parameter estimation method, ability, and item parameters created a significant difference 

in the RMSE in different conditions that constitute the research's aim. In addition, it was shown 

that the Bayesian estimation method obtained lower RMSE than the ML estimation method in 

all simulation conditions. However, the significance of these RMSEs was observed in only 

some simulation conditions. 

RMSE is the total error indicator of parameter estimation's precision and estimation bias 

(Thissen & Wainer, 1983). When the literature was reviewed, the standard errors of parameter 

estimation for commonly used models (Rasch, 1 PL, 2 PL, and 3 PL) needed to be 

comprehensively addressed (Lord, 1980). As stated in the study results, the Bayesian method 

reduced the RMSE of ability and item parameters to lower levels than the ML method. 

Accordingly, the Bayesian estimation method seems advantageous since it produces lower 

parameter RMSE than the ML estimation method. Moreover, especially when the ML 

estimation method is used, it is seen that it tends to reduce the excessive increase in parameter 

RMSE that occurs in small samples and short tests. 

Nowadays, it is possible to use IRT to develop classroom achievement tests. However, the first 

issue is how to do this with small samples and short tests. The Bayesian approach makes this 

possible and reduces the estimation errors to acceptable levels. In addition, it is only sometimes 

possible for the distribution under study to be normal. The ML estimation method does not give 

accurate results in such a case. At this point, the advantages of Bayesian estimation are utilized. 

The results of this study show that Bayesian estimation can be offered as a solution where ML 

estimation cannot obtain accurate results. 
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APPENDIX 

#ÖNSEL (PRIOR) SCRIPT BLOCK* 

# Generation of necessary prior distributions and data sets according to simulation conditions 

library(psych) 

library(e1071) 

library(mirt) 

 

#I: number of items 

#N: number of individuals 

#M: number of parameters 

#D: distribution state 

 

prior <- function (I, N, M=c("2PL", "3PL"), D=c("normal","left-skewed","right-

skewed","leptokurtic", "platykurtic")) 

{ 

a <- rlnorm(I, meanlog = 0.3, sdlog = 0.2) 

b <- rnorm(I, mean = 0, sd = 1) 

c <- runif(I, min = 0.01, max = 0.25) 

 

if (D=="normal") {k <- as.matrix(rnorm(N, mean = 0, sd = 1))} 

 

else if (D==" left-skewed") {k <- as.matrix(c(rnorm(N*86/100, 2, 1)), runif(N*7/100, min = -

5, max = -4), runif(N*7/100, min = -4, max = -3)))} 

 

else if (D=="right-skewed ") {k <- as.matrix(c(rnorm(N*86/100, -2, 1)), runif(N*7/100, min 

= 3, max = 4), runif(N*7/100, min = 4, max = 5)))} 

   

else if (D=="leptokurtic ") {k <- as.matrix(c(rnorm(N*3/100, -1, 100), rnorm(N*94/100, 0, 

0.00001), rnorm(N*3/100, 1, 100)) )} 

   

else if (D=="platykurtic") {k <- as.matrix(c(rnorm(N*40/100, 0, 1)), runif(N*30/100, min = -

3, max = -1), runif(N*30/100, min = 1, max = 3)))} 

   

if (M=="2PL") 

 

{dat <- as.data.frame(simdata(a = a, d = b, N = N, itemtype = "dich", Theta = k)) 

   

model2pl <- mirt(data = dat, 1, itemtype = "2PL", SE = TRUE, verbose = FALSE, technical = 

list(NCYCLES = 10000)) 

 

irt.parameters <- as.data.frame(coef(model2pl, simplify = TRUE)$items) 

bias.a <- mean(irt.parameters[,1]-a) 

bias.b <- mean(irt.parameters[,2]-b) 

rmse.a <- sqrt(mean((irt.parameters[,1]-a)^2)) 

rmse.b <- sqrt(mean((irt.parameters[,2]-b)^2)) 

   

fit2pl <- M2(model2pl) 

M2 <- fit2pl$M2 

p <- fit2pl$p 

   

data <- list(dat, bias.a, rmse.a, bias.b, rmse.b, M2, p, k) 
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print(data)} 

   

else if (M=="3PL") 

     

{ 

dat <- as.data.frame(simdata(a = a, d = b, guess = c, N = N, itemtype = "dich", Theta = k)) 

 

model3pl <- mirt(data = dat, 1, itemtype = "3PL", SE = TRUE, verbose = FALSE, technical = 

list(NCYCLES = 10000)) 

 

parameters <- as.data.frame(coef(model3pl, simplify = TRUE)$item) 

bias.a <- mean(parameters[,1]-a) 

bias.b <- mean(parameters[,2]-b) 

bias.c <- mean(parameters[,3]-c) 

rmse.a <- sqrt(mean((parameters[,1]-a)^2)) 

rmse.b <- sqrt(mean((parameters[,2]-b)^2)) 

rmse.c <- sqrt(mean((parameters[,3]-c)^2)) 

   

fit3pl <- M2(model3pl) 

M2 <- fit3pl$M2 

p <- fit3pl$p 

   

data <- list(dat, bias.a, rmse.a, bias.b, rmse.b, bias.c, rmse.c, M2, p, k) 

  print(data)}} 
*The codes of Bulut and Sünbül (2017) were used in some parts of this function. 
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